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Abstract
Continuous prompt tuning has gained significant attention for its ability to train only continuous prompts while
freezing the language model. This approach greatly reduces the training time and storage for downstream tasks. In
this work, we delve into the hierarchical relationship between the prompts and downstream text inputs. In prompt
learning, the prefix prompt acts as a module to guide the downstream language model, establishing a hierarchical
relationship between the prefix prompt and subsequent inputs. Furthermore, we explore the benefits of leveraging
hyperbolic space for modeling hierarchical structures. We project representations of pre-trained models from
Euclidean space into hyperbolic space using the Poincaré disk which effectively captures the hierarchical relationship
between the prompt and input text. The experiments on natural language understanding (NLU) tasks illustrate that
hyperbolic space can model the hierarchical relationship between prompt and text input. We release our code at
https://github.com/myaxxxxx/Hyperbolic-Prompt-Learning.
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1. Introduction
The remarkable achievements of pre-trained large
language models (Devlin et al., 2018; Yang et al.,
2019; Raffel et al., 2019) empower the develop-
ment of lightweight fine-tuning techniques (Li and
Liang, 2021; Qin and Eisner, 2021) for downstream
tasks. In lightweight fine-tuning, the majority of
the pre-trained model is frozen, while small train-
able modules are available. This strategy effec-
tively addresses the issue of catastrophic forget-
ting (Houlsby et al., 2019) often encountered dur-
ing full parameter training. Therefore, lightweight
fine-tuning not only achieves remarkable results
but also significantly reduces training costs.
There are multiple avenues for exploring
lightweight fine-tuning techniques (Rebuffi et al.,
2017; Li and Liang, 2021; Chen et al., 2021;
Zheng et al., 2021). One such approach is prompt
learning (Shin et al., 2020; Ding et al., 2021)
which freezes all parameters of the pre-trained
model and utilizes natural language prompts to
query a language model. There are two types of
prompt tokens, including discrete prompts (Gao
et al., 2020; Shin et al., 2020) and continuous
prompts. Typically, discrete prompts are composed
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Figure 1: Hierarchical structure of prompt learn-
ing (Left). Euclidean space and hyperbolic space
(Right).

of a task description and/or a series of canonical
examples. However, the use of discrete prompts
can result in suboptimal performance in many
cases compared to fine-tuning. Different from
discrete prompts (Shin et al., 2020; Gao et al.,
2020), continuous prompts tuning (Liu et al.,
2021b; Li and Liang, 2021; Zhong et al., 2021) is
an idea to tune continuous representations, it only
updates continuous prompts parameters during
training. Properly optimized continuous prompt
tuning can be comparable to fine-tuning universally
across various NLU tasks (Zhong et al., 2021;
Lester et al., 2021).
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In prompt learning, the prefix prompt is closely
related to the subsequent text inputs. It guides
the downstream language model, which can be
modeled as a tree relationship: prompt as the root
node and subsequent inputs as the leaf node. As
shown in Fig. 1(left), the class number of leaf nodes
surpasses the count of root nodes and this type
of tree can be viewed as a hierarchical structure.
This observation motivates us to reconsider the
relationship between prompt and subsequent text
inputs from a hierarchical perspective.
In this paper, our focus is on exploring the hierarchi-
cal relationship between prompts and subsequent
text inputs. Traditionally, prompts and text inputs
were represented in Euclidean space. However, in-
spired by Desai et al. (2023); Ge et al. (2022); Atigh
et al. (2022); Gulcehre et al. (2018), we propose
leveraging the Poincaré disk to project prompts
and text inputs from Euclidean space into hyper-
bolic space. By doing so, we effectively capture
the hierarchical relationship that exists between
them. We conducted comprehensive experiments
on several natural language understanding (NLU)
tasks, including question answering, named entity
recognition, and sentence classification. The ex-
perimental results consistently demonstrate that
prompt tuning in hyperbolic space enhances the
performance across all NLU tasks and this obser-
vation highlights the generality and effectiveness
of our approach.
Overall, our main contributions can be summarized
as follows:

• We investigate the hierarchical structure be-
tween prompts and downstream task inputs,
and propose the utilization of the Poincaré disk
hyperbolic space to model and substantiate
this relationship.

• Experiments on sentence classification, ques-
tion answering, and token classification tasks
demonstrate the effectiveness of our proposed
approach.

