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Abstract
The Dual Encoders (DE) framework maps image and text inputs into a coordinated representation space, and
calculates their similarity directly. On the other hand, the Cross Attention (CA) framework performs modalities
interactions after completing the feature embedding of images and text, and then outputs a similarity score. For
scenarios with bulk query requests or large query sets, the latter is more accurate, but the former is faster. Therefore,
this work finds a new way to improve the retrieval accuracy of the DE framework by borrowing the advantages of the
CA framework. Drawing inspiration from image captioning, we introduce a text decoder in the model training stage
to simulate the cross-modal interaction function, like the CA framework. The text decoder is eventually discarded,
aligning our model with the DE framework. Finally, to ensure training stability and prevent overfitting, we modify the
Self-Distillation from Last Mini-Batch and apply it to the retrieval areas. Extensive experiments conducted on the
MSCOCO and Flickr30K datasets validate the effectiveness of our proposed methods. Notably, our model achieves
competitive results compared to state-of-the-art approaches on the Flickr30K dataset.

Keywords: Text-to-Image retrieval, Dual Encoders, Cross Attention, Indirect Connection, Regularization

1. Introduction

With the decreasing cost of acquiring multimodal
information, there is a growing enthusiasm for ex-
ploring the relationships between data from differ-
ent modalities. This trend has sparked research
in cross-modal retrieval (Bogolin et al., 2022; Bain
et al., 2021), with text-to-image retrieval being a
particularly popular area of focus. Text-to-image re-
trieval involves the development of intelligent meth-
ods to establish a similarity function between cross-
modal data.

Dual Encoders (DE) and Cross Attention (CA)
are two prominent frameworks for processing im-
age and text (Miech et al., 2021). Figure 1(a) illus-
trates the DE framework (Wang et al., 2022; Zhang
et al., 2020), where visual and textual inputs are
embedded into a coordinated representation space
by independent encoders. The similarity between
features is then determined using cosine distance
or Euclidean distance. Such approaches require
less computation and are particularly time-effective
for retrieval tasks involving large query sets. How-
ever, their accuracy is limited due to feature fusion
being performed only during the final similarity cal-
culation. Figure 1(b) showcases the CA framework
(Li et al., 2020b; Zhang et al., 2021) , which incor-
porates early fusion of textual and visual features.
In addition to the respective feature embedding of
the two modalities, it establishes interaction be-
tween them using cross-attention or self-attention,
to obtain similarity scores through regression. The
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application of cross-modal fusion is doubtless a
significant improvement in retrieval performance,
but it also introduces an explosion in computational
complexity, since this approach needs to exhaus-
tively consider all image-text combinations in the
query set. Therefore, how to improve speed whilst
ensuring retrieval accuracy is an urgent issue to be
solved in this field.

Inspired by image captioning, we intend to intro-
duce a text decoder in the training stage to simulate
the modality interaction function in the CA frame-
work. This decoder takes features of the image and
text as input and then generates the corresponding
caption description of the image. We aim to simul-
taneously bring the embedded features in the text
decoder closer to those in the image and text En-
coders, which is beneficial for reducing the distance
between image-text pairs. As shown in Figure 1(c),
such an approach is called Indirect Connection,
while the similarity calculation between the original
text and the image is called Direct Connection. In
the inference stage, the text decoder is eventually
discarded, ensuring that our model is consistent
with the DE framework.

Maintaining training stability and preventing over-
fitting has always been an important part of model
training. Self-Distillation from Last Mini-Batch (DLB
regularization), proposed in the paper (Shen et al.,
2022), has demonstrated its effectiveness in im-
age classification tasks. We improve the DLB and
adapt it for application in the domain of multimodal
retrieval, which helps to increase the stability and
consistency of the training and improve the gen-
eralisation ability of our model. To the best of our
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Figure 1: (a) Illustration of the DE framework; (b) Illustration of the CA framework; (c) Visualization of
Direct and Indirect Connection. The visual (resp. textual) space refers to the feature space where the
image (resp. text) samples are located after being encoded by the image (resp. text) encoder.

knowledge, this is the first instance of DLB being
applied to the field of multimodal retrieval.

In summary, the contributions can be summa-
rized as follows:

• Inspired by image captioning, we employ a text
decoder to imitate the modal fusion function-
ality of CA to avoid training the CA retrieval
model, significantly saving training and infer-
ence time.

