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Abstract
Existing passage retrieval systems typically adopt a two-stage retrieve-then-rerank pipeline. To obtain an effective
reranking model, many prior works have focused on improving the model architectures, such as leveraging powerful
pretrained large language models (LLM) and designing better objective functions. However, less attention has been
paid to the issue of collecting high-quality training data. In this paper, we propose HYRR, a framework for training
robust reranking models. Specifically, we propose a simple but effective approach to select training data using hybrid
retrievers. Our experiments show that the rerankers trained with HYRR are robust to different first-stage retrievers.
Moreover, evaluations using MS MARCO and BEIR data sets demonstrate our proposed framework effectively
generalizes to both supervised and zero-shot retrieval settings.
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1. Introduction

Recent passage retrieval systems have generally
seen pipelined retrieve-then-rerank approaches
achieve the best performance. The first stage uti-
lizes an efficient retrieval model that retrieves a set
of candidate passages for a given query from the
entire corpus. Subsequently, the second stage em-
ploys a slower but more effective reranking model
that reranks the candidates to produce the final
ranking. Significant progress has been made re-
cently on neural retrieval models (Karpukhin et al.,
2020; Qu et al., 2021; Ren et al., 2021; Ni et al.,
2022) by leveraging pretrained large language mod-
els (LLM), such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020). Also, powerful neural
reranking models have been proposed through fine-
tuning LLMs (Nogueira and Cho, 2019; Nogueira
et al., 2020; Pradeep et al., 2021; Zhuang et al.,
2023b) or prompting LLMs (Sachan et al., 2022;
Liang et al., 2023; Qin et al., 2023; Sun et al., 2023;
Ma et al., 2023; Zhuang et al., 2023a).

Some prior works learn rerankers independently
of the first-stage retrievers (Nogueira and Cho,
2019; Nogueira et al., 2019, 2020; Pradeep et al.,
2021). For example, monoT5 (Nogueira et al.,
2020) is trained using labeled examples in the MS
MARCO (Nguyen et al., 2016), a dataset sampled
from real and anonymized Bing queries and then
is applied on the candidates retrieved by a BM25
retriever. The relevant and non-relevant passages
in MS MARCO are collected from the top search
results from BING search engine, which may not
reflect the distribution of top retrieved results of
the BM25 retriever. In addition, as pointed out by
Gao et al. (2021), when the retrieval model used
to generate negative training examples is weaker
than the test retrieval model to which the rerank-

ing model applies, the performance of the reranker
drops severely. Some other works train rerankers
on data that is similar to the distribution that the
reranker will observe at inference time. That is,
the first-stage retriever produces candidates for the
reranker for both training and inference (Huang
et al., 2020; Ren et al., 2021; Bonifacio et al., 2022;
Zhuang et al., 2023b). While we do see this ap-
proach achieving strong results in general, we need
to retrain the reranker when the first-stage retriever
is changed. Previous studies have demonstrated
that there is a trade-off between the training com-
plexity and model performance for reranking mod-
els. Rerankers that are trained independently of
the first-stage retriever can be easier to train but
may not achieve optimal performance. In contrast,
rerankers that are trained in a dependent manner
on the first-stage retriever can achieve superior
performance but are more complex to train.

In this work, we revisit the question of how best to
train a reranking model for retrieval. We show that
by training a robust reranker which has been ex-
posed to training data from a hybrid of term-based
and neural retrieval models, we are able to achieve
strong performance no matter what retrieval model
is used in the first stage. Specifically, the retrieval
model we used to generate training candidates for
rerankers is a hybrid retriever, inspired by Ma et
al.’s (2021) hybrid first-stage retriever. For each
passage (and query), the encoding from a term-
based sparse retrieval model and the encoding
from a neural retrieval model are concatenated to
form a hybrid encoding. We then perform approx-
imate nearest neighbor search over these hybrid
encodings. This results in a different candidate set
than independently selecting neighbors from the
sparse retriever and the neural retriever. We then
sample negative examples from the top retrieved
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results of this hybrid retriever.
Experiments on MS MARCO passage ranking

task and BEIR (Thakur et al., 2021) retrieval tasks
show that our proposed training framework is ef-
fective in both supervised setting and zero-shot
setting. We show that this approach results in a ro-
bust reranker which performs well across different
retrievers, domains, and tasks.
The primary contributions of this paper are:
• We present HYRR, a training paradigm for

training rerankers based on hybrid term-based
and neural retrievers.

