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Abstract
Session-based recommendation (SBR) is a challenging task that involves predicting a user’s next item click
based on their recent session history. Presently, many state-of-the-art methodologies employ graph neural
networks to model item transitions. Notwithstanding their impressive performance, graph-based models encounter
significant challenges when confronted with intricate session dependencies and data sparsity in real-world
scenarios, ultimately constraining their capacity to enhance recommendation accuracy. In recognition of these
challenges, we introduce an innovative methodology known as ’Mssen,’ which stands for Multi-collaborative
self-supervised learning in hypergraph neural networks. Mssen is meticulously crafted to adeptly discern user
intent. Our approach initiates by representing session-based data as a hypergraph, adeptly capturing intricate,
high-order relationships. Subsequently, we employ self-supervised learning on item-session hypergraphs to
mitigate the challenges of data sparsity, all without necessitating manual fine-tuning, extensive search, or domain-
specific expertise in augmentation selection. Comprehensive experimental analyses conducted across multiple
datasets consistently underscore the superior performance of our approach when compared to existing methodologies.
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1. Introduction

In recent times, consumers have increasingly fa-
vored online product selection over in-person re-
tail experiences. However, this shift brings with it
the challenge of information overload (Lyu et al.,
2021). Many contemporary transactional websites
use anonymous user identities and involve brief
purchase sessions, underscoring the importance
of modeling user behavior within single sessions for
effective recommendations (Krishnan et al., 2022;
Zheng et al., 2023c). Traditional recommendation
methods, like collaborative filtering (Su et al., 2021),
heavily reliant on extensive user data and long-term
interactions, often struggle to provide accurate rec-
ommendations in such scenarios (Wu et al., 2019;
Zheng et al., 2023a).

Session-based recommendation (SBR) methods
(Wang et al., 2021; Zheng et al., 2023b), renowned
for their high practical relevance, are specifically
engineered to delineate user intent by analyzing
the behavioral sequences of users within sessions.
More recently, the advent of graph neural networks
(GNNs) (Zheng et al., 2022) has generated con-
siderable interest, attributed to their remarkable
effectiveness in diverse domains, including SBR.
GNN-based approaches,(Wu et al., 2019; Qiu et al.,
2019), map each session to a subgraph respec-
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tively, and then use the subgraph as the input of
GNN to further capture the dependencies of nodes
in the subgraph to provide suggestions for the next
project. They model item transitions as pairwise
relations, offering a more adaptable approach to
accommodating temporal dependencies among
items. Although these GNN-based models have ex-
hibited promising performance in SBR, two pivotal
issues warrant further in-depth investigation:

First challenge i) Modeling High-Order Item
Relations: In GNN-based approaches, item data
is commonly interconnected via pairwise relation-
ships. Nonetheless, real-world transactions fre-
quently feature complex item structures charac-
terized by high-order interconnections (Xia et al.,
2021). While GNN-based models can propagate
long-term relational dependencies, considered to
be of higher order, across k-hop neighbors using
layers corresponding to each hop, they fall short in
formulating and capturing intricate high-order user
relationship patterns extending beyond mere pair-
wise links (Yu et al., 2021). For instance, a simplis-
tic pairwise relationship between ’strawberry’ and
’apple’ does not suffice to infer a user’s intention
to purchase an assortment of fruits. Consequently,
the development of a more generalized architecture
that proficiently learns representations of items in
higher-order relationships becomes vital.

Second challenge ii) Mitigating Item Data
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Sparsity: Data sparsity in item interactions is a
widespread problem in practical recommendation
scenarios, primarily due to limited user interactions
with a large number of items (Lin et al.). Many GNN-
based models struggle with sparse data, especially
in short user sessions. While some self-supervised
learning (SSL) methods (HaoChen et al., 2021)
have been used to tackle data sparsity, they often
involve augmenting the data by adding or removing
edges and nodes. Unfortunately, such methods,
though effective in some contexts, are not well-
suited for session-based recommendation (SBR)
as they can disrupt the relationships between items,
making the dataset even sparser (Sun et al., 2019;
Wu et al., 2021). Additionally, these augmentation-
based SBR methods heavily depend on the choice
of augmentation strategies and hyperparameters,
limiting their effectiveness. Therefore, it is crucial
to explore innovative SSL approaches to improve
item representations and address data sparsity in
session-based recommendation.

