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Abstract
Large Language Models (LLMs) exhibit remarkable In-Context Learning (ICL) ability, where the model learns tasks
from prompts consisting of input-output examples. However, the pre-training objectives of LLMs often misalign
with ICL objectives. They’re mainly pre-trained with methods like masked language modeling and next-sentence
prediction. On the other hand, ICL leverages example pairs to guide the model in generating task-aware responses
such as text classification and question-answering tasks. The basic pre-training task-related capabilities can
sometimes overshadow or conflict with task-specific subtleties required in ICL. To address this, we propose an
In-context learning Ability Decoupler (IAD). The model aims to separate the ICL ability from the general ability of
LLMs in the meta-training phase, where the ICL-related parameters are separately tuned to adapt for ICL tasks.
Concretely, we first identify the parameters that are suitable for ICL by transference-driven gradient importance.
We then propose a new max-margin loss to emphasize the separation of the general and ICL abilities. The loss is
defined as the difference between the output of ICL and the original LLM, aiming to prevent the overconfidence of the
LLM. By meta-training these ICL-related parameters with max-margin loss, we enable the model to learn and adapt
to new tasks with limited data effectively. Experimental results show that IAD’s capability yields state-of-the-art
performance on benchmark datasets by utilizing only 30% of the model’s parameters. Ablation study and detailed
analysis prove the separation of the two abilities.
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1. Introduction

In the field of Natural Language Processing (NLP),
LLMs exemplified by the notable GPT-3 (Wei
et al., 2022a), have garnered substantial attention.
These LLMs exhibit a remarkable proficiency in
the ICL (Min et al., 2022b), a paradigm in which
they acquire task-specific knowledge by process-
ing input-output pairs provided as prompts (Brown
et al., 2020). This paradigm has brought about
significant advancements in various NLP tasks,
ranging from text classification to text generation
(Lu et al., 2022a). Recent research have been
extensively directed towards augmenting the ICL
capabilities of LLMs, often employing techniques
such as supervised learning and meta-learning
(Min et al., 2022b).
However, a pressing and fundamental concern

persists—a substantial misalignment exists be-
tween the training objectives of the initial pre-
training phase and those of the subsequent meta-
training phase for ICL. This misalignment is graph-
ically depicted in Figure 1. The pre-training phase
exposes LLMs to vast amounts of textual data,
enabling them to comprehensively grasp linguis-

∗ Equal contribution.
† Corresponding author: Rui Yan.

Figure 1: An instance sourced from the pre-
training dataset of LLMs (Raffel et al., 2020), along
with a clarifying ICL examples illustration focused
on topic classification. The pre-training phase of
LLMs and ICL objectives are misaligned.

tic patterns and structures, which are mainly pre-
trained with methods like masked language mod-
eling and next-sentence prediction. Conversely,
the ICL phase requires a targeted understand-
ing of specific tasks, relying on a limited set of
task-specific examples such as text classification
or question answering. This misalignment brings
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about two prominent challenges: firstly, the dis-
parities in training data distribution and structure
can impede LLMs’ precise adaptation to novel ICL
tasks; secondly, utilizing ICL data for meta-training
might risk compromising the model’s foundational
linguistic comprehension. Such misalignment be-
comes a major hindrance when attempting to fully
harness LLMs, which ideally should balance both
general language proficiency and specific ICL ca-
pabilities.
To address this challenge, in this paper, we

present a novel approach called the “In-Context
Learning Ability Decoupler” (IAD). Our motivation
is to distinguish the parameters optimized for ICL
from those tailored for general linguistic knowl-
edge, and then independently fine-tune the ICL-
specific parameters. To accomplish this, we in-
troduce a computational mechanism for assess-
ing the significance of parameters associated with
the ICL ability. This mechanism enables the
seamless transfer of newly acquired ICL skills
across a wide range of task datasets. Specif-
ically, we treat the Multi-Head Attention (MHA)
and Feed-Forward Network (FFN) components at
each model layer as discrete units and evaluate
the importance of each unit by analyzing its re-
sponsiveness to the loss function during ICL data
training. Our approach addresses the challenge
of task transfer by quantifying gradient importance
and selectively stabilizing specific parameters dur-
ing meta-training, thereby aiding LLMs in adapt-
ing dynamically to various ICL tasks. Moreover,
to balance between the model’s ICL ability and
general ability during meta-training, we introduce
a max-margin loss. This loss serves as a crucial
bridge, aligning task-specific ICL objectives with
the overall language modeling prowess of LLMs,
thus preventing LLMs from becoming overconfi-
dent in ICL tasks. To mitigate the risk of produc-
ing responses with low prediction probabilities, we
focus on minimizing this overconfidence indicator
within the ICL framework. To empirically validate
the effectiveness of IAD, we conduct a comprehen-
sive series of experiments across a wide range
of tasks sourced from diverse datasets such as
Crossfit (Ye et al., 2021) and Numersense (Lin
et al., 2020). The extensive evaluation on various
tasks proves IAD’s effectiveness and adaptability
across diverse tasks.
Our contributions are summarized as follows:

• To the best of our knowledge, we are the
first to employ the decoupling of ICL from the
general abilities of LLMs as a strategic ap-
proach to mitigate the misalignment between
pre-training and ICL objectives.

• We introduce an innovative method for cal-
culating transference-driven gradient impor-

tance. During the meta-training of LLMs, we
focus on training only the most crucial param-
eters for ICL.

• Our design of a max-margin loss mitigates the
overconfidence of the LLM, thereby enhanc-
ing the model’s ability to generalize.

• Extensive experimental results demonstrate
that IAD achieves state-of-the-art perfor-
mance compared to full-parameter meta-
training baselines. Nevertheless, it accom-
plishes this by training only a subset of the
model’s parameters, thus significantly econo-
mizing computational resources.

2. Related Work

2.1. In-Context Learning
Initially proposed by Brown et al. (2020), ICL
involves conditioning LLMs on a concatenated
prompt of training examples, enabling the model
to adapt to new tasks with no parameters up-
date. ICL has undergone subsequent refinements
through the works by Zhao et al. (2021) and Holtz-
man et al. (2021), yielding promising outcomes
across diverse tasks. However, it is essential to
note that the objectives of the ICL tasks driven by
LLMs are misaligned with the training objectives of
LLMs. Recent research has been directed toward
comprehending its underlying mechanisms to en-
hance adaptive capabilities (Min et al., 2022b).
Prior research (Min et al., 2022b) has mainly

focused on meta-training entire parameter sets
within LLMs to enhance their ICL performance.
However, it faces challenges due to the misalign-
ment in the training objectives, as depicted in Fig
1. Such methods often result in compromising the
model’s general ability.

2.2. Continual Learning
Continual Learning (CL) has been applied in var-
ious tasks such as slot filling (Shen et al., 2019),
sentiment assessment (Ke et al., 2021), topic dis-
covery (Gupta et al., 2020), and knowledge en-
hancement (Lv et al., 2023). Recent studies in the
CL domain have centered around LLMs. For in-
stance, Madotto et al. (2021) introduces a system
that learns distinct adapters for various domains,
although it does not incorporate cross-domain fu-
sion or knowledge transfer techniques. Another
approach, DEMIX (Gururangan et al., 2022), ini-
tializes new adapters based on the nearest exist-
ing adapters. Unlike prior methods, which often in-
volve adapting parameters in a continuous learn-
ing context, IAD selects foundational and task-
specific parameters by leveraging insights from
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Figure 2: Overview of the IAD Model framework consists of two parts: (1) Left: “Transference-driven
Gradient Importance Calculation” assesses parameter significance via meta-training gradient analysis
and inter-task transfer. (2) Right: “Max-Margin Loss” balances ICL and general model ability, promoting
effective decoupling. Leveraging parameter importance, IAD selectively trains crucial ICL parameters
while freezing others.

multiple ICL tasks. This unique strategy marks
a departure from traditional continual learning ap-
proaches and plays a pivotal role in enhancing the
model’s ability for ICL. Additionally, to address the
challenges associated with meta-learning across
diverse tasks, we introduce a novel method for cal-
culating gradient importance, streamlining the pro-
cess of isolating and fine-tuning these critical pa-
rameters.

3. Methodology

We structured our methodology around three fun-
damental principles: (1) To identify parameters
within the LLM that are most related to ICL, we
harness gradients obtained during meta-training
on ICL data. This procedure quantifies the signifi-
cance of parameters bymeasuring inter-task trans-
fer, which is defined as the reduction in loss for
one task resulting from parameter updates driven
by gradients from another task. (2) To enhance
the LLMS’ ICL ability while minimizing interference
with its general ability, during training, IAD selec-
tively prioritizes a subset of parameters identified
as critical for ICL, while the remaining parameters
are kept frozen. This decoupled approach ensures
that the model concentrates on task-specific sub-
tleties while preserving its broader general ability.
(3) We introduce a max-margin loss that quantifies
the difference between the output of ICL and the
original LLM, aiming to prevent the overconfidence
of the LLM. It encourages the model to maintain
task-aware responses without overshadowing or
conflicting with task-specific subtleties. The over-
all framework of IAD is visually depicted in Figure
2.

