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Abstract
Temporal Knowledge Graphs (TKGs) represent a crucial source of structured temporal information and exhibit
significant utility in various real-world applications. However, TKGs are susceptible to incompleteness, necessitating
Temporal Knowledge Graph Completion (TKGC) to predict missing facts. Existing models have encountered
limitations in effectively capturing the intricate temporal dynamics and hierarchical relations within TKGs. To address
these challenges, HyGNet is proposed, leveraging hyperbolic geometry to effectively model temporal knowledge
graphs. The model comprises two components: the Hyperbolic Gated Graph Neural Network (HGGNN) and the
Hyperbolic Convolutional Neural Network (HCNN). HGGNN aggregates neighborhood information in hyperbolic
space, effectively capturing the contextual information and dependencies between entities. HCNN interacts with
embeddings in hyperbolic space, effectively modeling the complex interactions between entities, relations, and
timestamps. Additionally, a consistency loss is introduced to ensure smooth transitions in temporal embeddings.
The extensive experimental results conducted on four benchmark datasets for TKGC highlight the effectiveness of
HyGNet. It achieves state-of-the-art performance in comparison to previous models, showcasing its potential for
real-world applications that involve temporal reasoning and knowledge prediction.

Keywords:Knowledge Graph, Temporal Knowledge Graph, Temporal Knowledge Graph Completion, Hy-
perbolic Geometry, Poincaré ball, Graph Neural Networks

1. Introduction

Knowledge Graphs (KGs) (Hogan et al., 2021) are
structured representations of knowledge that cap-
ture the relations between entities. As a type of on-
tology or semantic network, KGs consist of nodes
representing individual entities and edges repre-
senting the relations among them. However, due to
the vast and constantly expanding amount of data
that can be included in a KG, it is often difficult to
ensure completeness. As a result, research into
knowledge graph completion (KGC) has become a
topic of great interest in recent years (Bordes et al.,
2013; Di et al., 2021; Trouillon et al., 2016).
One aspect that is often overlooked by existing

methods is that the accuracy of most real-world
facts depends on the time at which they are consid-
ered. To address this issue, temporal knowledge
graphs (TKGs) (Boschee et al., 2015; Mahdisoltani
et al., 2014; Erxleben et al., 2014) have been in-
troduced to capture the temporal dependencies of
real-world facts. Similar to static KGs, TKGs also
suffer from incompleteness, which makes the task
of temporal knowledge graph completion (TKGC)
(Cai et al., 2023) particularly challenging. TKGC
aims to infer missing facts and relations in a tempo-
ral context, taking into account the changing nature
of the underlying data over time.
Facts in TKGs often exhibit a hierarchical struc-
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ture (Zhang et al., 2020), where some facts are
more general and abstract while others are more
specific and concrete. For example, consider a
TKG representing the history of a particular com-
pany. At a higher level, general facts like founding
dates and locations of the company may be en-
countered, while at a lower level, more specific
facts like names of individual employees and their
job titles might exist. The current methods for com-
pletion of data in Euclidean space have limitations
and distortions when representing large-scale hi-
erarchical data. These limitations arise due to the
inability of Euclidean metrics to capture the com-
plex relationships present in the data (Sala et al.,
2018; Sarkar, 2011). Hierarchical structures can
be better embedded in hyperbolic space. There-
fore, hyperbolic geometry is robust in capturing
hierarchical patterns. This is due to the property of
hyperbolic space where it has exponentially more
space available in the vicinity of each point com-
pared to Euclidean space (Nickel and Kiela, 2017).
Consequently, this makes hyperbolic geometry an
attractive choice for modeling hierarchical data.

The application of hyperbolic geometry to TKGs
poses several challenges. One of the main chal-
lenges in applying hyperbolic geometry to TKGC is
the development of effective algorithms for embed-
ding temporal information in hyperbolic space. This
requires consideration of the unique properties of
hyperbolic space, such as its non-Euclidean curva-
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ture and negative curvature, which can impact the
efficacy of existing embedding methods. Another
challenge is the necessity to develop techniques for
modeling intricate temporal relations among events
occurring at different times, which may entail cap-
turing complex patterns.

To model the hierarchical patterns and temporal
properties present in TKGs, we introduce a novel
approach that embeds these TKGs into hyperbolic
space. Our proposed model consists of a gated
hyperbolic graph neural network that aggregates in-
formation from neighboring entities within the TKG,
as well as a hyperbolic convolutional neural network
that captures heterogeneous interactions between
entities, relations, and timestamps.

The contributions can be summarized as follows:

• A hyperbolic graph neural network is intro-
duced, enabling the embedding of TKGs into
hyperbolic space, which accommodates hier-
archical patterns and temporal properties.

• The model consists of a gated hyperbolic
graph neural network for neighborhood infor-
mation aggregation and a hyperbolic convolu-
tional neural network for modeling heteroge-
neous interactions.

• By leveraging the intrinsic curvature properties
of hyperbolic geometry, the model achieves
state-of-the-art performance on four bench-
mark datasets.

2. Related Work

2.1. Static Knowledge Graph
Completion

Static knowledge graph completion (KGC) models
aim to infer missing facts from static KGs. These
time-agnostic models assume invariable semantics
for entities and relations.