• We show that this approach is effective in both
supervised setting and zero-shot setting.

• We show that this approach results in a robust
reranker which performs well across different
retrievers, domains, and tasks; though there
are still limitations which appear to be based in
the query generation approach utilized in the
zero-shot setting.

2. Related Work

A number of prior works have explored using neu-
ral models for text ranking, with recent focus on
transformer-based models (Vaswani et al., 2017).
Even through it is computationally expensive, a
BERT-based cross-attention model is one of the
most dominant models for text ranking (Nogueira
and Cho, 2019; Gao et al., 2021) because of its ca-
pability to model the interaction between the query
and passage. Concretely, queries and passages
are concatenated and fed into the BERT model, a
pairwise score is then obtained by projecting the
encoding of [CLS] token. The text ranking problem
is cast as a binary classification problem. Nogueira
et al. (2019) further proposed a pairwise BERT-
based ranking model.
Recently, encoder-decoder language models,

such as T5 (Raffel et al., 2020), have been adapted
for text ranking. Nogueira et al. (2020) proposed a
model that takes a query and passage pair as input
of encoder, and the decoder produces the tokens
“true” or “false” to indicate the relevance of a query
and a given passage. Pradeep et al. (2021) fur-
ther proposed a pairwise ranking model that takes
a query and two passages as input and the de-
coder produces the token “true” if the first passage
is more relevant then the second passage, and
“false” otherwise. Zhuang et al. (2023b) proposed
T5 encoder-only and encoder-decoder rerankers
that optimize ranking performance directly by out-
putting real-value scores and using ranking losses.
Despite the above-mentioned models which fine
tune the pre-trained language model, some work
proposed to use pre-trained language model di-
rectly. For example, Muennighoff (2022) proposed

SGPT that uses GPT as reranking model directly;
and Sachan et al. (2022) proposed UPR that uses a
zero-shot question generation model via prompting
a large language model in order to directly rerank
passages.

We focus on the fine-tuning models in this work.
As shown above, most progress has been made on
the model structures. There are limited studies on
training strategies. Most existing work use either
annotated training data (Nogueira and Cho, 2019;
Nogueira et al., 2020; Pradeep et al., 2021) or candi-
dates generated by the first-stage retriever (Huang
et al., 2020; Ren et al., 2021; Bonifacio et al., 2022;
Zhuang et al., 2023b). Gao et al. (2021) quanti-
tatively studies the benefits of sampling negative
training examples from the first-stage retriever and
in addition proposed a contrastive form loss.

3. Reranking Model

Given a query qi and a list of candidate passages
C(i) = c1, c2, ..., cn in a document collection D, the
ranking task aims to sort passages in the C(i) such
that more relevant passages have higher scores.
More formally, we aim to learn a scoring function
s(qi, cj) such that c∗ = argmaxj∈C(i)s(qi, cj) is the
most relevant passage to the query.

Model structure We follow Zhuang et al.
(2023b) to use a T5-based cross-attention model.
Specifically, we represent the query-passage pair
as input sequence “Query: {Query} Document: {Ti-
tle. Passage}” and feed it into the encoder. The
output of the encoder is the encodings of the input
sequence. We then apply a projection layer on the
encoding of the first token and the output is used
as the score. We use the encoder and discard the
decoder allowing us to exploit the encoder-decoder
pretraining while not requiring a decoder for infer-
ence. During inference, we pair query qi with each
passage in C(i) and compute scores. The ranking
result is obtained by sorting the passages based
on their scores.
The loss function we use is a listwise softmax

cross entropy loss (Bruch et al., 2019) and is de-
fined as follows:

` = −
n∑

i=1

ŷij log
( esij∑

j′ e
sij′

)
(1)

where sij is the predicted ranking score on query
qi and passage cj , and ŷij is the relevance label.