Motivated by the aforementioned discussions,
we present a novel approach named Multi-
collaborative self-supervised learning in hyper-
graph neural networks, or Mssen, designed to
explore user intent. To tackle the first challenge,
which revolves around capturing high-order rela-
tions among sessions, we introduce an innovative
hypergraph modeling technique. Specifically, our
methodology employs hypergraph representation,
enabling more effective inference of user intent dur-
ing their current session. In this hypergraph model,
each session is depicted as a hyperedge, intercon-
necting all items within that session. The empha-
sis is on capturing the inherent coherence among
these items, without being constrained by strict or-
dering requirements. Addressing the second chal-
lenge related to data sparsity, we delve into the
realm of self-supervised learning (SSL) within the
context of item-session hypergraphs. We propose
two types of noise augmentation strategies: multi-
plicative noise and additive noise. These strategies
involve introducing noise directly into the represen-
tation, which proves to be effective for generating
diverse views of the data. By jointly optimizing
these tasks, we observe substantial improvements
in recommendation performance.

In summary, our contributions can be suc-
cinctly described as follows: 1) We introduce
Multi-collaborative self-supervised learning in hy-
pergraph neural networks, denoted as Mssen, for
session-based recommendation. Mssen excels
in capturing intricate, high-order data correlations
within its structure, thereby enhancing the inference
of user intent in current sessions. 2) We propose
two types of noise augmentation strategies: multi-
plicative noise and additive noise. These strategies
involve introducing noise directly into the represen-

tation, which proves to be effective for generating
diverse views of the data. 3) Our approach is vali-
dated through extensive experiments on multiple
real-world datasets. The results demonstrate not
only competitive performance but also the absence
of a requirement for manual data augmentation.

2. Related Work

Session-based Recommendation. Session-
based recommendation (SBR) systems, which aim
to predict a user’s next action based on their previ-
ous activity sequence, are garnering escalating
scholarly interest (Li et al., 2022). Initial SBR
methodologies were inspired by the observation
that users with similar behaviors are likely to exhibit
similar purchasing patterns, leading to the adoption
of nearest neighbor-based algorithms (Dias and
Fonseca, 2013; Sarwar et al., 2001). A canonical
example of this approach is the item-based neigh-
borhood recommendation method (Sarwar et al.,
2001) , which gauges item similarities through co-
occurrence within sessions. Advancements in deep
learning have catalyzed significant enhancements
in SBR (Li et al., 2017; Hidasi et al., 2016; Liu et al.,
2018). Pioneering the utilization of Recurrent Neu-
ral Networks (RNN) in SBR, Hidasi et al. (Hidasi
et al., 2016)presented GRU4Rec, which leverages
Gated Recurrent Units (GRUs) alongside session-
parallel mini-batches and pairwise ranking loss,
yielding promising improvements over traditional
models. Despite RNNs achieving notable success,
their ability to encapsulate collective item depen-
dencies remains limited. Conversely, Graph Neural
Networks (GNNs) utilize graph structures to ele-
gantly represent item transition dynamics. Wang
et al. (Wang et al., 2020)contributed the GCE-
GNN model, which intricately captures user prefer-
ences by leveraging transition information across
sessional and global graph levels, thus facilitating
a refined inference of current user interests . While
these advancements have propelled the field for-
ward, they exhibit restricted capacity in grasping the
intricate higher-order relationships between items.
Our model sets itself apart by strategically employ-
ing hypergraphs to intricately map the higher-order
dependencies present in sessions and items.

Hypergraph Learning. Although the graph neu-
ral network approaches have achieved successful
results in capturing high-order relations in various
tasks (You et al., 2020; Zhu et al., 2021), these
approaches are only appropriate in pairwise con-
nections, which has limitation in expressing com-
plex structures of data (Zhang et al., 2021). Re-
cently, constructing hypergraphs to learn the data
structure become a popular approach. A hyper-
graph is a generalization of a simple graph in which
a hyperedge can connect more than two nodes.
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Hayashi et al. (Hayashi et al., 2020) propose a flex-
ible framework for clustering hypergraph-structured
data based on recently proposed random walks
utilizing edge-dependent vertex weights. Xue et al.
(Xue et al., 2021) develop an unsupervised Dual-
HGCN that transforms the multiplex bipartite net-
work into two sets of homogeneous hypergraphs,
along with intra- and inter-message passing strate-
gies to promote information exchange within and
across domains. To revisit user mobility and so-
cial relationships based on a large-scale LBSN
dataset collected over a long-term period, Dingqi
(Yang et al., 2019) proposes LBSN2Vec, a hyper-
graph embedding approach designed specifically
for LBSN data for automatic feature learning. In
contrast to these prior works, our approach focuses
on enhancing supervised signals by facilitating con-
trastive learning specifically between hyperedges
and their corresponding global graph representa-
tion. This targeted approach significantly improves
the efficiency of supervised signal processing.

