
LREC-COLING 2024, pages 8627–8638
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

8627

ILCiteR:
Evidence-grounded Interpretable Local Citation Recommendation

Sayar Ghosh Roy, Jiawei Han

University of Illinois Urbana-Champaign

{sayar3, hanj}@illinois.edu

Abstract
Existing Machine Learning approaches for local citation recommendation directly map or translate a query, which is
typically a claim or an entity mention, to citation-worthy research papers. Within such a formulation, it is challenging
to pinpoint why one should cite a specific research paper for a particular query, leading to limited recommendation
interpretability. To alleviate this, we introduce the evidence-grounded local citation recommendation task, where
the target latent space comprises evidence spans for recommending specific papers. Using a distantly-supervised
evidence retrieval and multi-step re-ranking framework, our proposed system, ILCiteR, recommends papers to cite for
a query grounded on similar evidence spans extracted from the existing research literature. Unlike past formulations
that simply output recommendations, ILCiteR retrieves ranked lists of evidence span and recommended paper pairs.
Secondly, previously proposed neural models for citation recommendation require expensive training on massive
labeled data, ideally after every significant update to the pool of candidate papers. In contrast, ILCiteR relies solely
on distant supervision from a dynamic evidence database and pre-trained Transformer-based Language Models
without any model training. We contribute a novel dataset for the evidence-grounded local citation recommendation
task and demonstrate the efficacy of our proposed conditional neural rank-ensembling approach for re-ranking
evidence spans.

Keywords: Local Citation Recommendation, Evidence-Grounded, Distant Supervision

1. Introduction

A citation recommendation system retrieves a set
of articles that could be cited for a given query.
There are two broad types of citation recommen-
dation tasks, namely, (a) global citation recommen-
dation (Bethard and Jurafsky, 2010), and (b) local
citation recommendation (Ebesu and Fang, 2017).
A global citation recommendation model fetches
possible citations for a complete document. In con-
trast, the local citation recommendation task aims
to retrieve articles to cite conditioned on a much
smaller text span (usually a sentence or a phrase).
Fig. 1 provides a rough overview of the local citation
recommendation task. Formally, the local citation
recommendation task is defined as follows. Given a
query q and a set of N candidate research papers
P = {p1, p2, ..., pN}, produce a ranked ordering:
[pi1 , pi2 , ..., pik ] of the top-k (k < N ) most relevant
research papers that could be cited for the query q.
The query usually represents a claim or an entity
mention. For example, if q = ‘ELMo’, a valid citation
could be {‘title’: ‘Deep Contextualized Word
Representations’, ‘year’: 2018, ...}.
In this work, we introduce the evidence-grounded
local citation recommendation task shifting the fo-
cus to recommendation interpretability. Typical lo-
cal citation recommendation methods estimate a
direct mapping function from the space of queries
to that of research papers. Due to this formulation,

Candidate
Research
Papers

''The feature-based approach such as
ELMo [REF] uses task-specific

architectures that include pre-trained
representations as additional

features.''

Recommendation
Model

1. Deep Contextualized Word
Representations (Peters et al.,

NAACL 2018)

Figure 1: An overview of the local citation recom-
mendation task for scientific research papers.

there is no explicit reasoning mechanism to identify
why a particular paper should be cited for a given
query.
Consider the query q = ‘NMT models trained on
one domain tend to perform poorly when translat-
ing sentences in a significantly different domain’.
Suppose, we find the following span e in the existing
literature: ‘it has also been noted that NMT models
trained on corpora in a particular domain perform
poorly when applied in a significantly different do-
main [REF1, REF2]’ with [REF1] referring to the pa-
per p1: {‘title’: ‘Six challenges for neural
machine translation’, ‘year’: 2017, ...} and
[REF2] to p2: {‘title’: ‘A survey of domain
adaptation for neural machine translation’,
‘year’: 2018, ...}. We could then readily uti-
lize e as evidence to recommend papers p1 and p2
to be cited for q. Intuitively, for a query q, a span
of text from an existing research paper which is
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Figure 2: An overview of ILCiteR: our proposed system for evidence-grounded citation recommendation.

both similar to q and contains a citation for paper p,
could readily serve as precedence to cite paper p
for query q.
Based on this principle, our proposed system,
namely ILCiteR, retrieves evidence spans (e’s) from
the existing research literature that are (a) similar
to the query, and (b) cite at least one paper. It re-
ranks the retrieved evidence spans in decreasing
order of their similarity to the query. It further ranks
the individual papers associated with these ranked
evidence spans. At the end of the 2-step re-ranking
process, we obtain a ranked list of pairs of citation-
worthy papers and appropriate evidence spans.
Thus, every paper recommendation is grounded
in the evidence span, which explicitly adds inter-
pretability to each paper recommendation.
Our code and dataset are available here1. We
make the following key contributions in this work.