Hybrid infused training data generation Dur-
ing training, the construction of C(i) is critical and
affects the performance of the ranking model. C(i)
typically contains one relevant passage and a few
non-relevant passages. The relevant passage is
given, and the commonly used strategy is to sam-
ple non-relevant passages returned by a retriever.
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In the pipelined multi-stage retrieval system con-
sisting of retrieval and reranking stages, the list
of non-relevant passages is usually formed by us-
ing the first-stage retriever (Bonifacio et al., 2022;
Zhuang et al., 2023b). However, a better first-stage
retriever does not always ensure a better training
set for reranking models. In this work, we present
a strategy to select better examples to train robust
rerankers.
We use a hybrid retriever to generate passage

lists. Specifically, we use a BM25 (Robertson et al.,
1994) model as the sparse retrieval model and a
T5-based dual encoder model (Ni et al., 2022) as
the dense retrieval model. For each passage (and
query), we concatenate the encodings from the
two models to create a hybrid encoding. We per-
form maximal inner-product search (MIPS) using
approximate nearest neighbor search over these
hybrid encodings. This results in a different set of
neighbors than independently selecting neighbors
from BM25 and the T5 dual encoder.

To generate the training data for reranking model,
we apply the hybrid retriever to the queries in the
training set and retrieve top-K passages. We then
sample m negatives from retrieved result. In result,
C(i) is a passage list of sizem+1 with one positive
and m negatives. K and m are hyperparameters
and can be tuned based on each task.
Note that the choice of the sparse retriever and

dense retriever for building the hybrid retriever is
not limited to BM25 and dual encoder. It can be any
sparse retriever and dense retriever as long as we
can represent query and document as real-valued
vectors.

4. Experimental Setup

We evaluate our proposed approach on two set-
tings: one is supervised retrieval using MSMARCO
where labeled relevant passages of a given query
are available; the other is the zero-shot retrieval
on BEIR where no labeled data is available in the
target domains.

MS MARCO passage ranking This task aims
to retrieve passages from a collection of web docu-
ments containing about 8.8 million passages. All
questions in this dataset are sampled from real and
anonymized Bing queries (Nguyen et al., 2016).
The dataset contains 532,761 and 6980 examples
in the training and development set respectively.
Each query has one annotated relevant passage
in average. We use them as positive training exam-
ples. We report our results using MRR@10 metric
on the development set. The BM25 model in our
hybrid retriever is a unigram model. We use the
WordPiece tokenizer and vocabulary from uncased
BERTbase of size 30522. We use K=0.9 and b=0.8.
We use GTR-Large model from Ni et al. (2022) as

the dual encoder used in the hybrid retriever.
Zero-shot retrieval We also perform evaluation

on the BEIR corpus (Thakur et al., 2021), a bench-
mark for zero-shot evaluation, to understand how
our approach generalizes to out-of-domain setting.
BEIR contains 18 evaluation datasets across 9 do-
mains and no training data is available for those
datasets.
The BM25 model used in this evaluation is the

same as the one used for MS MARCO evaluation.
Since we do not have training data, to train the dual
encoder used for hybrid retriever, we follow Ma et
al. (2021) to generate synthetic training data from
a query generator and extend with iterative training
following (Dai et al., 2023). Specifically, we pretrain
the T5 based dual encoder on C4 dataset (Raffel
et al., 2020) with the independent cropping task
(Izacard et al., 2022). We then fine-tune the dual
encoder using synthetically generated queries. The
dual encoder structure is the same as GTR-Large
model used for MS MARCO evaluation.
We apply a query generation model on the pas-

sages in the target corpus to generate (synthetic
query, passage) pairs. The model is created by
fine-tuning a general T5 model using question
and passage pairs from Natural Question (NQ)
(Kwiatkowski et al., 2019). Similar to PAQ (2021),
we perform targeted generation, where knowing the
location of the answer in a passage is important.
Particularly, we form the input of the encoder as
“Generate question >>> {title}.{passage} >>> {tar-
get sentence}”, and the output of the decoder is the
corresponding question. Here “target sentence” is
the sentence that contains the short answer span,
and “passage” corresponds to long answer and the
passage of NQ. At inference time, for each dataset,
we iterate over every passage and treat every sen-
tence as the target sentence to generate synthetic
queries. For large datasets, such as BioASQ and
Climate-fever, we randomly sample 2 million pas-
sages for query generation.

Results are obtained using the official TREC eval-
uation tool1. We report normalised cumulative dis-
count gain (nDCG@10) for all datasets.