Self-supervised Learning. Self-supervised
learning’s success is figuring out a way to lever-
age the tremendous amounts of unlabeled data
that becomes available to dig out the representa-
tion of general data. Existing graph contrastive
learning (Fang et al., 2021; Zhu et al., 2021) is a
class of self-supervised approaches, which train
an encoder to measure the divergence in latent
space by contrasting samples from a distribution
that contains depict statistical dependencies of in-
terest and those that do not (Hassani and Ahmadi,
2020). The main idea of graph contrastive learning
is to treat each sample as a distinct category and
learn how to distinguish them (Fang et al., 2021).
For instance, Yuning (You et al., 2021) proposes
a unified bilevel optimization framework to auto-
matically, adaptively and dynamically select data
augmentations when performing GraphCL on spe-
cific graph data. The general framework, dubbed
Joint Augmentation Optimization (JOAO), is instan-
tiated as min-max optimization. Sheng Wan (Wan
et al., 2021) proposes a novel GCN-based SSL
algorithm is presented in this paper to enrich the
supervision signals by utilizing both data similarities
and graph structure. Their main goal is to improve
graph representations through diverse graph aug-
mentation strategies. In contrast, our work stands
out by focusing on learning node representations
without the need for graph augmentations.

3. Methodology

As shown in Figure 1, our Mssen consists of two
critical tasks: one is the main task for the recom-
mendation, and the other is SSL acted as the aux-
iliary task to boost the former.

3.1. Hypergraph Network for SBR Task
Hypergraph Construction. In our exploration of
Session-based Recommendation (SBR) systems,
we embrace an advanced hypergraph structure,
symbolized as Gh = (V,E,W), where we map ses-
sions to expansive hyperedges. Each hyperedge
in this structure has the capability to interlink an
extensive array of vertices. Delving into the tech-
nical definition, we consider every individual item
as is,m ∈ V and construct the session’s hyperedge
as ε = [is,1, is,2, · · · , is,k, · · · , is,m] ∈ E. The use
of hypergraphs transcends the conventional graph
model by providing a highly adaptable framework.
To illustrate, traditional graph models impose a con-
dition wherein a sequential link between items is,k
and is,k+1 exists exclusively if the user engages
with is,k followed by is,k+1. On the contrary, our hy-
pergraph approach enables a broader connection
where any pair of items within the same session are
interwoven into the hyperedges. Moreover, while
graphs typically encounter difficulties in represent-
ing the multifaceted semantic relationships of items
across diverse sessions, our hypergraph paradigm
adeptly captures these variable semantic linkages.
Hypergraph Convolutional Network. After hy-
pergraph construction, we further develop a hy-
pergraph neural network (HGNN) to capture the
item-level high-order relations. We concatenate
the hyperedge groups to generate the hypergraph
incidence matrix H. Referring to the spectral hyper-
graph convolution proposed in (Feng et al., 2019),
we can build an HGNN in the following formulation:

X(l+1) = QX(l)Θ(l),Q = D̂
−1

HWB−1HT (1)

where X(l)
h represents the l-th layer’s item embed-

dings. Θ(l) is the learnable filter matrix. Denote that

D̂
−1

and B−1 play a role of normalization. Here,
hypergraph convolution can be conceptualized as a
two-stage process, involving a "nodes-hyperedges-
nodes" feature transformation, which effectively re-
fines features based on the hypergraph structure.
Specifically, item features are initially aggregated
according to the hyperedges, resulting in hyper-
edge features obtained by multiplying the transpose
of the matrix HT (Stage 1: nodes to hyperedges).
Subsequently, the final node features are derived
by aggregating their respective related hyperedge
features, achieved through the multiplication of the
matrix H (Stage 2: hyperedges to nodes). To
enhance the expressive power of Hypergraph Con-
volutional Neural Networks (HGCN) and mitigate
potential over-smoothing, we introduce flexibility in
the fixed coefficients, a crucial strategy to prevent
over-smoothing. We employ an initial residual tech-
nique, proven effective in mitigating over-smoothing
in encoders (Chen et al., 2020). Consequently, the
l-th layer of HGCN can be formally denoted as:
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Figure 1: Overview of Mssen. All red solid arrows refer to the recommendation task, while the blue
solid arrows denote the auxiliary task (self-supervised learning). By jointly optimizing the two tasks, the
performance of the task achieves decent gains.