• Using the text decoder as a node, we estab-
lished the Indirect Connection to minimize the
distance between the embedded features in
the text decoder and those in the image or text
encoder, making it easier to match the corre-
sponding image and text.

• To ensure the stability and consistency of the
training process, DLB regularization is modi-
fied and applied specifically to the field of multi-
modal retrieval, which helps prevent overfitting
and enhances the reliability of the training pro-
cess.

• Extensive experiments on the MSCOCO Lin
et al. (2014) and Flickr30K Plummer et al.
(2015) benchmark datasets confirm the effec-
tiveness of our methods. Remarkably, our
model yields new state-of-the-art results on
the widely-used Flickr30K dataset.

2. Related Work

2.1. Vision and Language
Representations.

Because of the natural semantic gap between dif-
ferent modalities, pre-training plays a crucial role
in feature extraction for various multimodal tasks,
such as image Captioning (IC) (Cornia et al., 2020;

Pan et al., 2020), Visual Question Answering (VQA)
(Kim et al., 2020), Cross-modal Retrieval (CR) (Lu
et al., 2022; Gorti et al., 2022), etc. Prior to the
advent of multimodal learning (Baltrušaitis et al.,
2019), visual models were typically pre-trained
through an image classification or object detection
tasks, whilst text models underwent self-supervised
training.

Multimodal learning refers to the process of train-
ing visual and textual models together within a uni-
fied task or framework, which helps to further nar-
row the semantic gap between different modali-
ties. The methods we call CA (Li et al., 2020b;
Zhang et al., 2021) fuse visual and textual features
at an early stage and perform joint reasoning, which
clearly facilitates models to learn multimodal joint
representations. Recently, the methods we call DE
(Lu et al., 2022; Radford et al., 2021) process vi-
sual and textual features individually and then learn
a coordinated representation space for matching
relevant image-text pairs by contrastive loss.

2.2. Text-to-image Retrieval

Text-to-image retrieval enables users to locate spe-
cific images based on their descriptive text. Sup-
pose the query set has a size of Q, roughly Q model
calculations are necessary for the CA model when
a query request ensues. The DE model only re-
quires just about one model calculation. This is
because the DE model can pre-extract the features
of all samples of the query set and subsequently
obtain the similarity matrix by matrix multiplication.
(Miech et al., 2021) utilizes knowledge distillation
to transfer the knowledge learned by the CA model
to the DE model in the training phase, which is
used to enhance the capability of the DE model.
In the inference phase, the DE model first obtains
the top K relevant samples. Then the CA model
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sorts these K samples to obtain the final results.
Different from that paper, we do not train a real CA
model but employ a text decoder to simulate its
ability to learn fused features. And the text decoder
can be discarded in the inference phase, so it does
not add extra parameters.

3. Methods

Our proposed approaches are presented in detail in
this section. As shown in Figure 2, our model com-
prises three modules: image encoder, text encoder,
and text decoder. The image encoder incorporates
a pre-trained visual encoder (e.g., CLIP (Radford
et al., 2021)) along with self-attention layers. The
text encoder consists of a pre-trained language
model (e.g., a CLIP textual encoder) combined with
masked self-attention layers. And the text decoder
solely consists of cross-attention layers. Due to the
inherent semantic gap between different modalities,
training a multimodal model from scratch often re-
quires a substantial amount of data support, which
places significant demands on the computational
resources and training time. Consequently, fine-
tuning on pre-trained models emerges as a simpler
and more efficient alternative.

Given an image x and its corresponding text de-
scription y, our model maps them to distinct feature
subspaces and computes the similarity score be-
tween the image feature fx and the text feature fy.
In other words, the model creates a connection be-
tween the image and text modality, discriminating
the paired image-text from negative ones. In this
work, we introduce two types of connections: the
Direct Connection and the Indirect Connection.

3.1. Direct Connection
Given images x, the image encoder φx will map x
to the image features fx, as follow:

fx = φx (x) , (1)

where x ∈ R
C×W×H , C is the number of channels

of the RGB image, W and H are the width and
height respectively, fx ∈ R

Nx×dmodel , Nx is related
to the downsampling rate of the image encoder,
and dmodel is the feature dimension.