TransE (Bordes et al., 2013) is a canonical model
that treats relations as translations within entity em-
beddings. TransE has sparked numerous subse-
quent extensions and variations in research en-
deavors, each exploring distinct methods for cap-
turing the intricate structures inherent in KGs (Wang
et al., 2014; Lin et al., 2015; Ji et al., 2015). Be-
sides translation-based models, there are also
other types of models for static KGC, such as the se-
mantic matching models(Nickel et al., 2011; Yang
et al., 2015; Trouillon et al., 2016), the tensor fac-
torization models(Balažević et al., 2019; Di et al.,
2021), and the neural network models(Vashishth
et al., 2020; Rosso et al., 2020).

2.2. Temporal Knowledge Graph
Completion

Recent research has focused on incorporating tem-
poral information into KGC models to enhance their
performance. The main objective of these models
is to infer missing facts from a TKG that exhibits
time-dependent characteristics.

TeRo (Xu et al., 2020a) models the temporal evo-
lution of entity embeddings through rotation in the
complex vector space, spanning from the initial
time to the current time. TeLM (Xu et al., 2021) em-
ploys multivector embeddings along with a linear
temporal regularizer for 4th-order tensor factoriza-
tion of a TKG. SANe (Li et al., 2022) maps facts
with different timestamps into distinct latent spaces
and explores the overlap in these spaces, thereby
capturing both the time-variability and time-stability
within TKGs.

2.3. Hyperbolic Geometry-Based
Approaches

Hyperbolic spaces, known for their properties of
exponential growth, are considered highly effective
for processing data characterized by hierarchical or
power-law distributions. In the realm of hyperbolic
graph neural networks, significant progress has
been reported, notably in the works reviewed by
(Yang et al., 2022) and proposed by (Liu et al.,
2019). Yet, these advancements aremainly tailored
to undirected and static graphs, which limits their
effectiveness for TKGC tasks.

The introduction of hyperbolic geometry to TKGs
adds a new level of complexity, particularly in mod-
eling the evolution of entities and their relations
over time. The contributions made by (Dasgupta
et al., 2018) and (Montella et al., 2021) represent
important steps in incorporating temporal aspects
into KGs. However, they face challenges in aggre-
gating neighborhood information for entities, a key
factor in capturing the dynamics within TKGs fully.
In contrast to the works of (Yang et al., 2022)

and (Liu et al., 2019), which excel in the context of
undirected and static graphs but struggle with appli-
cability to TKGs, our model incorporates hyperbolic
geometry to address the complexity of temporal and
hierarchical data in TKGC tasks. Moreover, our ap-
proach introduces a time-aware gating mechanism
in hyperbolic spaces, in contrast to the methods of
(Dasgupta et al., 2018) and (Montella et al., 2021),
which lack in aggregating entity neighborhood infor-
mation. This mechanism not only aids in modeling
temporal relations but also improves the aggrega-
tion of entities’ adjacency information.
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3. Preliminary

Hyperbolic geometry is characterized by a space of
constant negative curvature (Cannon et al., 1997).
In contrast to Euclidean space, which has zero
curvature, hyperbolic geometry exhibits an expo-
nential increase in space with radius, rather than
a polynomial increase. The Poincaré ball model
(Birman and Ungar, 2001) in hyperbolic geometry
is selected due to its compatibility with gradient-
based optimization and its intuitive visualization of
hyperbolic embedding.

The Poincaré ball is formally defined as an open
d-dimensional ball with negative curvature −c (c >
0), denoted as Bd,c = {x ∈ Rd : c‖x‖2 < 1},
where ‖ · ‖2 represents the Euclidean norm. In the
Poincaré ball model, each point x within Bd,c has a
continuous bijection between its neighborhood and
Rd, with a continuous inverse mapping.
For x ∈ Bd,c, the local first-order approximation

of the Poincaré ball at x can be characterized by
the tangent space T xBd,c, which is isomorphic to
Rd in Euclidean geometry (Wilson et al., 2014).
In other words, T xBd,c = Rd. The exponential
map serves as a mapping from the tangent space
T xBd,c to Bd,c, while the logarithmic map performs
the reverse, mapping points fromBd,c to the tangent
space T xBd,c.
For x ∈ Bd,c, the exponential map expcx and the

logarithmic map logcx are defined as follows for v 6=
0 and y 6= x:

expcx (v) = x⊕c
(
tanh

(√
c
λcx‖v‖

2

)
v√
c‖v‖

)
,

(1)

logcx (y) =
2√
cλcx

tanh−1
(√
c‖ − x⊕c y‖

) −x⊕c y
‖ − x⊕c y‖

,

(2)
where ⊕c represents the Möbius addition for any

x,y ∈ Bd,c:

x⊕cy =

(
1 + 2c〈x,y〉+ c‖y‖2

)
x+

(
1− c‖x‖2

)
y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2
.