X(l+1) = ((1− γl)QX(l) + γlX(0))Θ(l) (2)

where γl is a hyper-parameter. X(0) ∈ R
|V|×d is the

initial feature. We add the initial feature to each
layer to compensate for the hyper nodes’ hetero-
geneity. Hyper-parameter γl indicates how much
each layer’s initial feature information can carry. Al-
though we stack many layers, it can receive at least
γl proportion message from the input layer, which
ensures that the performance of at least one layer
of the model.
Recommendation Generation.

Embracing insights derived from the methodol-
ogy in SR-GNN (Wu et al., 2019), we enhance the
embedding process for a given session s. Acknowl-
edging the variable significance of the embedded
information, we integrate a soft-attention mecha-
nism designed to more accurately encapsulate the
representational quality of items within a session.
Upon refining the embeddings for each session, we
then turn our attention to scoring potential items.
For each candidate item within the item set , we cal-
culate a score ẑi through the execution of an inner
product operation with the item’s embedding vector
X . Subsequently, we leverage the softmax function
to ascertain the likelihood of each item’s candidacy
as the succeeding session item ŷ = softmax(ẑ):
. We employ a cross-entropy-based loss function
for every session graph to quantify the disparity
between our model’s predictions and the actual
sequence outcomes.

Lt = −
N∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (3)

where y is the one-hot encoding vector of the
ground truth.

3.2. Enhancing SBR with
Self-Supervised Task

In comparison to other recommendation paradigms,
session-based recommendation is particularly vul-
nerable to the challenge of data sparsity, primarily
due to the limited short-term interactions. Addi-
tionally, while hypergraph modeling has demon-
strated substantial improvements in performance,
we hypothesize that the inherent issue of data spar-
sity might impede the full potential of hypergraph
modeling, ultimately leading to suboptimal recom-
mendation results. Drawing inspiration from the
successful applications of self-supervised learning
in graph-related tasks, which have shown promise
in addressing data sparsity concerns, we introduce
an innovative integration of self-supervised learn-
ing into the network to enhance the performance
of session-based recommendation.
Noise Perturbation. Data augmentation has
proven to be highly effective in the domain of image
data, involving techniques like random cropping
and rotation invariance. However, it’s important
to acknowledge that augmentations are not uni-
versally applicable across all scenarios, especially
when dealing with graphs, as the structural informa-
tion and semantics of graphs can vary significantly
from one domain to another (Xia et al., 2022). For
instance, randomly dropping edges in social graphs
can lead to substantial semantic changes, particu-
larly when these edges are associated with central
nodes (Lee et al., 2021). Additionally, designing
appropriate augmentation strategies for graphs can
be a challenging and time-consuming task. Given
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these considerations, we’ve opted to forgo graph
augmentations and instead focus on the feature em-
bedding space. Taking inspiration from adversarial
attacks (Goodfellow et al., 2015), which leverage
noise distortion to enable the network to learn rich
representations from various contexts, we propose
two types of noise augmentation strategies: multi-
plicative noise and additive noise. These strategies
involve introducing noise directly into the represen-
tation, which proves to be effective for generating
diverse views of the data.

'
''

Figure 2: An illustration of two random noise-based
data augmentation strategies: one is the Multiplica-
tive Noise and the other is the Additive Noise.

• Multiplicative Noise. Formally, given a node i
and its representation h in the d-dimensional em-
bedding space, we can implement Multiplicative
Noise representation-level augmentation, which
as exhibited in Figure 2 (a). For the attribute-
level noise distortion, we first sample a random
noise matrix N ∈ R

N×D from a Gaussian dis-
tribution N (1, 0.1). Then the resulting corrupted
noise augmentations {H′,H′′} ∈ R

N×Dcan be
as:

H′ = H�N,H′′ = H�N (4)

where � denotes the Hadamard product (Kim
et al., 2017). Note that, for each node represen-
tation, the multiplied random noises are different.