3.1. Transference-Driven Gradient
Importance Computation

We regard the Multi-Head Attention (MHA) and
Feed-Forward Network (FFN) at each model layer
as individual units. Subsequently, we compute
the significance of these units when training with
ICL data. It has been noted that not all units
within a layer are universally considered substan-
tial (Michel et al., 2019). Specifically, within each
layer of the transformer architecture, we indepen-
dently evaluate the significance concerning the
MHA and the FFN.
We compute the significance of each unit by

evaluating its sensitivity to the loss function dur-
ing training with ICL data. To elaborate, the impor-
tance score is rooted in the model output’s reac-
tivity to the parameters encapsulated within each
unit, which delineates its ICL attributes. In each
model layer, we utilize symbols θMHA and θFFN

to respectively denote the parameters of the MHA
and FFN units within the model. Consequently, we
can derive the following expressions:

IMHA = E
x∼Dx

(
∂Licl(x)

∂θMHA
), IFFN = E

x∼Dx

(
∂Licl(x)

∂θFFN
).

(1)
Here, Licl represents a loss function to the ICL
training datasets, andDx signifies the ICL data dis-
tribution. In practical terms, we calculate the mean
value across the training dataset.
The computation of importance scores for all

units in the LLMs is performed in a backward pass
at the end of an epoch of fine-tuning. The impor-
tance score is intricately linked to the model’s ICL
ability. A lower importance score signifies that the
corresponding unit makes only a minor contribu-
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tion to the ICL ability. Conversely, a higher im-
portance score suggests substantial significance
in enhancing the ICL ability.

3.2. Transfer Ability Across Tasks
After training on the ICL training datasets, we
determine the significance of units by employing
Equation 1 on the datasets. However, within meta-
training, the importance of the same unit computed
across multiple datasets might vary in magnitude
and sign. Directly aggregating them or, as seen
by Ke et al. (2022), selecting the maximum re-
sult across different datasets as the importance
would lead to the detrimental negative transfer of
ICL ability during meta-training. Therefore, we in-
troduce the quantification of transfer from dataset
i to j (Where conducting meta-training across T
datasets, and i, j ∈ T ) as the reduction in the loss
for dataset j caused by the gradient update from
dataset i. Specifically, considering that the model
parameters θ are updated by a dataset i with a
learning rate αi > 0. Furthermore, we use gi(θ) to
denote the gradient of the model’s loss to its pa-
rameters on the dataset i. Through a first-order
Taylor series expansion, the relationship is given
by:

∆Li→j = Lj(θ)− Lj(θ − αigi(θ))

≈ αig
T
i (θ)gj(θ).

(2)

It is worth noting that the expression αigi(θ) ≈
αig

T
i (θ)gj(θ) indicates that a higher inner product

value corresponds to more effective transference.
We optimize the gradient by maximizing the

inter-datasets transfer ∆Li→j (as defined in Equa-
tion 2):

∂∆Li→j

∂(θ)
=

∂

∂θ
(αig

T
i (θ)gjθ)

= αiHj(θ)gi(θ)

≈ αigj(θ)⊙ gj(θ)⊙ gi(θ),

(3)

where Hj(θ) is the Hessian matrix of Lj(θ), and ⊙
is Hadamard product (i.e., element-wise product)
Therefore, in conjunction with Equation 1, we

can deduce that during the process of meta-
training for ICL. Formally, let the importance score
of unit i be denoted as Ii, the importance score
of the unit be denoted as Iu, (u ∈ {MHA,FFN})
and the ICL datasets areDcontext (denoted as T in
number), then the importance score is computed
as:

Iu =
∑

j ̸=i,j∈T

αiIj ⊙ Ij ⊙ Ii, (4)

where Iu represents the overall importance of a
unit (MHA or FFN) across multiple ICL training
datasets, during computation, we substitute the re-
spective values for MHA and FFN, calculating their
individual importance accordingly.