(3)
Here, λcx denotes the hyperbolic metric at point

x.
Without loss of generality, the exponential map

and logarithmic map in the Poincaré ball model are
defined with the origin 0 ∈ Bd,c as a fixed point.
Therefore, Equations 1 and 2 can be reformulated
as:

expc0 (v) = tanh
(√
c‖v‖

) v√
c‖v‖

, (4)

logc0 (y) = tanh−1
(√
c‖y‖

) y√
c‖y‖

. (5)

In the Poincaré ball model, matrix multiplication
can be performed to project a point x ∈ Bd,c onto
the tangent space T0Bd,c at 0 using the logarithmic
map. This projected point is then multiplied by
the weight matrix W ∈ Rd×k, and subsequently
re-projected back onto the Poincaré ball using the
exponential map:

W ⊗c x = expc0 (W logc0 (x)) . (6)

Finally, in the Poincaré ball model, induced dis-
tance (Faraki et al., 2018) between two points
x,y ∈ Bd,c is defined as:

dcB (x,y) =
2√
c
tanh−1

(√
c‖ − x⊕c y‖

)
. (7)

4. Methodology

A temporal knowledge graph (TKG) can be
represented by a set of quadruples G =
{(h, r, t, τ) |h, t ∈ E , r ∈ R, τ ∈ T }. Here, E , R,
and T represent sets of entities, relations, and
timestamps, respectively. Each quadruple corre-
sponds to a time-dependent fact that establishes a
connection between a head entity h and a tail entity
t through the relation r at the timestamp τ . The ob-
jective of TKGC is to predict the missing tail entity t
or head entity h in response to a query (h, r, ?, τ) or
(?, r, t, τ), respectively, by leveraging the available
temporal facts. Specifically, TKGC focuses solely
on predicting missing facts at observed timestamps,
which is known as the interpolation task (Jin et al.,
2020).

To address the challenges of TKGC, we propose
a Hyperbolic Graph Neural Network (HyGNet) as
shown in Figure 1. The HyGNet model consists of
two key sub-modules. The first sub-module is a
hyperbolic gated graph neural network (HGGNN)
that aggregates the neighborhood information of
entities in the hyperbolic space. The HGGNN cap-
tures the contextual information and dependencies
among entities, enabling a more comprehensive
understanding of their interactions and dynamics
within the TKG. The second sub-module is a hy-
perbolic convolutional neural network (HCNN). The
HCNN integrates the embeddings in a hyperbolic
space, allowing for a more effective modeling of
the complex interactions between entities, relations,
and timestamps.
Specifically, an entity aggregates information

from its neighboring entities and relations in hy-
perbolic space, with time-dependent gating units
controlling the weights during aggregation. The
aggregation takes place in the tangent space, re-
sulting in the embedded representation of the en-
tity. Subsequently, the embeddings of the head
entity, relation, and time are stacked and subjected



8477

765430 1 2

8    9   10  11  12  13  14  15

16  17  18  19  20  21  22  23

Donald 
Trump

United 
States

Melania
Trump

spouseOf presidentOf

2005-07-19 2019-05-05

Melania Trump United States

spouseOf presidentOf

Donald Trump

∅ ∅

Hyperbolic space

Melania Trump United States

spouseOf presidentOf

Donald Trump

∅ ∅

2005-07-19 2019-05-05

Entity-relation combination

Time-specific input gate Tangent space

Melania Trump United States

spouseOf presidentOf

Donald Trump

∅ ∅

2019-05-05

Neighborhood aggregation

𝐖𝛕 𝐖𝛕

𝐖𝐫 𝐖𝐫

(a) Hyperbolic Gated Graph Neural Network (HGGNN)

𝝎 ∈ ℝ

𝝕 ∈ ℝ

Extract sliding local blocks

Reshape

1    2    3    4    5    6

2    3    4    5    6    7

0    1    2    3    4    5

8    9   10  11  12  13

9   10  11  12  13  14

10  11  12  13  14  15

16  17  18  19  20  21

18  19  20  21  22  23

17  18  19  20  21  22

Reshape

Feature map
tensor

Flatted 
feature

𝐖 ∈ ℝ

Hyperbolic 
distance

Candidate object entity embedding

(b) Hyperbolic Convolutional Neural Network (HCNN)

Predicted 
probabilities

Logistic 
sigmoid

Tangent space

Hyperbolic space Hyperbolic matrix
multiplication

Hyperbolic matrix
multiplication

Tangent space

Hyperbolic space

Hyperbolic space

2005-07-19

Figure 1: Overview of HyGNet. HGGNN aggregates neighborhood information within the hyperbolic
geometry framework, considering temporal dependencies. HCNN defines convolution operations in
hyperbolic space to capture intricate interactions.

to convolutional operations. Hyperbolic convolu-
tion operations are transformed into principled hy-
perbolic matrix multiplication. Through hyperbolic
linear transformations, the feature tensor is manip-
ulated to obtain the representation of the predicted
entity.

4.1. Hyperbolic Gated Graph Neural
Network

The Hyperbolic Gated Graph Neural Network (HG-
GNN) serves as an extension of inductive graph
neural networks within the hyperbolic geometry
framework. HGGNN benefits from both the expres-
sive capabilities of graph neural networks and the
representational power of hyperbolic embeddings.
HGGNN employs hyperbolic geometry to aggre-
gate the neighborhood information of entities within
hyperbolic space. It leverages the temporal infor-
mation to determine the extent of directed edge
information flow.
Given an embedding h ∈ Bd,c of an entity and

an embedding r ∈ Bd,c of a relation within the hy-
perbolic space, the integration of relation embed-
dings into the aggregation process of entity neigh-
borhoods utilizes the entity-relation combination
operation commonly employed in knowledge graph
embedding methodologies (Vashishth et al., 2019).
This operation is formulated as:

ĥ = φ (h, r) , (8)

where d represents the embedding dimension and
c denotes trainable curvature in hyperbolic space.
Here, φ : Bd,c×Bd,c → Bd,c is a composition opera-
tor. In the context of HGGNN, φ (·) is constrained to
non-parametric Möbius addition, i.e., ĥ = h⊕c −r.