• Additive Noise. Likewise, as shown in Figure
2 (b), we add noise vectors Ω′ and Ω′′ that are
subject to ‖Ω‖2 = R, Ω ∈ R

N×d. We can imple-
ment the following representation-level additive
noise augmentation:

H′ = H+Ω′�sign(H),H′′ = H+Ω′′�sign(H)
(5)

There are two key constraint controls in our ap-
proach. The first control is related to the magni-
tude of the matrix Ω. This constraint essentially
limits the values within Ω to a hypersphere with a
relatively small radius denoted as R. The second
constraint ensures that both H and Ω fall within
the same hyperoctant. This restriction is in place
to prevent the addition of noises from causing
significant deviations in H, which might lead to

less valid positive samples. As we’re dealing with
relatively small levels of noise, the augmented
representation manages to retain the majority of
the information from the original representation
while introducing some variance, which can be
beneficial for our approach (Yu et al., 2022).

Then, a non-linear transformation g(·) named pro-
jection head maps the representations to another
latent space and can enhance the performance.
we obtain z′ and z′′:

z′ = g(H′), z′′ = g(H′′) (6)

To enforce maximizing the consistency between
positive pairs {z′, z′′} compared with negative pairs,
we adopt the noise-contrastive estimation loss
(van den Oord et al., 2018). For each mini-batch in-
cluding n sessions in training, if two-session embed-
dings both denote the same session in two views,
we label this pair as the ground truth {z′, z′′}. Other-
wise, we label it as the negative samples zk. Then
we employ a similarity metric function sim(·, ·) to
calculate the similarity of positive pair {z′, z′′} and
the negative pair {z′, zk}. Based on this, the loss
function is as follows:

LNCE =

− log
exp(sim(z′, z′′)/τ)

exp(sim(z′, z′′)/τ) +
∑k

i=1 exp(sim(z′, zk)/τ)
(7)

where τ denotes the temperature parameter. To
simplify the calculation, we use dot product as the
similarity metric function sim(·, ·). By minimizing
LNCE with Adam (Kim, 2014), we can get high-
quality session-based recommendation.
Creating another self-supervised signal. In
the pursuit of reinforcing the supervised learn-
ing signals, we use a dual hypergraph Infomax
(DHI) following the mechanism Hyperedge-to-Node
(H2N) (Zheng et al., 2023c), and drawing inspi-
ration from the principles outlined in deep graph
infomax (DGI) (Velickovic et al., 2019). To elabo-
rate, within the designated hypergraph layer, de-
noted as L, we denote the features of hyperedges
with eL. It bears mention that hypergraph convo-
lution unfolds across two pivotal phases involving
a nodes–hyperedges–nodes transformation of fea-
tures. Initially, we procure the hyperedge-specific
features, followed by garnering those pertaining
to hypernodes. The inherent mechanics of hyper-
graph encoding serve to amalgamate insights from
neighbors exhibiting structural semblance, thereby
offering an efficient methodology to pinpoint neigh-
boring sessions or items. To discretely address
the representations of hyperedges (or hypernodes)
vis-à-vis their entire hypergraph counterparts, we
deduce the terminal hyperedge feature represen-
tation, se . Pursuant the methodology delineated
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in DGI, we start by calculating the mean of all hy-
peredge feature representations. Post-mean cal-
culation, we invoke a sigmoid function to transform
the amalgamated representation, thereby render-
ing the final form as follows:

se = σ

⎛
⎝ 1

ne

ne∑
j=1

e
(L+1)
j

⎞
⎠ (8)

The loss of hyperedge-level can be defined:

Lhe =

− 1

2n

n∑
i=1

(
EG logD

(
e
(L)
i , se

)
+ EG̃ log

(
1−D

(
ẽ
(L)
i , se

)))

(9)
The core of our framework includes a discrimination
component, D, tasked with calculating the com-
patibility scores between paired representations,
specifically hyperedge to hypergraph associations.
We stimulate the hypergraph G̃ into existence by
performing a row-centric permutation on the ini-
tial feature matrix eLi . This creative manipulation
yields a novel node representation, symbolized as

ẽ
(L)
i , which, when juxtaposed with the overarching

hypergraph representation s , serves as a nega-
tive exemplar. Similar principles apply to deducing
hypernode-level discrepancies, denoted Lhn. onse-
quently, we get multi-scale self-supervised signals:

LSSL = LNCE+LDHI = LNCE+Lhe+Lhn (10)

3.3. Model Optimization.
Finally, we unify the recommendation task and this
self-supervised task into a primary&auxiliary learn-
ing framework, where the former is the primary task
and the latter is the auxiliary task. Formally, the
joint learning objective:

LLOSS = Lt + αLSSL (11)

where α is a learnable weight to control the mag-
nitude of the self-supervised task. It should be
noted that, we jointly optimize the two throughout
the training.