Since we employ a text decoder and an additional
image captioning task to implement the function
of feature fusion in CA. The masked self-attention
layer (Vaswani et al., 2017) is necessary to pre-
vent information leakage during training. How-
ever, the forward mask results in a partial loss
of contextual information. To solve this problem,
we have inverted the mask instead of the text in-
put y =

[
y1, y2, ..., yT

]
to compensate for the text

features fy ∈ R
Ny×dmodel , where T (= Ny) is the

length of the input sentence. Formally, the opera-
tion can be written as:

fy = ffwd
y + f bwd

y = φfwd
y (y) + φbwd

y (y) , (2)

where φfwd
y (y) and φbwd

y (y) both indicate the text
encoder, the only difference between them is that
the former uses a forward mask and the latter uses
a backward mask.

A vast majority of cross-modal retrieval models
(Chen et al., 2020; Wang et al., 2022; Zhang et al.,
2020; Li et al., 2020a) only utilize the Direct Con-
nection, by directly reducing the contrastive loss
between positive image-text pairs relative to nega-
tive ones:

LI2T
IT =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
y∈D−

xi
e (fxi

, fy)∑
y∈D+

xi
e (fxi , fy)

))
,

(3)

s (fx, fy) =
f̄x · f̄y∥∥f̄x∥∥ · ∥∥f̄y∥∥ , (4)

e (fx, fy) = exp (s (fx, fy) /τ) (5)

where f̄x (resp. f̄y) is the mean value of fx (resp.
fy), Nb is the batch size, τ is the temperature factor,
D+

xi
(resp. D−

xi
) represents the set of positive (resp.

negative) samples for xi, and s (·, ·) is applied to
calculate the cosine similarity between samples. To
facilitate the calculation, we consider the matched
samples within a batch as positive samples and
the unmatched samples as negative samples:

D+
xi

= {(xi, yi)} ,D−
xi

= {(xi, yj) |j �= i}j=1,2,...,Nb
.

(6)

Eq. (3) only calculates the image-to-text con-
trastive loss. To make the network also have the
ability of text-to-image retrieval, we define the text-
to-image contrastive loss as:

LT2I
IT =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
x∈D−

yi
e (fyi , fx)∑

x∈D+
yi
e (fyi

, fx)

))
,

(7)

where D+
yi

(resp. D−
yi

) represents the set of positive
(resp. negative) samples for yi. The final loss of
the Direct Connection is noted as:

LIT = LI2T
IT + LT2I

IT . (8)

Although our objective is only text-to-image re-
trieval, bi-directional contrastive loss enables better
exploitation of the correlation between images and
text, thus further improving retrieval performance.

3.2. Indirect Connection
In the Direct Connection, feature fusion is limited
to the computation of similarity s (·, ·). Such a sim-
plistic calculation does not fully exploit model’s abil-
ity. Although the CA model can effectively utilize
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Figure 2: Illustration of the work flow in train phase. The image encoder and text encoder process the
image and text inputs respectively, and then their outputs are fed into the text decoder to generate captions.
At the same time, utilizing contrastive loss to narrow the distance between image features fx, text features
fy and caption features fc. The contrastive loss between fx and fy is called Direct Connection. The
contrastive loss between fc and fx/fy is called Indirect Connection.

the fused features, it entails lengthy training and
inference time, which is not suitable for real-time
retrieval with large query sets. Consequently, we
introduce the Indirect Connection to bridge the gap
between the embedded features in the text decoder
and those in the image or text encoder, making it
easier to match the corresponding image and text.

The embedded features in text decoder, denoted
as fc ∈ R

Nc×dmodel , are calculated as follows:

fc = φc

(
φx (x) , φ

fwd
y (y)

)
, (9)

where φc is the text decoder.
In purpose to enable the text decoder to output

words, it is necessary to map fc to the vocabulary
space. We use cross entropy to train the image
captioning task with the following loss function:

LCap = − 1

Nb

Nb∑
i=1

T∑
t=1

log
(
Pθ

(
yti |yt−1

i , ..., y1i , xi

))
,

(10)

where Pθ

(
yti |yt−1

i , ..., y1i , xi

)
denotes the output

probability of the text decoder for the token yti at the
position t, taking into account the previous tokens
yt−1
i , ..., y1i and the image xi. Therefore in Eq. (9)

we only use φfwd
y to encode yi to prevent the in-

formation of yti and subsequent tokens from being
leaked.