However, it should be noted that the versatility of
φ (·) can extend to parametric operations such as
hyperbolic matrix multiplication, though such analy-
sis is deferred to future investigations.

Before performing neighborhood aggregation, a
gating mechanism is devised to modulate the ex-
tent to which ĥ can be propagated. This gating
mechanism is influenced by temporal information,
determining the degree of passage for ĥ.

Consequently, based on a temporal embedding
τ ∈ Bd,c, which determines the information pas-
sage along edges, an input gate is formulated as
follows:

iτ = σ
(
logc0

(
expc0(Wλ(ĥ) log

c
0(ĥ))

⊕c expc0(Wλ(τ) log
c
0(τ ))

))
,

(9)

where Wλ(ĥ),Wλ(τ) ∈ Rd×d.
Following the processing by the input gate iτ , the

adjusted hiτ for subsequent neighborhood aggre-
gation is derived:

hiτ = expc0

(
logc0(ĥ) ∗ iτ

)
, (10)

where ∗ denotes element-wise multiplication, re-
sulting in hiτ ∈ Bd,c.
Furthermore, information related to directed re-

lations is allowed to propagate in both the original
and reverse directions. Therefore, G is extended
to encompass corresponding reverse relations and
self-loops of entities, yielding:

G′ = {(h, r, t, τ)} ∪ {(t, r−1, h, τ)}
∪ {(h, rloop, h, τ)} ∪ {t, rloop, t, τ},

(11)

where r−1 ∈ R denotes the inverse relation, and
rloop signifies self-loop relation. To distinguish be-
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tween original, inverse, and self-loop relations, sep-
arate weight matrices are defined for them. Hence,
the Wλ(ĥ) and Wλ(τ) in Equation 9 are set with
relation-specific parameters based on their direc-
tions. Taking Wλ(ĥ) as an example, let λ(ĥ) =

dir(r), which is defined as:

Wλ(ĥ) =


Wo, G = {(h, r, t, τ)}
Wi, G = {(t, r−1, h, τ)}
Ws, {(h, rloop, h, τ)} ∪ {t, rloop, t, τ}

(12)
A similar procedure is adopted forWλ(τ) to capture
direction-specific parameters.

Aggregation stands as a pivotal step in HGGNN,
as it captures the structural and feature informa-
tion of neighboring entities. Graph neural networks
involve a sequence of fundamental operations, in-
cluding linear mappings and element-wise non-
linear message passing over a set of entities in a
given space. After processing hiτ as described in
Equation 10, a hyperbolic aggregation is performed
as follows:

hl+1
v = f

expc0

 ∑
u∈N (v)

logc0
(
hliτ
) . (13)

In layer l, the logarithmic projection logc0 is em-
ployed to map hiτ onto the tangent space for aggre-
gation, and the exponential projection expc0 is uti-
lized to project the aggregated tangent vectors back
onto the hyperbolic space. Here, f represents a
hyperbolic non-linear activation function satisfying
f : Bd,c → Bd,c, and takes the form expc0(σ log

c
0(·)),

where σ is a Euclidean non-linear activation. The
choice of performing aggregation in the tangent
space is rooted in the fact that the tangent space of
a point on the hyperbolic space is always Euclidean
or a subset of Euclidean space.

Following the entity embedding updates defined
in Equation 13, transformations are applied to the
relation embeddings rl and time embeddings τ l at
layer l as follows:

rl+1 = expc0
(
Wl

r log
c
0

(
rl
))
, (14)

τ l+1 = expc0
(
Wl

τ log
c
0

(
τ l
))
. (15)

Here, Wr,Wτ ∈ Rd×d represent learnable trans-
formation matrices.

4.2. Hyperbolic Convolutional Neural
Network

Convolutional Neural Networks (CNNs) are widely
employed in various fields for their ability to capture
intricate spatial features within data. In the context
of TKGC, to comprehensively capture the intricate

interactions between entities, relations, and times-
tamps, we propose the Hyperbolic Convolutional
Neural Network (HCNN). The essence of HCNN
lies in its definition of convolution operations in hy-
perbolic space, which is an aspect often missing in
existing TKGC methodologies.
Considering the absence of a direct convolu-

tion definition in hyperbolic geometry, the convo-
lution operation is transformed into well-defined
hyperbolic matrix multiplication. To elaborate, the
key idea is to map the convolution kernel and cor-
responding feature mappings within sliding local
blocks into matrices, thereby converting hyperbolic
convolution into matrix multiplication.
Upon processing through the HGGNN, the em-

bedded representations of entities, relations, and
timestamps, denoted as h ∈ Bd,c, r ∈ Bd,c, and
τ ∈ Bd,c, respectively, are concatenated into a 2D
matrix, represented as [h, r, τ ] ∈ B3×d,c. Given
the matching dimensions of h, r, and τ , alongside
the fact that all operations are conducted in a hy-
perbolic space with a learnable curvature c, this
implies that all entities, relations, and timestamps
are projected into the same hyperbolic space. Con-
sequently, the stacking, reshaping, and subsequent
processing of embeddings are feasible within this
unified hyperbolic space.
To convert the hyperbolic convolution operation