4. Experiments

4.1. Experimental Settings
Datasets. For the verification of our methodology,
we employed five authentic benchmark datasets
(please refer to Table 1 for more details). These
datasets include Tmall1, Nowplaying2, Diginetica3,

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2http://dbis-nowplaying.uibk.ac.at/#nowplaying
3https://competitions.codalab.org/competitions/11161

Statistics Tmall Nowplaying Diginetica

# Sessions (Training) 351,268 825,304 719,470

# Sessions (Testing) 25,898 89,824 60,858

# Items 40,728 60,417 43,097

Avg. Length of Sessions 6.69 7.42 5.12

Table 1: Statistics of the datasets used in our ex-
periments.

all of which are frequently exploited for testing
session-based recommendation approaches. A
brief overview of each dataset: Tmall consists of
obscured shopping details from users on the Tmall
online shopping platform and was formed for the
IJCAI-15 competition. In contrast, the Nowplay-
ing dataset, derived from (Zangerle et al., 2014),
presents an insight into the music preferences of
users. Lastly, the Diginetica dataset harbors online
retail transactions and was originally released in
line with the 2016 CIKM Cup.
Baseline Methods. The following models, includ-
ing the state-of-art and closely related works, are
used as representative baselines to evaluate the
performance of the proposed model.

• S2-DHCN (Xia et al., 2021): It proposes a hyper-
graph convolutional network and devises another
line graph of the hypergraph to improve Session-
based recommendation.

• GCE-GNN (Wang et al., 2020): It proposes a
global-level item representation learning layer,
which employs a session-aware attention mech-
anism to recursively incorporate the neighbors’
embeddings of each node on the global graph.

• FGNN (Qiu et al., 2019): It proposes a weighted
attention graph layer and a Readout function to
learn embeddings of items and sessions for the
next item recommendation.

• STAMP (Liu et al., 2018): It proposes a novel
short-term attention/memory priority model as
a remedy, which is capable of capturing users’
general interests from the long-term memory of
a session context.

• NARM (Li et al., 2017): It explores a hybrid en-
coder with an attention mechanism to model the
user’s sequential behavior and capture the user’s
main purpose in the current session.

• GRU4Rec (Hidasi et al., 2016): It is RNN-based
model for SBR, which considers practical aspects
of the task and introduces several modifications
to classic RNNs.

• FPMC (Rendle et al.): It is based on personalized
transition graphs over underlying Markov chains.
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Methods
Tmall Nowplaying Diginetica

P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20

Traditional
Item-KNN 6.65 3.11 9.15 3.31 10.96 4.55 15.94 4.91 25.07 10.77 35.75 11.57

FPMC 13.10 7.12 16.06 7.32 5.28 2.68 7.36 2.82 15.43 6.20 26.53 6.95

RNNs
GRU4Rec 9.47 5.78 10.93 5.89 6.74 4.40 7.92 4.48 17.93 7.33 29.45 8.33

NARM 19.17 10.42 23.30 10.70 13.60 6.62 18.59 6.93 35.44 15.13 49.70 16.17

STAMP 22.63 13.12 26.47 13.36 13.22 6.57 17.66 6.88 33.98 14.26 45.64 14.32

GNNs

FGNN 20.67 10.07 25.24 10.39 13.89 6.80 18.78 7.15 37.72 15.95 50.58 16.84

GCE-GNN 28.01 15.08 33.42 15.42 16.94 8.03 22.37 8.40 41.16 18.15 54.22 19.04

S2-DHCN 26.22 14.60 31.42 15.05 17.35 7.87 23.50 8.18 40.21 17.59 53.66 18.51

Ours 33.53 18.98 38.51 19.60 18.22 9.35 24.11 9.81 42.33 19.88 55.17 19.64

Table 2: Comparison of Different Models, their results are obtained from the corresponding original papers.
All the results are in percentage (%). The best performing method in each column is boldfaced.