The Indirect Connection is achieved by calculat-
ing the similarity score between fx and fy through
the intermediary features fc. The formula can be

expressed as follows:

s′ (fx, fy) = s (fx, fc) s (fc, fy) . (11)

Therefore four contrastive losses are needed to
constitute the Indirect Connection loss:

LI2C
IC =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
c∈D−

xi
e (fxi , fc)∑

c∈D+
xi
e (fxi

, fc)

))
,

(12)

LC2I
IC =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
x∈D−

ci
e (fci , fx)∑

x∈D+
ci
e (fci , fx)

))
,

(13)

LC2T
CT =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
y∈D−

ci
e (fci , fy)∑

y∈D+
ci
e (fci , fy)

))
,

(14)

LT2C
CT =− 1

Nb

N∑
i=1

log

(
1/

(
1+

∑
c∈D−

yi
e (fyi , fc)∑

c∈D+
yi
e (fyi

, fc)

))
,

(15)
LIC = LI2C

IC + LC2I
IC , LCT = LC2T

CT + LT2C
CT , (16)

where LIC is used to calculate the loss between
fx and fc, while LIC is used to calculate the loss
between fc and fy. The operational principle of
these two loss functions aligns with LIT in Eq. (8).

3.3. DLB Regularization
Without the advantage of pre-training, the model’s
capacity to generalize from limited data can be com-
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promised. Therefore, the inclusion of an effective
regularization is vital to enhance the model’s per-
formance and ensure robust training. We improve
DLB (Shen et al., 2022), which reorders sampling
by restricting half of each training batch to overlap
with the previous iteration. In other words, the soft
target generated in the previous iteration performs
knowledge distillation on the current first half batch.

Concretely, let t denote the iteration step. St

represents the sampled data. And we combine
St−1 and St to form the data of the training batch:
Bt =

[St−1,St
]
. The soft target P t−1 is yielded by

the following equation:

P t−1=F t−1
y

[
Nb

2
:,
Nb

2
:

]
×
(
F t−1
x

[
Nb

2
:,
Nb

2
:

])T

,

(17)

F t−1
x = norm

(
mean

(
φx

(Bt−1
x

)))
, (18)

F t−1
y = norm

(
mean

(
φy

(Bt−1
y

)))
, (19)

where mean (·) and norm (·) denote the mean and
l2 normalization operations for the independent
samples in Bt−1, respectively. Similarly, P t can
be obtained as

P t = F t
y

[
:
Nb

2
, :

Nb

2

]
×
(
F t
x

[
:
Nb

2
, :

Nb

2

])T

.

(20)

Consequently, we introduce the regularization loss
as follows:

LDLB =
2

Nb
DKL

(
P τ,t−1||P τ,t

)
, (21)

where P τ,t−1 = softmax
(
P t−1/τ

)
, P τ,t =

softmax (P t/τ) and DKL (·||·) is the KL divergence.
Since St is computed within both adjacent

batches, it is equivalent to expanding the number of
negative samples in disguise. Compared to storing
a momentum model and a memory bank in previous
work (He et al., 2020), the memory consumed by
the DLB regularization is negligible. Conclusively,
the general loss is expressed as:

L = LIT + LCap + LIC + LCT + αLDLB , (22)

where α is the hyperparameter to control the
strength of the regularization term.

4. Experiments

4.1. Experimental Settings
Dataset. We use two datasets to train and eval-
uate our approach: (1) MSCOCO is composed
of 123,287 images, each with 5 captions. Follow-
ing the Karpathy split Karpathy and Fei-Fei (2015),

we use 5,000 images for testing, 5,000 images for
validation, and the rest for training. (2) Flickr30K
consists of approximately 30K images with 5 cap-
tions per image. We follow the paper Karpathy and
Fei-Fei (2015), where 1K images are used for test-
ing, 1K for validation and the remaining for training.
R@1 (resp. R@5 and R@10) represents the recall
of the top 1 (resp. 5 and 10) text-to-image results
on the test set.
Models. We adopted the visual coder (RN101) of
CLIP (Radford et al., 2021) and FasterRCNN (Ren
et al., 2015) as the backbones of the image en-
coder. For the text encoder, we use BERT (Devlin
et al., 2018), GPT2 (Radford et al., 2019) and the
text encoder of CLIP as backbones. In order not to
diminish the capability of the backbone of image
encoder, we fixed its parameters. Also to adapt
the text encoder to the language style of the new
dataset, we fine-tune it. If not specified, RN101
and BERT are used by default in the following ex-
periments.
Implementation Details. We set the number of
attention layers to 3 for the image encoder, text
encoder and text decoder. dmodel is set to 768.
The temperature factor τ in Eq. (3) is set to 0.07.
Hyperparameter α in Eq. (22) is set to 20. The
Multi-head attention is applied to our model, whose
number of heads is set to 12.