2. Approach
In section 2.1, we briefly introduce the background
of the Poincaré ball model. In section 2.2, we de-
scribe our proposed hyperbolic approach in detail.

2.1. Background: The Poincaré Ball
Model

There are various isometric models of hyperbolic
space. The n-dimensional hyperbolic space H

n is
a Riemannian manifold of constant negative curva-
ture. We select the Poincaré ball model (Dn

c , gD)
with the curvature parameter c.
This model is realized as a pair of an n-dimensional
ball (Dn = {x ∈ R

n : ‖x‖2 < 1, c ≥ 0}) with the
Riemannian metric gD = λ2

cg
E . λc =

2
1−c‖x‖2 is the

conformal factor and gE = In is Euclidean metric
tensor which means local distances are scaled by
the factor λc approaching infinity near the bound-
ary of the ball. So, the space expansion property
emerges naturally in hyperbolic spaces.
In the Euclidean spaces, however, the volume of
an object of a diameter r scales polynomially in r,
in the hyperbolic space, such volumes scale expo-
nentially with r. Intuitively, We regard it as a con-
tinuous analogue of trees with a branching factor
m. and O (mn) nodes on the level n, which in this
case serves as a discrete analogue of the radius.
Similar to hierarchical data, prefix prompts, and the
subsequent text inputs also form a tree structure in
which continuous prefix prompts prepend different
subsequent inputs. This property allows hyperbolic
space to efficiently model prompt tuning tasks.

2.2. Hyperbolic Representations of
Pre-trained Model

We first describe the Poincar ball model projection.
To map from the Euclidean tangent space to the hy-
perbolic space, networks operate on the Poincaré
ball. The projection of a Euclidean vector x onto
the Poincaré ball is given by the exponential map
with anchor v:

expcv(x) = v ⊕c

(
tanh

(√
c
λc
v‖x‖
2

)
x√
c‖x‖

)
(1)

with ⊕c the Möbius addition:

v ⊕c w =

(
1+2c〈v, w〉+c‖w‖2) v+(

1−c‖v‖2)w
1+2c〈v, w〉+c2‖v‖2‖w‖2

(2)
In practice, v is commonly set to the origin, simpli-
fying the exponential map to:

exp0(x) = tanh((
√
c‖x‖)(x/(√c‖x)) (3)

As shown in Fig. 2, we take BERTlarge model as
an example. Given the trainable continuous em-
beddings [p1, p2,..., pn] as prefix representations,
the prompt representation and input text are fed
into the BERTlarge model:

outputsfeature = BERTlarge([Pe;Xe]) (4)

The output of the pre-trained model is to project to
hyperbolic space:

outputshy = exp0(outputsfeatures) (5)

Finally, according to per-task-specific settings, the
outputs of hyperbolic space are fed into a linear
classifier to get final logits:

logits = BERTlinear(outputshy) (6)
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Figure 2: Overview of our proposed approach. Yellow blocks refer to trainable prompt embeddings. Green
blocks are frozen pre-trained language models.

BoolQ CB COPA MultiRC (F1a)

PT PT-2 PT PT-2 PT PT-2 PT PT-2

BERTlarge 63.2 75.2 73.2 94.6 62.0 75.0 59.6 70.6

BERTlarge + Poincaré 66.7 76.0 75.0 96.0 71.0 79.0 59.0 70.2

RoBERTalarge 62.2 84.5 69.6 94.6 63.0 88.2 59.9 82.5

RoBERTalarge + Poincaré 62.6 84.5 73.2 96.4 65.0 91.0 59.3 82.0

ReCoRD (F1) RTE WiC WSC

PT PT-2 PT PT-2 PT PT-2 PT PT-2

BERTlarge 44.2 72.8 53.5 78.3 56.9 71.0 63.5 66.3

BERTlarge + Poincaré 44.0 72.6 65.0 77.6 65.1 73.2 63.5 67.3

RoBERTalarge 46.3 89.3 54.5 87.0 57.8 69.0 63.5 63.4

RoBERTalarge + Poincaré 46.3 89.0 57.4 88.4 71.3 71.0 63.5 63.4

Table 1: Results on SuperGLUE development set. (PT: Prompt tuning Lester et al. (2021); PT-2: P-tuning
v2 Liu et al. (2021a); bold: the best).