3.3. Meta-Training with Selected
Parameters

Inspired by continual learning, this section will se-
lectively freeze and meta-training parameters ac-
cording to their importance scores. We employ
tailored importance scores to evaluate the signif-
icance of each unit’s contribution to the ICL task.
This analysis quantitatively measures the unit’s im-
pact on the model’s performance in ICL tasks. Im-
portantly, we focus on the MHA and FFN compo-
nents, known for their crucial roles in ICL tasks.
Subsequently, leveraging the importance

scores, we implement a unit selection strat-
egy. Specifically, we identify units with lower
importance scores and freeze the associated
parameters, ensuring they remain constant during
subsequent training stages. This step effectively
reduces the parameter space that requires up-
dates during meta-training. By isolating the less
critical parameters, we significantly diminish the
computational resources required for training,
leading to a more accurate and efficient process:

θi =

{
θi if Iu > top n-th percentile
frozen otherwise

(5)

3.4. Max-Margin Loss between the ICL
and General Ability

When the ICL ability of themodel is insufficient, the
decoder tends to overlook certain input information
about ICL, assuming a more prominent role as an
open-ended LLM. Consequently, there is a rising
risk of inference errors in the ICL task. Inspired
by faithfulness-enhanced abstractive summariza-
tion task (Chen et al., 2022), we introduce a max-
margin loss into the ICL task and employ it for the
model’s decoupled training process to enhance its
ICL ability. This loss aims to maximize the dis-
crepancy between the model’s ICL ability and the
LLM’s predictive ability, effectively mitigating the
tendency of LLMs to generate frequently seen col-
locations that do not align with the intended ICL
inference.
To provide a more comprehensive explanation,

we establish the margin between the ICL ability of
the model and its general ability. This margin is
characterized as the disparity in predictive proba-
bilities:

Mt = P ICL
t (yt|y<t, X)− PLM

t (yt|y<t, X). (6)

Here, X denotes the input within the examples
of ICL tasks. Furthermore, P ICL

t represents the
predictive probability of the model for the t-th token
during ICL, while PLM

t signifies the predictive prob-
ability of the original LLMs for the t-th token, reflect-
ing the general ability of the language model. Intu-
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itively, whenMt is substantial, themodel’s ICL abil-
ity is evidently satisfactory. Conversely, when Mt

is relatively small, the possibility is that the model’s
general ability is inadequate yet overconfident, re-
sulting in a diminished ICL ability.
Consequently, we introduce the max-margin

loss, denoted as LM , wherein a coefficient is in-
corporated into the margin:

LM =
∑
t

(1− P ICL
t )(1−M5

t )/2. (7)

Let P ICL
t (yt|y<t, X) be abbreviated as P ICL

t .
The component (1−D5

t )/2 represents a non-linear,
monotonically decreasing function concerning Dt,
thus ensuring the optimization goal of maximizing
Dt. For this purpose, we adopt the Quintic function
(raised to the fifth power) as it has demonstrated
greater stability (Miao et al., 2021). The initial fac-
tor (1 − P ICL

t ) serves to accommodate the two
scenarios we previously discussed. A substantial
value of P ICL

t indicates a proficient ICL ability of
the model. This interpretation is encapsulated by
(1−P ICL

t ), yielding a minor influence onMt. Con-
versely, when P ICL

t is small, it signifies the neces-
sity for the model’s ICL ability to undergo refine-
ment. This prompts the application of a significant
coefficient (1−P ICL

t ), allowing the model to learn
from the margin information effectively.
As per the reference (Min et al., 2022b), the loss

employed during the meta-training phase of the
model is a negative log-likelihood objective LICL.
The losses, LM and LICL, are orthogonal and
amenable to combination to enhance the model’s
ICL ability. The total loss is L = LM + LICL.

4. Experiment

4.1. Experiment Setup

4.1.1. Datasets

We leveraged a comprehensive array of tasks cu-
rated from two prominent datasets: the CROSS-
FIT dataset by Ye et al. (2021) and the UNI-
FIEDQA dataset by Khashabi et al. (2020). The
datasets comprise a wide spectrum of distinct
tasks, spanning diverse problem domains such as
text classification (Li et al., 2024) and question-
answering (Chen et al., 2021).
In our experiments, we systematically explored

various discrete configurations. In each experi-
mental set, we notably employed three datasets
for meta-training and two for testing, with strict seg-
regation between the training and test datasets.
Specifically, in our experiments, we utilized the SR
(Dagan et al., 2005), TES (Barbieri et al., 2020),
and TESF (Barbieri et al., 2020), ENO (Mollas
et al., 2020) datasets as two distinct sets of testing