To alleviate overfitting during training, we set the
initial learning rate to 4e-5, and adopt the cosine
annealing (Loshchilov and Hutter, 2016) learning
rate scheduler. Adam optimizer is applied to the
training process. The deep learning library Pytorch
1.8.1 and relevant third-party libraries are used to
develop our model. The experiments are all im-
plemented in Python on a personal computer with
16GB memory and one NVIDIA QUADRO RTX
8000 GPU.

4.2. Quantitative Results and Analysis
Comparing state of the art result on Flickr30K
1K test set. We compare our model with state of
the art on Flickr30K 1K test set. As shown in Ta-
ble 1, our model outperforms text-to-image retrieval
metrics even when compared to models pre-trained
on larger multimodal datasets such as COT (Lu
et al., 2022) and ViLEM (Chen et al., 2023). Specif-
ically, compared with the most rescent DE model
ViLEM (Chen et al., 2023), our model gets higher re-
sults on R@1 (from 78.1 to 82.5), R@5 (from 94.6
to 97.1) and R@10 (from 97.0 to 98.6). It is worth
noting that our training set contains only Flickr30K
training data. Besides, RN101 (from CLIP (Rad-
ford et al., 2021)) for the image encoder and BERT
(Devlin et al., 2018) for the text encoder are publicly
available resources. Therefore, the training cost of
our method is very low and the training time is very
short.
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Methods Type R@1 R@5 R@10
VILBERT (3.1M) (Lu et al., 2019) CA 58.2 84.9 91.5
PixelBERT (5.6M) (Huang et al., 2020) CA 59.8 85.5 91.6
Unicoder-VL (3.8M) (Li et al., 2020a) CA 71.5 90.9 94.9
UNITER (9.6M) (Chen et al., 2020) CA 75.6 94.1 96.8
OSCAR (6.50M) (Li et al., 2020b) CA 75.9 93.3 96.6
Fast and Slow (5.5M) (Miech et al., 2021) DE+CA 72.1 91.5 95.2
Frozen in time (2.7M) (Bain et al., 2021) DE 61.0 87.5 92.7
LightningDOT (9.5M) (Sun et al., 2021) DE 69.9 91.1 95.2
COOKIE (5.9M) (Wen et al., 2021) DE 68.3 91.1 95.2
COTS (15.3M) (Lu et al., 2022) DE 76.5 93.9 96.6
ViLEM (14.1M) (Chen et al., 2023) DE 78.1 94.6 97.0
ours DE 82.5 97.1 98.6

Table 1: Comparison to state of the art on Flickr30K 1K test set for text-to-image retrieval.

Methods FT R@1 R@5 R@10
CLIP (Radford et al., 2021) w/o 37.8 62.4 72.2
CLIP (RN101) (Radford et al., 2021) w/o 30.7 55.5 66.0
ALIGN (Jia et al., 2021) w/o 45.6 69.8 78.6
COTS (Lu et al., 2022) w/o 43.8 71.6 81.3
ViLEM (Chen et al., 2023) w/o 47.7 75.2 84.5
LightningDOT (Sun et al., 2021) w/ 45.8 74.6 83.8
COOKIE (Wen et al., 2021) w/ 46.6 75.2 84.1
COTS (Lu et al., 2022) w/ 50.5 77.6 86.1
ViLEM (Chen et al., 2023) w/ 54.5 80.6 88.2
ours w/ 43.6 73.0 83.0

Table 2: Comparisons of the text-to-image retrieval results (without fine-tuning) on the MSCOCO full 5K
test set. FT: fine-tuning.