That means for each user an own transition matrix
is learned.

• Item-KNN (Sarwar et al., 2001): It defines simi-
larity as the co-occurrence number of two items
in sessions divided by the square root of the prod-
uct of the number of sessions in which either item
occurs, to recommend items.

Evaluation Metrics. As recommender systems
can only recommend a few items at once, the ac-
tual item a user might pick should be amongst the
first few items of the list (Hidasi et al., 2016). We
adopt two widely used ranking based metrics: P@K
and MRR@K by following previous works (Wang
et al., 2020; Xia et al., 2021).Specifically, we mainly
choose to use top-10 and top-20 items to evaluate
a recommender system.
Hyper-parameters Setup. Following previous
methods (Wang et al., 2020; Xia et al., 2021), we
standardized the embedding dimension at 100,
alongside consistently setting the batch size at 100
across all experimental models. We applied L2

regularization at a rate of 10−5 and controlled for
the hyper-parameters among the models to ensure
equitable benchmarking. Within our approach, the
weighting matrices originate from a normal distri-
bution N

(
0, 0.052

)
, with biases initialized to zero.

Concurrent with these parameters, we commence
with item embeddings derived from a Gaussian Dis-
tribution N (0, 0.1), progressing to a synchronous
optimization with the remaining parameters. The
hyperparameter γl is designated at the value of
0.2. Optimization is conducted through the Adam
algorithm, commencing with an initial learning rate
of 0.001 and implemented with a decay factor of
0.1 subsequent to every sequence of 5 epochs. In
addition, the number of hypergraph convolutional
layers is different in different datasets. For Diginet-
ica, a two-layer setting is the best, while for others,
a three-layer setting achieves the best performance.
We train each model for 30 epochs or until the loss
no longer decreases after 5 epochs.

4.2. Overall Comparison
To evaluate the performance of our proposed
model, we conducted a comprehensive compar-
ison with state-of-the-art item recommendation ap-
proaches, as detailed in Table 2. Here are the key
observations from our experiments:

• Consistently Strong Performance: Across all
datasets and metrics (with K=10 and 20), our
proposed model consistently outperformed the
existing baselines. This robust performance un-
derscores the effectiveness of our approach. No-
tably, even on the Tmall dataset, where exist-
ing baselines had already achieved high perfor-
mance, our method managed to push the perfor-
mance boundary further.

• Remarkable Performance Compared to Tradi-
tional and RNN Methods: Our model exhibited
remarkable performance when compared to tra-
ditional and RNN-based approaches. This sug-
gests that our approach, which converts sequen-
tial item transitions into graph-structured data to
capture the inherent order of item-transition pat-
terns, delivers superior results.

• Competitive Results Against Graph-Based
Baselines: Our method also achieved competi-
tive results when compared to graph-based base-
lines. It’s worth noting that both our approach
and S2-DHCN feature a hypergraph architecture.
However, the improvements in our method pri-
marily stem from our innovative contrastive learn-
ing strategies. By constructing hyperedge-level
and node-level contrastive objectives to focus on
fine-grained supervised signals, we enhance the
learning process. This is in contrast to S2-DHCN,
which employs two types of hypergraphs for ses-
sions embedding in contrastive learning, poten-
tially resulting in weaker signals. Our approach
also outperformed other strong baselines, such
as GCE-GNN, and FGNN, further confirming the
effectiveness of hypergraphs.
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Figure 3: Ablation Study.

Figure 4: Two hyperparameters N and α.

4.3. Ablation Study
In this section, we conduct experiments to inves-
tigate the contribution of each component in our
model. Specially, we design four variant versions:
R-IR: We remove the initial residual for each hy-
pergraph layer when high-order relations propaga-
tion. R-NP: We remove the noise perturbation (NP)
for constructing self-supervised signals. R-DHI:
We remove the dual hypergraph Infomax (DHI) for
constructing self-supervised signals. R-SSL: We
remove all SSL signals. The analysis of the compo-
nents and their contributions in Figure 3 reveals im-
portant insights into the performance of our model:

• Self-Supervised Contrastive Learning: Self-
supervised contrastive learning plays a pivotal
role in driving the performance improvement of
the base model. Removing this component re-
sults in a significant drop in performance on both
metrics, underscoring its importance.