3. Experiments
We conduct comprehensive experiments on var-
ious widely used pre-trained models and natural
language understanding (NLU) tasks to evaluate
the efficacy of hyperbolic representations in prompt
learning. Except for fine-tuning, all methods are
implemented with frozen language model back-
bones, following the experimental setup of (Liu
et al., 2021a).
Tasks. We employ datasets from Super-
GLUE (Wang et al., 2019) to evaluate overall NLU
task performance. Furthermore, we introduced a
set of sequence labeling tasks, such as named
entity recognition (Sang and De Meulder, 2003;
Weischedel et al., 2013) and extractive question
answering (Rajpurkar et al., 2016).

Baselines. In our experiments, we em-
ployed the BERTlarge (Devlin et al., 2018) and
RoBERTalarge (Liu et al., 2019) pre-trained mod-
els as backbone language models (LM). We inte-
grated the Poincaré sphere model into the following
prompting methods:

• Prompt tuning (Lester et al., 2021): This
method involves the addition of virtual tokens
exclusively at the embedding layer of pre-
trained language models.

• Prefix-tuning (Liu et al., 2021a): This method
utilizes deep continuous prompts by inserting
virtual tokens at the beginning of all key-value
pairs within the attention layers of pre-trained
language models.
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CoNLL03 CoNLL04 SQuAD 1.1 SQuAD 2.0

PT PT-2 PT PT-2 PT PT-2 PT PT-2

BERT 82.5 82.2 71.2 82.2 63.0/75.3 82.1/89.4 50.8/52.6 67.6/71.4

+ Poincaré 84.2 83.4 72.8 84.1 62.8/75.0 82.0/89.3 51.0/53.0 68.2/73.0

RoBERTa 87.1 86.9 76.2 86.2 72.5/78.4 88.0/94.0 67.5/71.4 81.1/84.5

+ Poincaré 88.8 92.1 78.2 89.0 73.0/78.6 88.0/94.2 68.6/72.3 81.5/85.0

Table 2: Results on named entity recognition (NER) and question answering (QA). (PT: Prompt tuning
Lester et al. (2021); PT-2: P-tuning v2 Liu et al. (2021a); bold: the best).

Implementations. All our models are trained on
a single NVIDIA A100 Tensor Core GPU. We im-
plement prompt tuning and prefix-tuning following
(Liu et al., 2021a) settings. Other hyperparameter
settings can be found in our code.

3.1. Main Results
Table 1 presents the performances of hyperbolic
representations in the SuperGLUE task. With the
exception of the MultiRC and ReCoRD tasks, our
approach exhibits better performance compared
to the existing PT and PT2 baselines. Particularly
in the RTE task, the PT-based hyperbolic BERT
model exhibits remarkable superiority over the cor-
responding baselines.
Table 2 presents the performance of the named en-
tity recognition (NER) and question answering (QA)
tasks, respectively. It is observed that the NER ex-
periments demonstrate significant improvements
compared to the QA experiments which highlights
the beneficial role of hyperbolic representations in
effectively modeling token classification tasks.

3.2. Ablation Study & Inference Speed
We perform ablation experiments on four tasks. In
Fig. 3, we show the effect of different curvatures
for low and high-resource tasks. For high-resource
tasks, we can observe that the effect of the curva-
ture value is negligible, with only minor changes in
performance even for large curvature differences
(e.g., 1 to 4). A different observation can be made
with low-resource tasks, we see a significant per-
formance fluctuation for different curvatures. which
suggests that the hyperparameter c is particularly
sensitive to low-resource tasks.
Based on the findings depicted in Fig. 4, we con-
duct an analysis of the inference time between
employing Poincaré model and abstaining from its
usage. The experiments are conducted using a
single A100 for GPU inference. The results re-
veal that the incorporation of the Poincaré model
led to a marginal increase of 0.03 seconds in the
inference time, compared to the absence of the
Poincaré model. Similarly, there is an observed in-
crease of 0.24 seconds for CPU inference. These
experimental outcomes indicate that the utilization

Figure 3: Comparison of curvature for high and low
resources datasets. C:1 represents the curvature
is set to 1.

Figure 4: Comparison of inference speed for
named entity recognition task (CoNLL 2003
dataset).

of the Poincaré model has a negligible impact on
the inference time.

4. Conclusion
In this paper, we explore the Poincaré disk hyper-
bolic representations of pre-trained models in NLU
tasks, projecting representations from Euclidean
space into hyperbolic space to model the hierar-
chical relationship between the prompt and input
text. With high accuracy and efficiency, hyperbolic
representations can be an effective supplement to
prompt learning.
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