CLIP
(RN101) LIT LCap LIC LCT R@1 R@5 R@10

w/o FT 30.70 55.50 66.03

CLIPLike � 36.50 66.28 77.63
� � � � 37.38 67.22 78.14

Mean
pooling

� 39.28 69.48 78.00
� � � � 40.76 70.44 80.59

Table 3: Comparing the results of CLIP model un-
der different finetune approaches on MSCOCO 5k
test set. FT: fine-tuning; CLIPLike: Using cls to-
kens as proxy for images and text; Mean pooling:
Extracting features of images and text by mean
pooling

Comparing state of the art results on the
MSCOCO 5K test set. We report the compara-
tive results on MSCOCO 5K test set in Table 2. We
can observe that: (1) The results in the first row of
the table are from the paper (Lu et al., 2022), and
the results in the second row are obtained from our
own tests using RN101 as the backbone. It is obvi-

ous that the results of our test are lower, because
of the different backbones chosen. (2) Our results
are significantly worse than those of finetune on
MSCOCO for such methods as ViLEM(Chen et al.,
2023). This is because, first of all, these models
have been pre-trained on large datasets. Although
our approach makes use of CLIP’s visual coder,
its training set is expanded from the network, so
its text data is noisy. For visual language learning,
noisy image-text pairs are not optimal. As can be
seen from the data in Table 2 and Table 3, when
the text encoder of CLIP is replaced, the results
are instead better. The second reason is that, in
order not to increase the number of parameters
and the inference time of the network too much,
we do not employ the best performing visual coder
(much larger and slower than we use) in CLIP. (3)
The impact of DLB regularization on the metrics of
models trained on small datasets is much larger
than models trained on large datasets. Subsequent
ablation experiments (Table 4 and 5) can also verify
this conclusion. Large datasets such as MSCOCO
are less dependent on regularization due to their
rich data diversity. While small datasets such as
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Backbone LIT LCap LIC LCT LDLB R@1 R@5 R@10

RN101 + BERT

� 39.28 69.48 78.00
� � 38.43 68.89 79.60
� � � 39.36 69.02 80.19
� � � � 40.76 70.44 80.59
� � � � � 43.60 73.01 83.01

RN101 + GPT2

� 37.37 68.06 79.12
� � 37.79 68.36 37.37
� � � 38.25 68.63 79.68
� � � � 39.53 69.56 80.00
� � � � � 42.04 71.83 82.00

FasterRCNN + BERT

� 35.03 66.81 78.46
� � 34.60 66.09 78.13
� � � 35.16 66.74 78.28
� � � � 36.37 67.53 79.16
� � � � � 39.70 70.54 82.00

Table 4: Ablation study on different backbones on MSCOCO 5k test set. RN101: One of the CLIP image
encoder (ResNet 101).

Backbone LIT LCap LIC LCT LDLB R@1 R@5 R@10

RN101+BERT
(τ = 0.07)

� 57.80 85.46 92.76
� � 56.98 84.82 92.08
� � � 56.64 85.34 92.40
� � � � 58.82 86.14 93.22
� � 81.50 96.80 98.50
� � � � � 82.50 97.10 98.60

Table 5: Ablation study on Flickr30K 1K test set

Flickr30K may be prone to overfitting and training
instability due to poor data diversity, and thus have
a large reliance on regularization.

4.3. Ablation Study
Ablation results of different fine-tuning meth-
ods. We compare the impact of different fine-tuning
strategies on the performance with our model in
Table 3. We found that employing cls tokens as
representatives of image and text features on the
MSCOCO dataset is not as simple and efficient as
directly using mean pooling (R@1: from 36.5 to
39.28). Because the approach of using cls token
requires more training data, while mean pooling
is more suitable for some small datasets for fine-
tuning. It can also be found that, regardless of the
fine-tuning method, the Indirect Connection is able
to improve the text-to-image retrieval capacity of
the model (R@1 in CLIPLike: from 36.50 to 37.38,
R@1 in Mean pooling: from 39.28 to 40.76).
Ablation study of different backbones of the
image and text encoder. As shown in Table 4,
we perform ablation experiments with three differ-
ent combinations of backbones ("RN101+BERT",
"RN101+GPT2" and "FasterRCNN+BERT"). It can

be observed that: (1) our Indirect Connection and
modified DLB regularization are generalizable for
different backbones. In particular, the combina-
tion "RN101+BERT" improves R@1 from 39.28 to
43.60, R@5 from 69.48 to 73.01 and R@10 from
78.00 to 83.01. (2) BERT is not suitable for the im-
age captioning task. Focus on the "RN101+BERT"
and "FasterRCNN+BERT" combinations. The ad-
dition of Lcap instead makes the evaluations lower
(R@1: from 39.28 (resp. 35.03) to 38.43 (resp.
34.6)). Because the output features of BERT are
naturally bi-directional, which is not friendly for train-
ing image captioning task. Nevertheless, the Indi-
rect Connection makes up for the for the drop in
performance.