data to evaluate the model’s ICL ability. The data
configuration is also presented in Table 1 for easy
reference. Within each configuration, we carefully
selected a subset of target tasks, ensuring that
they do not share any domain congruence with
the meta-training tasks. This distinction is exem-
plified across diverse domains, including finance,
poetry, climate studies, andmedical research. Our
reporting encompasses results derived from all tar-
get tasks and results exclusively from target tasks
without any domain overlap. We refer readers to
the supplementary materials for a more detailed
description of the training and test datasets.

Input

Nevertheless over the last decade,
daily record high temperatures occurred
twice as often as record lows. options:

{”Disputed”, ”Not enough info”, ”Refutes”, ”Supports”}

output Refutes

Table 1: Example input-output pairs for an ICL task

4.1.2. Baselines

We compare IAD with a range of baselines:
0-shot: We use a pre-trained LLM and run zero-

shot inference, following Brown et al. (2020).
In-context learning: We use the pre-trained

LLM and use ICL by conditioning on a concatena-
tion of k training examples, following Brown et al.
(2020).
Channel 0-shot, Channel In-context: We use

the noisy channel model by Min et al. (2022a) for
0-shot and ICL.
Multi-task 0-shot: We train the LLM on

the same meta-training tasks without utilizing in-
context learning objectives, essentially maximiz-
ing P (y|x) without additional training examples (k
= 0). This approach aligns with typical multi-task
learning techniques found in prior work (Wei et al.,
2021).
MetaICL: We employ a meta-learning approach

to fine-tune the LLMs on the ICL dataset, following
Min et al. (2022b).

4.1.3. Evaluation

For the test ICL tasks, we utilize Macro-F1 as an
evaluation metric. Similar to the meta-training pro-
cess, we adopt k = 16 training instances in a spe-
cific test task chosen through uniform random sam-
pling. We relax the presumption of perfect label
balance across the k training instances, following
the methodology of Min et al. (2022a). Acknowl-
edging the inherent variance associated with ICL
(Zhao et al., 2021; Perez et al., 2021; Lu et al.,
2022b; Zhang et al., 2024), we engage distinct
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Online Speech Detection Tweet Classification

Method SR ENO F1 Score TESF TES F1 Score Average

0-shot 34.22 40.25 37.24 35.85 38.40 37.13 37.18
In-context learning 36.90 39.10 38.00 42.41 41.62 42.02 40.01
Channel 0-shot 37.03 38.10 37.57 41.33 40.23 40.78 39.18
Multi-task 0-shot 36.67 38.76 37.72 40.87 39.75 40.31 39.02
Channel In-context 43.69 40.27 41.98 44.03 45.84 44.94 43.46
MetaICL 43.55 41.37 42.46 45.28 45.27 45.28 43.87

IAD 46.74 42.66 44.70 47.27 46.80 47.04 45.87

Table 2: The experimental results were obtained by conducting tests on two distinct sets of datasets.
Online Speech Detection datasets include SR (Dagan et al., 2005) and ENO (Mollas et al., 2020), while
Tweet Classification datasets consist of TESF and TES (Barbieri et al., 2020). Bold indicates the model
outperforms all baselines significantly in paired t-test at p < 0.01 level.

sets of k-training instances. Initially, we calcu-
late performance across multiple random seeds
for each test task. Subsequently, we present the
Macro-F1 of these metrics across all test tasks,
which we denote as ”F1-SCORE” in the experi-
ment.

4.1.4. Experiment Details

The entire implementation is conducted within the
PyTorch framework (Paszke et al., 2019) using the
Transformers library (Wolf et al., 2020). During the
process of meta-training, We used GPT2-Large
as LLM for model training, and we considered a
maximum of 16,384 training instances for each in-
dividual task. During our experiments, our model
utilized the decoupling mechanism to freeze 70%
of the parameters while training only 30% of the
model’s parameters. The training is performed us-
ing a batch size of 1, a learning rate of 1e-5, and
a sequence length of 1024. The model undergoes
training for a total of 3 epochs.