into principled matrix multiplication within hyper-
bolic geometry, a function ϕ(·) is defined. It extracts
sliding local blocks from [h, r, τ ] ∈ B3×d,c based on
learnable filters ω ∈ Rn×3×k, where n denotes the
number of filters, and k indicates the filter size. The
extraction process is illustrated in Figure 1. Prior to
extracting the sliding local blocks, zero padding is
applied to [h, r, τ ] ∈ B3×d,c. Consequently, the ex-
tracted feature matrix is represented as x ∈ Bd×3k,c
(with a fixed stride of 1). A set of learnable filters
ω ∈ Rn×3×k is introduced, which is employed to
extract sliding local blocks from the concatenated
embeddings [h, r, τ ] ∈ B3×d,c, where n represents
the number of filters, and k indicates the filter size.
The extraction process is illustrated in Figure 1.
Similarly, the filter ω ∈ Rn×3×k is reshaped into
$ ∈ Rn×3k to facilitate matrix multiplication. In this
case, the “convolution” operation is transformed
into the following operation:

x~c$ := expc0
(
logc0 (x)$

>)⊕c b1, (16)

where b1 ∈ Bnd is a bias vector.
Subsequently, the result obtained from x~c$

is folded and reshaped into a tensor x̂ ∈ Bn×d,c.
Since matrix multiplication is well-defined in hyper-
bolic geometry, the “convolution” in Equation 16
is feasible. To enhance the expressiveness of the
model, a element-wise nonlinearity σ⊗c(·) is ap-
plied to x̂. To ensure that the features after the
pointwise non-linearity still fall within the Poincaré
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ball, σ⊗c(·) should guarantee ‖σ⊗c (x̂) ≤ x̂‖, satis-
fying σ⊗c : B → B. Consequently, the non-linear
activation functions Rectified Linear Unit (ReLU)
(Glorot et al., 2011) and Leaky Rectified Linear Unit
(Leaky ReLU) (Maas et al., 2013) are applicable. To
sum up, the operation of hyperbolic convolutional
neural network operates as follows:

x̃ = σ⊗c (x ~c $) , (17)

where x̃ represents a feature map tensor, and x̃ ∈
Bn×d,c.

Next, a linear transformation is applied to x̃. First,
x̃ is flattened and reshaped into a vector, denoted
as vec(x̃) ∈ Bnd,c. A matrix W ∈ Rd×nd is defined
to perform hyperbolic matrix multiplication on the
flattened vector. Therefore, we have:

v = W ⊗c vec (x̃)⊕c b2

= expc0 (W logc0 (vec (x̃)))⊕c b2,
(18)

where v ∈ Bd,c represents the transformed feature
vector, ⊗c denotes hyperbolic matrix multiplication,
⊕c signifies the Möbius addition, and b2 ∈ Bd,c is
a bias vector.
To predict the query q = (h, r, ?, τ), the hyper-

bolic induced distance between v ∈ Bd,c and the
embedded candidate tail entity t ∈ Bd,c, after pro-
cessing by HGGNN, is computed as follows:

dcB (v, t) =
2√
c
tanh−1

(√
c‖ − v ⊕c t‖

)
. (19)

The distance between v and the embedding of the
correct tail entity is expected to be minimized. The
smaller the hyperbolic induced distance between
v and t, the more likely the quadruple is positive,
and vice versa.
Therefore, the formal definition of the scoring

function is as follows:

ψ (h, r, t, τ) = −dcB
(
W ⊗c vec

(
σ⊗c((ϕ([h, r, τ ])

~c$)⊕c b1)
)
⊕c b2, t

)
.

(20)

4.3. Training and Optimization
During the training process, the score ψ (h, r, t, τ)
is transformed via the logistic sigmoid function
σ (·), resulting in p(h, r, t, τ) = σ (ψ (h, r, t, τ)). This
transformation yields p(h, r, t, τ), which represents
the predicted probability that the candidate tail en-
tity t corresponds to the query (h, r, ?, τ). The train-
ing objective aims to minimize the negative log-
likelihood loss:

Lt = −
1

|G |
∑

(h,r,t,τ)∈G

(
log p(h, r, t, τ)

+|St|
∑
t̃∈St

log(1− p(h, r, t̃, τ))
) (21)

where St represents the negative samples by re-
placing the tail entity of (h, r, t, τ) as t̃.
To ensure temporal stability in the embeddings

of adjacent timestamps and to mitigate abrupt
changes, a regularization constraint is applied. This
constraint enforces a smooth transition between
embeddings corresponding to temporally adjacent
entities, promoting consistency and coherence in
the representation of temporal information. The
objective behind this regularization is to enhance
the model’s ability to capture gradual variations in
temporal dynamics, aligning with the underlying as-
sumption of smooth temporal transitions in TKGs.

Specifically, for each timestamp τ ∈ T , we derive
embeddings denoted by τ ∈ Bd,c. The set O is
then constituted as {τ |τ ∈ T } and sorted based
on timestamps. The consistency loss as follows:

Lc =
1

|O|

|O|−1∑
i=1

dcB (Oi+1 −Oi) , (22)

where dcB(·, ·) computes the hyperbolic induced dis-
tance, and Oi represents the i-th element in O.
The overall loss function for training HyGNet is

defined as follows:

L = Lt + λLc, (23)

where λ represents a hyperparameter that controls
the relative importance of the two losses.