Ablation results on Flickr30K 1K test set. In
Table 5, we present the ablation results on the
Flickr30K 1K test set. The Indirect Connection
raises R@1 by 1.02 (from 57.80 to 58.82) without
DLB regularization and by 1 (from 81.50 to 82.50)
with DLB regularization. This proves that there is no
mutual exclusivity between the Indirect Connection
and the DLB regularization. Surprisingly, with DLB
regularization alone, the model can be improved
by 22.80 on the R@1 metric, 11.46 on the R@5
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metric and 5.84 on the R@10 metric. However it
does not show such a significant advantage on the
MSCOCO dataset. This demonstrates the clear
superiority of DLB for training and fine-tuning on
small datasets.

4.4. Hyperparameter Adjustments

Backbone α R@1 R@5 R@10

RN101
+BERT

0 40.76 70.44 80.59
1 40.54 70.65 80.68
10 43.04 72.74 82.38
20 43.60 73.01 83.01
30 43.29 72.64 82.94

Table 6: Comparing the results of different values
of α in Eq. (22) on MSCOCO 5K test set.

Experiments with the hyperparameters α in
Eq. (22). As shown in Table 6, we present the
experimental results regarding the hyperparame-
ter α taking different values. We can observe that
the best results are obtained when alpha is set to
20 (R@1 reached 43.60, R@5 reached 73.01 and
R@10 reached 83.01). When the α is too small, the
DLB regularization is not strong and does not fully
stabilize the training. When α is too large, exces-
sive regularization hinders the model from learning
knowledge.

Backbone τ LDLB R@1 R@5 R@10

RN101
+BERT

1 w/o 6.59 19.79 30.00
0.7 w/o 9.22 25.89 37.59
0.1 w/o 39.04 69.07 79.76
0.07 w/o 40.76 70.44 80.59
0.01 w/o 41.84 71.34 81.49
0.07 w 43.6 73.01 83.01
0.01 w 43.34 73.14 83.17

Table 7: Comparing the results of different values
of τ in Eq. (3) on MSCOCO 5K test set.

Experiments with the hyperparameters τ in
Eq. (3). In Table 7, we display the experimental
results with different values of the hyperparame-
ter τ and with/without DLB regularization. In the
absence of DLB, the best results are obtained
with a value of 0.01 for τ (R@1 reached 41.84,
R@5 reached 71.341 and R@10 reached 81.49).
And the model has particularly poor learning ability
when τ is greater than 0.1. In the presence of DLB,
τ does not demonstrate a trend toward better re-
sults for smaller values, but rather the highest sum
of results at 0.07. This is because the DLB reg-
ularization limits the learning speed of the model.
After reaching a certain value, even if τ continues to

decrease, it will not continue to improve the learn-
ing ability of the model and may even make the
model lose performance. When the τ is too small,
the losses are too large and the computer has an
upper limit on the number of values it can store,
making it impossible for the model to be trainable.

5. Conclusions

In this article, we aim to improve the precision of
text-to-image retrieval while maintaining its speed.
Specifically, we employed a text decoder to sim-
ulate the interaction function between modalities
like the CA framework. Taking the text decoder
as a node, we established the Indirect Connec-
tion to minimize the distance between the caption
features and image/text features, which helps to
match the corresponding images and text. Besides,
to maintain the stability and consistency in the train-
ing phase, we improved the DLB regularization to
make it suitable for the text-to-image retrieval do-
main. Extensive ablation studies were conducted
and the experimental results on MSCOCO and
Flickr30K datasets demonstrate the effectiveness
of the proposed methods. Especially, our model
achieved state-of-the-art results on the Flickr30K
benchmark dataset. The code to reproduce our
results is available at https://github.com/
moment-ggw/IDC/tree/main. In the near fu-
ture, we plan to design a more direct way that allows
distillation of knowledge from Indirect Connection
into Direct Connection.
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