4.2. Experimental Results

4.2.1. Main Results

We conducted comparative experiments between
our model, IAD, and several classical ICL base-
lines. For Online Speech Detection datasets, we
performed meta-training on three datasets and
evaluated our model on SR and ENO datasets.
In the case of Tweet Classification datasets, we
utilized another three datasets for meta-training
and evaluated on TESF and TES datasets. The
evaluation results are presented in Table 2. Our
model outperforms the baseline models across all
metrics. This consistent improvement across both
sets of datasets demonstrates our proposed IAD
framework’s superiority and general applicability.
Our approach not only surpassed all baseline

models but also significantly reduced the computa-

tional resources required. Note that we only train
30% of the model’s parameters, which proves the
efficiency of our model. This finding highlights that,
during the meta-training process, the decoupling
mechanism should be considered, focusing train-
ing efforts on parameters more critical for ICL to
achieve better results. We employed a two-tailed
paired t-test with α = 0.01 to assess the statistical
significance of performance differences between
two separate runs.

Overall, our results underscore the effective-
ness and efficiency of our IAD model in improving
ICL performance across various datasets and rein-
force the importance of parameter decoupling dur-
ing meta-training for enhanced model adaptability.

4.2.2. Ablations Study

We have also presented the results of an ablation
study in Table 3, to investigate the impacts of dif-
ferent modules within our proposed model. It can
be observed that if we neither freeze a portion of
parameters nor utilize the Max-Margin Loss, the
performance of all metrics deteriorates, reducing
the model to a state similar to the MetaICL model.
This underscores the significance of decoupling
abilities during training to enhance the model’s ICL
ability.

Furthermore, upon removing each of the two
modules separately, we observed a decrease in
scores by 0.9% and 2.1%, respectively. This in-
dicates that the two modules we introduced con-
tribute to the model’s improved ICL ability. These
findings emphasize the cooperative effect of the
proposed modules, reinforcing the model’s capac-
ity in tasks requiring adaptation to context.
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Online Speech Detection Tweet Classification

SR ENO F1 Score TESF TES F1 Score Average

Full model - IAD 46.74 42.66 44.70 47.57 46.79 47.18 45.95

-w/o Max-Margin loss 45.40 42.04 43.72 46.66 46.11 46.39 45.06
-w/o Frozen part parameters 43.55 41.37 42.46 45.28 45.07 45.18 43.82

Table 3: Ablations experiment results on two sets of test datasets. Online Speech Detection datasets
include SR (Dagan et al., 2005) and ENO (Mollas et al., 2020), while Tweet Classification datasets consist
of TESF and TES (Barbieri et al., 2020). The best score is in bold.

Figure 3: Experimental results on the Language
Modeling task on three test datasets. Our model
IAD has a significantly lower PPL than the strong
baseline model MetaICL, indicating that our model
possesses better language modeling capabilities.

4.3. Discussions

4.3.1. Decoupling of General and ICL Ability
of LLMs

We evaluate the model’s overall performance on
language modeling tasks as a measure of its gen-
eral ability. To assess this, we employ Perplex-
ity (PPL) scores, which serve as an indicator of
the language modeling proficiency of the mod-
els. Lower PPL scores correspond to stronger lan-
guage modeling abilities.
As depicted in Figure 3, in contrast to the

MetaICL, our IAD model consistently achieved sig-
nificantly lower PPL scores across all three bench-
mark datasets: Wikitext2 (Gong et al., 2018), PTB
(Gong et al., 2018), and Lambada (Paperno et al.,
2016). This exceptional performance of the IAD
model surpassing MetaICL underscores the effec-
tiveness of the proposed decoupling methodology.
Our observations reveal that the IAD model, de-

signed to disentangle ICL ability from the general
LLM ability, demonstrates a discernible trade-off
between these two attributes. It exhibited the ca-
pability to uphold competitive language modeling
skills while enhancing its ICL ability. This obser-
vation supports the assertion that IAD effectively
accomplishes its intended goal of isolating these

two abilities. In summary, our experiments vali-
date the efficacy of IAD as an approach to enhance
the ICL ability of LLMs while preserving their lan-
guage modeling prowess.