5. Experiments

5.1. Experimental setup
Datasets Four publicly available benchmark
datasets are employed to evaluate the proposed
model, including ICEWS14 (Garcia-Duran et al.,
2018), ICEWS05-15 (Garcia-Duran et al., 2018),
YAGO11k (Dasgupta et al., 2018), andWikidata12k
(Dasgupta et al., 2018). ICEWS14 and ICEWS05-
15 consist of discrete time-annotated sociopoliti-
cal events, such as (Barack Obama, Make a visit,
South Korea, 2014-03-15). On the other hand,
facts in both YAGO11k and Wikidata12k are ac-
companied by time annotations, with each fact rep-
resented as a time interval. To conform to the pro-
cessing requirements, the facts with time intervals
are discretized intomultiple quadruplets, each asso-
ciated with a single timestamp. Table 1 summarizes
the statistics of these four benchmark datasets.

Baselines HyGNet is compared with both static
and temporal KGC models. Static KGC models,
which do not consider temporal information, in-
clude TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), RotatE (Sun et al., 2019), ComplEx-
N3 (Lacroix et al., 2018) and QuatE2 (Zhang et al.,
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Table 1: Statistics of TKGC benchmark datasets. The time span is measured in years.
Datasets #Entities #Relations Time span #Train #Valid #Test
ICEWS14 6,869 230 2014 72,826 8,941 8,963

ICEWS05-15 10,094 251 2005-2015 386,962 46,275 46,092
YAGO11k 10,623 10 -453-2844 16,408 2,050 2,051

Wikidata12k 12,554 24 1709-2018 32,497 4,062 4,062

2019). In contrast, temporal KGC models are de-
signed to process temporal information and capture
evolving patterns in TKGs, such as TTransE (Leblay
and Chekol, 2018), HyTE (Dasgupta et al., 2018),
ATiSE (Xu et al., 2020b), TeRo (Xu et al., 2020a),
TimePlex (Jain et al., 2020), TComplEx (Lacroix
et al., 2020), TeLM (Xu et al., 2021), SANe (Li et al.,
2022), and TGeomE+ (Xu et al., 2023).

Evaluation Metrics For each quadruple
(h, r, t, τ), simultaneous optimization of the model
is achieved by leveraging two queries, namely
(h, r, ?, τ) and (?, r, t, τ). In practical terms, a recip-
rocal relation (t, r−1, h, τ) is introduced for each
quadruple (h, r, t, τ). Consequently, the query
(?, r, t, τ) is substituted with (t, r−1, ?, τ). These
operations do not result in a loss of generality (Jain
et al., 2020; Xu et al., 2021).
Evaluation metrics such as MRR (Mean Recip-

rocal Rank) and Hits@N are utilized for assessing
the performance of the model. MRR is calculated
as the average of the reciprocal values of all com-
puted ranks. Hits@N represents the percentage
of times the true entity candidate appears among
the top N ranked candidates, where N ∈ {1, 3, 10}.
Among these metrics, MRR holds significance as
an evaluation index that is less susceptible to out-
liers (Garcia-Duran et al., 2018). Higher values of
MRR and Hits@N indicate superior performance
of the model. All evaluations are conducted under
the widely adopted time-wise filtering setting, as
employed in previous studies (Xu et al., 2020a).

Implementation details Hyperparameters are
determined based on the MRR performance on
the validation set. All embeddings are initialized
near the origin in the tangent space of the hyper-
bolic space and then recovered using the expo-
nential mapping. The Adam optimizer is employed
for optimization, and the learning rate is chosen
from {0.05, 0.002, 0.001, 0.0005}. During training,
256 mini-batches are created for each epoch. The
number of training epochs is set to 1000. λ is fixed
at 0.0001. The embedding dimension is set to
d = 300 for ICEWS05-15, while for other datasets,
it is set to d = 200. The number of convolutional
filters is fixed at 128, and the kernel size is chosen
from k ∈ {3, 5, 7, 9}. The code will be published on
https://github.com/codeofpaper/HyGNet.

5.2. Main Results
The experimental results are summarized in Tables
2 and 3. Most TKGCmodels outperform static KGC
models, highlighting the importance of considering
temporal information.
The proposed HyGNet exhibits remarkable per-

formance across all datasets, achieving state-of-
the-art results. The model exhibits even more re-
markable performance on the YAGO11k and Wiki-
data12k datasets. Notably, these datasets, which
encompass encyclopedic knowledge, are charac-
terized by hierarchical and structured knowledge,
in contrast to event-based ICEWS datasets. This
observation suggests that HyGNet is particularly
well-suited to model hierarchical knowledge struc-
tures.

5.3. Ablation Study
To verify the effectiveness of various components
of the proposed model, four variants of HyGNet are
explored. The results of are presented in Table 4,
where symbol!denotes the presence of specific
components in the experiment, and symbol%sig-
nifies their absence. Several key observations can
be made: (1) The performance drop in V1 when
HGGNN is removed indicates the importance of ag-
gregating neighborhood information in hyperbolic
space. (2) V1 outperforms its corresponding Eu-
clidean version, V3, and HyGNet outperforms its
Euclidean counterpart, V4, underscoring the effec-
tiveness of leveraging hyperbolic geometry for mod-
eling TKGs. (3) The slight performance decrease
in V4 when consistency loss is removed suggests
that considering smoothness in temporal informa-
tion contributes to performance improvement. (4)
HyGNet achieves the best performance, indicating
the effectiveness of all its components.