• Effectiveness of Two Contrastive Objectives:
The utilization of two contrastive objectives

proves to be effective in achieving better perfor-
mance compared to a single contrastive objec-
tive across the three datasets. This indicates
that these two contrastive objectives can work in
tandem and mutually complement each other.

• Initial Residual for Hypergraph Layer: The
incorporation of the initial residual technique in
the hypergraph layer serves to prevent over-
smoothing during propagation. While removing
this component leads to a performance drop on
both metrics, it’s worth noting that a careful bal-
ance is needed in the number of hypergraph lay-
ers, as excessive layers may not be beneficial.

• Overall Model Effectiveness: Across all vari-
ants, our model consistently outperforms them
for K=20, showcasing the robustness and effec-
tiveness of our model’s design for session-based
recommendation.

• In summary: Each component contributes sig-
nificantly to the model’s overall performance, with
self-supervised contrastive learning playing a
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Methods
Tmall Nowplaying Diginetica

Short Session Long Session Short Session Long Session Short Session Long Session

FGNN 31.84 35.65 27.62 19.33 50.99 51.28

GCE-GNN 42.28 34.22 30.51 21.97 54.40 52.16

DHCN 36.47 31.73 30.56 23.68 53.29 52.43

Ours 44.93 35.22 32.54 24.51 56.37 54.11

Table 3: The performance of methods with different session lengths with P@20 (%).

central role in driving the improvements. The
use of two contrastive objectives, the initial resid-
ual technique, and the overall model design con-
tribute to the superior performance of our ap-
proach in session-based recommendation.

4.4. Hyperparameter Analysis
There are two critical hyperparameters employed
by MHS-SSL as follows. (1) The impact of the
number of hypergraph layers N . We summa-
rize the results in Figure 4 by ranging N within
{1, 2, 3, 4, 5, 6, 7}. We can see that for both Tmall
and Nowplaying, a three-layer setting achieves
the best performance. For the Diginetica, stack-
ing more than three layers will worsen the per-
formance since the sessions in this dataset are
generally short. Additionally, we notice that per-
formance will not drop significantly when the num-
ber becomes larger. The main reason is that we
adopt the technique of initial residual to prevent
over-smoothing when propagation. (2) The im-
pact of the hyperparameters α. We report the
performance with a set of representative α val-
ues in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} to control
the magnitude of the SSL tasks. According to
the results in Figure 4, the recommendation task
achieves decent gains when jointly optimized with
the self-supervised task. With the rise of α, the
performance increases first and then declines. We
think it is due to the gradient conflicts between the
two tasks. Besides, when α = 0.05, we get the best
performance.

4.5. Analysis on Session Lengths
The analysis of different models’ performance on
sessions of varying lengths, as presented in Table
3, yields several important findings: 1) Superiority
in Short Sessions: In sessions with a length less
than or equal to 5 items (Short), our model consis-
tently achieves the best performance among the
graph-based methods, as indicated by the highest
Precision at 20 (P@20) scores. This underscores
the model’s adaptability and effectiveness in im-
proving recommendations for sessions with fewer
items, which are common in real-world scenarios.

2) Effectiveness Across Session Lengths: While
the primary focus is on enhancing recommenda-
tions for short sessions, our model also demon-
strates commendable performance on long ses-
sions (more than 5 items) compared to other graph
embedding methods. This versatility is a notable
advantage of our approach. 3) Short Sessions vs.
Long Sessions: The performance of our model
in short sessions is notably better than that in long
sessions. This finding is consistent with the primary
objective of our approach to boost recommenda-
tions for sessions with fewer items, which are preva-
lent in real-world session-based recommendation
scenarios. In summary, the results emphasize the
effectiveness of our model in improving session-
based recommendations, particularly in the con-
text of short sessions. While the focus is on short
sessions, our model maintains competitive perfor-
mance in long sessions, highlighting its adaptability
and suitability for various session lengths encoun-
tered in practical scenarios.

5. Conclusion

This paper introduces a novel approach, Mssen,
for session-based recommendation, addressing
data sparsity by employing SSL on item-session
hypergraphs. Extensive empirical evaluations con-
sistently show its superiority over existing meth-
ods. It’s worth noting that hypergraph modeling
in session-based recommendation is an emerging
field with broader applications in graph-related re-
search, offering ample room for further exploration
and development.
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