4.3.2. Influence of Frozen Parameters
Percentage

We conducted experiments to investigate the rela-
tionship between the proportion of frozen param-
eters and the model’s ICL ability. We froze differ-
ent percentages of model parameters for experi-
ment, and the results are presented in Figure 4.
At a parameter freeze ratio of 70%, the Macro-F1
Score reached its highest value at 46.8. This in-
dicates that, in this experiment, freezing a portion
of parameters up to 70% can enhance the model’s
Macro-F1 Score. Beyond a parameter freeze ratio
of 70%, the Macro-F1 Score starts to decline, with
a significant drop observed at a parameter freeze
ratio of 100%. This underscores once again that
excessive parameter freezing can detrimentally af-
fect the model’s ICL ability.
The results also suggest that applying meta-

training on all model parameters solely based on
ICL data is not an optimal approach. Instead, a
decoupling of the model’s parameters is more suit-
able, focusing meta-training efforts on only a sub-
set of parameters. This approach holds the poten-
tial for significantly improving the model’s ICL abil-
ity while concurrently reducing the required compu-
tational resources. Furthermore, the findings em-
phasize the necessity to strike a balance between
parameter freezing and adaptability in order to op-
timize ICL performance.

4.3.3. Visualization of Importance Across
Different Layers

We present the visualized results of the method
proposed by our model for calculating unit impor-
tance based on transference. This visualization
aids in further analyzing the significance of each
layer’s structure in the model concerning ICL abil-
ity. This contributes to a deeper understanding
of the decoupling of ICL ability and general abil-
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Figure 4: Performance of models with frozen dif-
ferent percentage parameters on ICL task.

Figure 5: The gradient importance of parameters
Iu, (u ∈ {MHA,FFN}) in the FFN units andMHA
units of each layer in the model.

ity in our model, as illustrated in Figures 5. For
both the FFN and the MHA layer, our experimental
results demonstrate a consistent trend where the
importance decreases as the number of layers in-
creases. This implies that the higher layers of the
model contribute less to ICL ability while the lower
layers contribute more significantly.
However, in the analysis of the FFN, the mid-

dle layers (layers 1-10) and the top layers (layers
34-35) exhibit relatively higher importance. In con-
trast, in the analysis of the MHA layers, the impor-
tance of these layers gradually diminishes. This
observation suggests that, in the context of ICL
tasks, the middle and deep FFN layers might play
a more critical role than the MHA layers.
Furthermore, as depicted in Figure 5, the con-

tribution of the FFN is relatively distributed across
both lower and middle layers. In contrast, Figure
5 shows that the contribution of the MHA layers is
more prominent in the lower layers. This may im-
ply that the self-attention mechanism is advanta-
geous in capturing lower-level contextual features
for ICL tasks. At the same time, the FFN layers

might be more involved in localized feature pro-
cessing at the lower and middle layers.

4.3.4. Generalization of IAD Across Different
Types of Tasks

As shown in Figure 6, our model has demonstrated
noteworthy superiority in our experimental investi-
gation when applied to a novel QA task. As in the
previous experimental setup, we conducted meta-
training on three datasets and then performed ex-
periments on three non-overlapping datasets. For
specific experimental details, please refer to the
supplementary materials. Specifically, the IAD
model achieved a mean score of 44.6, significantly
surpassing the performance of the three baseline
methods. This observation underscores the abil-
ity of the IAD model to excel across diverse tasks,
achieving optimality consistently.
The success of the IAD model can be at-

tributed to its decoupled methodology, which in-
volves fine-tuning a critical subset of model param-
eters on ICL. This targeted refinement enhances
the model’s proficiency in ICL, conferring substan-
tial advantages in task adaptation and generaliza-
tion. Such flexibility and adaptability help the IAD
model with the potential to manifest remarkable
performance across distinct domains and prob-
lem domains. Consequently, the IAD model has
achieved the highest mean score in our experi-
mentation.

Figure 6: Experimental results on the QA task
across three test datasets. The experiments have
substantiated that our model IAD exhibits superior
generalization capabilities across diverse task.

5. Conclusion and Broader Impacts

In this paper, we propose an innovative model
called the“In-Context Learning Ability Decoupler”
(IAD) to address the misalignment between the
pre-training and ICL objectives of LLMs. The pa-
per proposes a mechanism for identifying and fine-
tuning ICL-specific parameters, as well as a max-
margin loss to prevent overconfidence in ICL tasks.
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The results of experiments demonstrate that IAD
significantly improves LLMs’ performance on a va-
riety of tasks while using fewer parameters. This
work offers a promising solution to the challenge of
harmonizing general language modeling abilities
with specific ICL requirements in LLMs.
We highlight prospective directions for ICL by

delving into advanced fine-tuning techniques that
complement the IAD approach, which can explore
innovative loss functions and regularization meth-
ods to enhance the fine-tuning methods for ICL.
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