5.4. Analysis
Generalizing to Unseen Timestamps. In practi-
cal applications, TKG data may contain timestamps
that have not been previously encountered. Vali-
dating the model’s performance on unseen times-
tamps allows for an assessment of its robustness
and generalization capability when confronted with
novel data. Consistent with Goel et al. (Goel et al.,
2020), we resample ICEWS14 by removing the
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Table 2: Link prediction results on ICEWS14 and ICEWS05-15. Results marked with ∗, †, and � are taken
from the studies by (Garcia-Duran et al., 2018), (Xu et al., 2020a), and (Xu et al., 2021), respectively.
Dashes indicate unobtainable results, and all other results are from the original papers.

Datasets ICEWS14 ICEWS05-15
Metrics Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1 MRR
TransE∗ .637 – .094 .280 .663 – .090 .294
DistMult∗ .672 – .323 .439 .691 – .337 .456
RotatE† .690 .478 .291 .418 .595 .355 .164 .304

ComplEx-N3† .716 .527 .347 .467 .729 .535 .362 .481
QuatE2† .712 .530 .353 .471 .727 .529 .370 .482
TTransE† .601 – .074 .255 .616 – .084 .271
HyTE† .655 .416 .108 .297 .681 .445 .116 .316
ATiSE .757 .632 .423 .545 .803 .623 .394 .533
TeRo .732 .621 .468 .562 .795 .668 .469 .586

TimePlex .771 – .515 .604 .818 – .545 .640
TComplEx� .770 .660 .530 .610 .800 .710 .590 .660

TeLM� .774 .673 .545 .625 .823 .728 .599 .678
SANe .782 .688 .558 .638 .823 .734 .605 .683

TGeomE+ .780 .678 .545 .628 .831 .735 .603 .684
HyGNet .783 .691 .568 .645 .837 .747 .612 .693

Table 3: Comparison of link prediction results on YAGO11k and Wikidata12k. Results marked with ∗, †,
and � are taken from (Xu et al., 2020b), (Xu et al., 2020a), and (Xu et al., 2021), respectively. Dashes
indicate unobtainable results, and all other results are from the original papers.

Datasets YAGO11k Wikidata12k
Metrics Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1 MRR

TransE∗ .244 .138 .015 .100 .339 .192 .100 .178
DistMult∗ .268 .161 .107 .158 .460 .238 .119 .222
RotatE∗ .305 .167 .103 .167 .461 .236 .116 .221

ComplEx-N3∗ .282 .154 .106 .167 .436 .253 .123 .233
QuatE2∗ .270 .148 .107 .164 .416 .243 .125 .230
TTransE† .251 .150 .020 .108 .329 .184 .096 .172
HyTE† .272 .143 .015 .105 .333 .197 .098 .180
ATiSE .301 .189 .126 .185 .462 .288 .148 .252
TeRo† .319 .197 .121 .187 .507 .329 .198 .299

TimePlex .367 – .169 .236 .532 – .228 .334
TComplEx� .307 .183 .127 .185 .539 .357 .233 .331

TeLM� .321 .194 .129 .191 .542 .360 .231 .332
SANe .401 .266 .180 .250 .640 .483 .331 .432

TGeomE+ .327 .198 .130 .195 .546 .361 .232 .333
HyGNet .442 .295 .195 .276 .671 .503 .341 .450

quadruples of the 5th, 15th, and 25th days of each
month from the training set, and randomly split the
removed quadruples into the validation set and test
set. The results obtained in Table 5 indicate that
HyGNet outperforms SANe with a 6.8% improve-
ment in MRR, demonstrating the effectiveness of
HyGNet in generalizing to unseen timestamps.

Performance Evaluation on Various Rela-

tions. To assess the efficacy of HyGNet in hierar-
chical modeling, evaluations are conducted on sev-
eral relations within YAGO11k, specifically playsFor,
hasWonPrize, graduatedFrom, and isAffiliatedTo.
These relations inherently exhibit hierarchical char-
acteristics, such as a university graduating numer-
ous students in a particular year. HyGNet is ex-
pected to demonstrate superior performance on
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Table 4: Comparison of results for different variations of the model on ICEWS14.
Variant
Models HGGNN HCNN HGGNNeuc HCNNeuc

Consistency
Loss Hits@10 Hits@3 Hits@1 MRR

V1 % ! % % ! .780 .686 .563 .640
V2 % % ! ! ! .748 .656 .534 .610
V3 % % % ! ! .725 .636 .517 .590
V4 ! ! % % % .782 .683 .558 .636

HyGNet ! ! % % ! .783 .691 .568 .645

Table 5: Evaluation of generalization performance
on ICEWS14 dataset for queries with unseen times-
tamps.
Metrics Hits@10 Hits@3 Hits@1 MRR
DistMult .620 .462 .302 .410

DE-SimplE .624 .492 .333 .434
TComplEx .625 .492 .348 .443

SANe .709 .569 .394 .503
HyGNet .732 .605 .431 .537

Hits@10 Hits@3 Hits@1 MRR
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Figure 2: Results from several relations in
YAGO11k achieved by ATiSE (Xu et al., 2020b),
SANe (Li et al., 2022), and HyGNet.

such hierarchical relations. The outcomes pre-
sented in Figure 2 indicate that HyGNet outper-
forms other methods across all metrics. This val-
idates the effectiveness of HyGNet in modeling
inherently hierarchical knowledge.