Implementation The reranking models were ini-
tialized from T5 Version 1.1 models, and we eval-
uated on two sizes namely T5Base 1.1 and T5Large
1.1. Since we only use the encoders, the number
of parameters are approximately 125M for Base
model and 400M for Large model. We sampled 50
negative examples from top 250 retrieved passage
for MS MARCO and from top retrieved passages
from rank 10 to rank 210 for BEIR. The top 10 re-
trieved passages are filtered due to the possibility
of false positives. We use input sequence length
as 512 for all datasets except ArguAna, for which
we use 1024. We train the models for 20000 steps

1https://github.com/usnistgov/trec_eval
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Model size MRR@10
BM25 Anserini 0.1874

HLATR RoBERTaLarge 0.3680
MiniLM Distilled BERT 0.3901
monoT5 T53B 0.3980

RankT5-EncDec T5Large 0.3986
DERRMS T5Large 1.1 0.4222
HYRRMS T5Large 1.1 0.4235

Table 1: Reranking performance on MS MARCO
Dev set in MRR@10.

Retriever Reranker
BM25 MiniLM HYRRMS HYRR HYRR

Model Size Anserini 22M 400M 125M 400M
NQ 0.329 0.533 0.569 0.532 0.555

MS MARCO 0.228 0.413‡ 0.435‡ 0.307 0.309
Trec-Covid 0.656 0.757 0.798 0.796 0.820

BioASQ 0.465 0.523 0.554 0.551 0.549
NFCorpus 0.325 0.350 0.371 0.379 0.382
HotpotQA 0.603 0.707 0.717 0.706 0.707
FiQA-2018 0.236 0.347 0.411 0.408 0.437
Signal-1M 0.330 0.338 0.264 0.307 0.318
Trec-News 0.398 0.431 0.452 0.437 0.453
Robust04 0.407 0.475 0.505 0.501 0.544
ArguAna 0.414 0.311 0.351 0.344 0.342

Touché-2020 0.367 0.271 0.467 0.368 0.384
Quora 0.789 0.825 0.637 0.861 0.867

DBPedia-entity 0.313 0.409 0.402 0.385 0.403
SCIDOCS 0.158 0.166 0.184 0.183 0.187

Fever 0.753 0.819 0.825 0.868 0.861
Climate-Fever 0.213 0.253 0.262 0.272 0.294

SciFact 0.665 0.688 0.745 0.734 0.754
CQADupStack 0.299 0.370 0.368 0.398 0.416

Average 0.418 0.473 0.490 0.491 0.504
Average w/o NQ 0.423 0.470 0.486 0.489 0.501
Avg. improvement on BM25 4.63% 6.26% 6.58% 7.81%

Table 2: Reranking performance on BEIR in
NDCG@10. ‡ indicates the in-domain perfor-
mances. The results of baseline models are copied
verbatim from the original papers. All models rerank
the top-100 passages from BM25.

with batch size 64.
We implement the models using T5X2 and we

also use RAX (Jagerman et al., 2022), a learning-
to-rank framework for implementing the ranking
losses in reranking models. For training, it takes
about 6 hours to train a dual encoder model and
6.5 hours to train a reranking model of T5-Large
size using Cloud TPU-V3.

5. Results and Discussion

MS MARCO results To understand the effective-
ness of our proposed approach, we fix the first-
stage retrieval system and compare the reranking
performance. Table 1 shows the performance of
our proposed reranker on reranking BM25 top-1000
results. The BM25 results in row 1 is obtained from
Anserini (Yang et al., 2017) toolkit3 with param-
eters: k=0.82, b=0.68 following other baselines.