Complexity and Parameter Count Analysis.
To evaluate the computational efficiency of HyGNet,
it is compared with existing baseline models in
terms of space complexity and parameter count.
As shown in Table 6, the space complexity of

HyGNet aligns with baseline models, where Ne,
Nr, Nτ , and d represent the number of entities, re-
lations, timestamps, and the embedding dimension,

Table 6: Comparison of space complexity and pa-
rameter count
Model Space Complexity Parameter Count
TeRo O (Ned+Nrd) 8,231,500
ATiSE O (Ned+Nrd) 18,980,089
SANe O (Ned+Nrd+Nτd) 21,670,219
HyGNet O (Ned+Nrd+Nτd) 7,047,370

respectively. This similarity stems from the fact that
HyGNet does not introduce additional trainable pa-
rameters compared to its Euclidean version, thus
maintaining equivalent space complexity with its Eu-
clidean counterpart. Furthermore, on the ICEWS14
dataset, HyGNet’s parameter count is comparable
to TeRo (Xu et al., 2020a) and ATiSE (Xu et al.,
2020b) but significantly lower than SANe (Li et al.,
2022). In terms of time complexity, due to the intro-
duction of hyperbolic geometry, running one epoch
of HyGNet on ICEWS14 takes approximately 5 min-
utes, and completing 1000 epochs requires around
3.5 days. The training duration is considered ac-
ceptable, yet we are committed to reducing time
complexity in future iterations.

6. Conclusion

This paper proposes HyGNet, a novel model that
leverages hyperbolic geometry to capture temporal
dependencies and spatial relations in TKGs. By
aggregating entity neighborhood information and fa-
cilitating heterogeneous interactions among entity,
relation, and timestamp embeddings in hyperbolic
space, HyGNet offers a comprehensive framework
for TKGC. Extensive experiments on various bench-
mark datasets demonstrate HyGNet’s clear supe-
riority over existing state-of-the-art methods. The
model’s remarkable performance improvements
underscore its ability to effectively model temporal
information and intricate hierarchical relations in
TKGs, highlighting the significant potential of hyper-
bolic geometry in this domain.
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Appendix A. Criteria for Relation
Selection in Performance Evaluation

This section explains how we chose certain rela-
tions to assess the performance of the HyGNet
model, focusing on hierarchical relations within
TKGC. We use the YAGO11k dataset for this eval-
uation, reflecting the complexity of real-world ency-
clopedic knowledge. This dataset includes various
relations: wasBornIn, diedIn, worksAt, playsFor,
hasWonPrize, isMarriedTo, owns, graduatedFrom,
isAffiliatedTo, and created.
In the analysis, we aimed to validate whether

HyGNet can effectively model relations with inher-
ent hierarchy, and for this purpose, we designed
an algorithm to compute a hierarchical score. The
hierarchical score calculation involved computing
values for both head to tail and tail to head rela-
tions and weighting their summation. For the re-
lations wasBornIn, diedIn, worksAt, playsFor, has-
WonPrize, isMarriedTo, owns, graduatedFrom, isAf-
filiatedTo, and created, the hierarchical values were
4, 29, 33, 171, 18, 32, 160, 3, 165, and 33, respec-
tively. A higher value indicates a greater degree of
hierarchy for the respective relation. Therefore, we
selected the top 4 relations based on their hierar-
chical values in descending order, namely playsFor,
hasWonPrize, graduatedFrom, and isAffiliatedTo.
This choice allows us to focus on relations that pose
a greater challenge due to their hierarchical nature.
The results in Figure 2 show that HyGNet per-

forms well on these selected relations, especially
on those with higher hierarchical scores, compared
to baseline models. This demonstrates HyGNet’s
strength in modeling and understanding hierarchi-
cal relations in TKGs, making it useful for complex
TKGC tasks.

Table 7: Comparison of link prediction results on
GDELT.
Metrics Hits@10 Hits@3 Hits@1 MRR
TransE .312 .158 .000 .113
DistMult .348 .208 .117 .196
TTransE .318 .160 .000 .115
HyTE .326 .165 .000 .118
SANe .476 .326 .212 .301
HyGNet .509 .358 .237 .329

Appendix B. Experimental Results on
the GDELT Dataset

To further validate the robust performance of
HyGNet on large-scale temporal knowledge graphs,
we conducted additional experiments on a more ex-
tensive and diverse dataset, the Global Database
of Events, Language, and Tone (GDELT) (Leetaru
and Schrodt, 2013). GDELT is a subset of a larger
global event, language, and tone database, cap-
turing a temporal knowledge graph with records
dating back to 1979, reflecting human behavior.
Our experiments focused on facts with times-

tamps ranging from April 1, 2015, to March 31,
2016, within this vast dataset. Specifically, it in-
cludes facts related to 500 of the most common
entities and 20 of the most common relations, pro-
viding a valuable testing platform for evaluating
model performance in diverse and challenging en-
vironments. The training set of GDELT comprises
2,735,685 quadruples, nearly 38 times larger than
the ICEWS14 dataset.
The experimental results shown in Table 7 in-

dicate HyGNet outperforms baseline models on
GDELT, achieving state-of-the-art results. This
achievement is significant, especially considering
the complexity and scale of the GDELT dataset.
GDELT exhibits higher density and significant

temporal dynamics compared to the two ICEWS
datasets, including 2.7 million training facts, 500 en-
tities, and 20 relations. Some facts persist across
multiple consecutive timestamps, while others are
transient and sparse. This inherent complexity em-
phasizes the challenging nature of the dataset, re-
quiring powerful reasoning capabilities.
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