2https://github.com/google-research/t5x
3https://github.com/castorini/anserini

The results of several strong baselines are shown
in row 2-6. HLATR (Zhang et al., 2022) extends
the retrieval-and-rerank pipeline with an additional
ranking module by using the features from retrieval
and reranking stages. It achieves top performance
on MS MARCO leaderboard. MiniLM (Wang et al.,
2020), which is a cross-encoder reranking model
distilled from an ensemble of three teacher mod-
els. The other baselines are T5-based models:
monoT5 (Raffel et al., 2020; Rosa et al., 2022) and
RankT5-EncDec (Zhuang et al., 2023b) adopt the
encoder-decoder architecture. Our model adopts
RankT5’s encoder-only variant as described in Sec-
tion 3. To compare with RankT5 model fairly, we
implement our version: DERRMS, which shares
the same architecture and parameter settings as
HYRRMS. They only differ from the training data
generation. Our reproduced DERRMS generates
training data from dual encoder retriever. From
row 7, we can see that HYRRMS outperforms all
baselines. It is worth noting that the quality of the
training set for the reranking model is critical. As
can be seen, although monoT5 uses a much larger
and more powerful T53B model, it uses less care-
fully selected annotated negatives, and it performs
worse than our reranker, which is much smaller in
size. This demonstrates that our proposed training
framework is effective in the supervised setting.

BEIR results Similar as evaluation on MS
MARCO, we fix the first-stage retrieval system
and compare the reranking performance. Table 2
shows the reranking performance of our proposed
reranker. The BM25 results in Col.1 are obtained
from Anserini toolkit with parameters: k=0.9 and
b=0.4 following other baselines.

Col.2 and 3 show two supervised reranking mod-
els, which are trained on MS MARCO and perform
inference on the target domains directly. HYRRMS
is the model trained using our proposed approach
on MS MARCO from Table 1. The results on MS
MARCO are considered as in-domain for these
models. We also show results of two models
trained with synthetic data using our proposed
method in Col.4 and 5., one is of size T5Base 1.1
and one is of size T5Large 1.1. The results demon-
strate the effectiveness of our proposed method in
zero-shot settings. We note that the results on NQ
cannot be considered completely out-of-domain
since the question generation model used to gen-
erate training data for the hybrid retriever is trained
on the NQ dataset.

Ablation To show the robustness of HYRR, we
conduct an ablation experiment. We train rerankers
using the training data generated from the BM25
or the dual encoder model, namely BM25RR and
DERR. Those two variants are commonly seen in
many pipelined retrieval systems, where rerankers
are simply trained upon the first-stage retriever. We
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Retriever ↓ No Reranker BM25RR DERR HYRR
MS MARCO

BM25 0.187 0.375 0.422 0.424
DE 0.378 0.350 0.440 0.440

Hybrid 0.390 0.351 0.438 0.440
SciFact

BM25 0.677 0.750 0.742 0.752
DE 0.597 0.755 0.745 0.752

Hybrid 0.706 0.753 0.744 0.759

Table 3: Ablation results on MS MARCO in
MRR@10 and SciFact in nDCG@10.

train them using the same training setting for HYRR
and then apply them on three retrievers: the BM25
model, the dual encoder model (DE) and the hybrid
retriever, respectively. We experiment on both su-
pervised setting and zero-shot setting. The results
on MS MARCO are shown in the top section of Ta-
ble 3. As we can see HYRR provides the most per-
formance gain over all three retrievers on MRR@10.
The BM25RR improves the performance on BM25
while hurts the other two. DERR achieves best per-
formance when we apply it to DE. It also improves
the other two retrievers but not as much as HYRR.
This shows that HYRR not only outperforms the
other two rerankers but also is effective on different
retrievers. We pick SciFact from BEIR as an exam-
ple for zero-shot setting. The results are shown in
bottom part of Table 3, and we observe the similar
trends on other datasets in BEIR. Similarly, HYRR
improves both nDCG@10 over all three retrievers.
This believe is the evidence that the robustness of
the training data for the reranker is carried over to
the robustness of the reranker itself.
In addition, to understand the benefit to use hy-

brid retriever for training data generation, we con-
duct another ablation experiment. We mix the train-
ing data generated from the BM25 and the dual
encoder model in 1:1 ratio and train a reranker. We
evaluate on MS MARCO and the model achieves
0.417 in MRR@10 when reranking BM25 top 1000.
When comparing with the results in row 1 from Ta-
ble 3, we can see that our approach significantly
outperforms the approach that simply applying train-
ing data ensemble.

6. Conclusion

We proposed a generic training framework for
rerankers in the two-stage retrieval pipeline. The
reranker is a neural cross-attention model which
learns from negatives examples generated by a
hybrid retriever, which is composed of term-based
and neural retrievers. The proposed approach is
robust and outperforms several strong baselines on
MS MARCO and BEIR benchmark dataset, demon-
strating its practicality and generalizability.
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