1. We introduce the task of evidence-grounded
local citation recommendation

2. We present a novel dataset of over 200,000
unique evidence spans with corresponding sets
of cited research paper and support pairs, cov-
ering three subtopics within Computer Science

3. We propose ILCiteR, a distantly supervised
approach for the evidence-grounded local ci-
tation recommendation task leveraging (I) an
evidence database and (II) pre-trained Trans-
former language models, requiring no explicit
model training

4. Our proposed conditional neural rank ensem-
bling approach for re-ranking evidence spans
significantly improves downstream paper rec-
ommendation performance over purely lexical
and semantic similarity based retrieval as well
as naive rank ensembling

1https://github.com/sayarghoshroy/ILCiteR

2. Related Work
He et al. (2010) defined the problem of local citation
recommendation, laying out the distinction between
global and local citation recommendation, and per-
formed evaluations on CiteSeerX2 using their pro-
totype system. Inspired by the IBM Model 1 (Brown
et al., 1993) for Machine Translation, Huang et al.
(2014) proposed a local citation recommendation
system considering words within the query cita-
tion context as the source language and the list of
candidate references as the target language. Re-
cently, various supervised Deep Learning models
have been proposed for local citation recommen-
dation (Ebesu and Fang, 2017; Yang et al., 2019;
Wang et al., 2023; Ali et al., 2021, 2022). Medić and
Snajder (2020) enhanced the query by bringing in
document level information (title and abstract of the
paper from which the query originated). Jeong et al.
(2019) jointly considered the query’s semantics and
a citation network comprising various paper nodes.
Gu et al. (2022) adopted a paper pre-fetching and
re-ranking approach utilizing a Transformer-based
Hierarchical-Attention text encoder and a SciBERT-
based (Beltagy et al., 2019) paper ranking module.
Other notable approaches include semantic model-
ing (Saier and Faerber, 2020) and recommendation
ensembling (Färber and Sampath, 2020). Saier
and Faerber (2020) distinguish between two broad
types of citations, namely citations for named enti-
ties and citations for claims. Färber and Sampath
(2020) ensembles various existing methods such
as LDA (Blei et al., 2001), Doc2Vec (Le and Mikolov,
2014), Paper2Vec (Ganguly and Pudi, 2017), and
HyperDoc2vec (Han et al., 2018) using a semi-
genetic recommender.

Our novel problem formulation for the evidence-
grounded recommendation task differs from all
prior works on local citation recommendation.

2https://citeseerx.ist.psu.edu/

https://github.com/sayarghoshroy/ILCiteR
https://citeseerx.ist.psu.edu/
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While past studies focused on building a neural
mapping or translation model from the latent space
of queries to that of paper nodes, our target latent
space is that of evidence spans within the existing
research literature.
As consequence of this updated formulation
where the primary focus is interpretability, existing
datasets (Färber and Jatowt, 2020; Medić and Sna-
jder, 2020; Jeong et al., 2019; Ebesu and Fang,
2017) for local citation recommendation are un-
suitable for our evidence-grounded recommenda-
tion task. We overcome this by building a compre-
hensive evidence database containing evidence
spans and corresponding sets of cited papers with
supports, and an evaluation set having queries ex-
tracted from recent papers never processed into
the evidence database.
Lastly, our proposed system, ILCiteR, only lever-
ages pre-trained Transformer-based language mod-
els with distant supervision from the dynamic evi-
dence database and our neural recommendation
pipeline does not require any form of training. Thus,
we do not need to re-train ILCiteR after every up-
date to the pool of candidate papers.

3. Problem Definition
We formally define an evidence database and our
task formulation as follows.
Evidence Database Specification An evidence
database (D) would contain individual records of
the form: (e, P ), where e is an evidence span and
P is a set of |P | pairs of the type (pj , sj), (j ∈
{1, 2, ..., |P |}), with pj being the metadata for the
jth paper in P with sj representing its support, i.e.,
the number of times the paper pj was cited for the
evidence span e. Each evidence span e appears
only once in the D.
The evidence database could also be regarded as
map from evidence spans (e’s) to sets of paper
metadata (p) and support (s) pairs. Table 1 shows
some examples of simplified records from an evi-
dence database.
Task Formulation Given an evidence database
D and a query q, construct a ranked list of n unique
pairs of the form (eqk, pqk), k ∈ {1, 2, ..., n}, where
pqk is a recommended paper for q with eqk being
the corresponding evidence span. The pairs are
ranked in decreasing order of their relevance to q.

4. Approach Overview
We briefly summarize our overall approach in-
cluding evidence database creation and evidence-
grounded paper recommendation.
To build the evidence database D (Sec. 5), we pre-
process existing research papers to fetch individual
sentences containing at least a single citation (a
numbered [REF] tag). From each sentence, we

extract the relevant portion of text, i.e., the evidence
span, for each individual citation (Sec. 5.2). Note
that there might be multiple citations for a single
evidence span. This comprehensive database D
acts as an external guide to provide evidence for
citing a specific paper for some novel query.
For processing a query q, ILCiteR first pre-fetches
a set of m candidate evidence spans (e’s) from D
based on lexical similarity (Sec. 6.1). It then utilizes
a two-step re-ranking procedure to construct the
ranked list of evidence span and recommended
citation pairs (Sec. 6.2). In the first step, it re-ranks
the fetched evidence spans using a conditional neu-
ral rank ensembling approach (Sec. 6.2.1). In the
second step, it ranks the collection of all candidate
papers corresponding to the m retrieved evidence
spans. The candidate papers are ranked consid-
ering the best observed rank of their associated
evidence spans (from step one), their composite
support, and recency (Sec. 6.2.2). An overview of
our evidence-grounded local citation recommenda-
tion pipeline is shown in Fig. 2.

5. Evidence Database
We build an evidence database D to store evidence
spans (e’s) and corresponding set of cited papers
with support counts (P ’s). Sec. 3 lays out the spec-
ification for D. For our experiments, we consider
three popular topics within Natural Language Pro-
cessing, namely, Named Entity Recognition (NER),
Summarization (SUMM), and Machine Translation
(MT), and build evidence databases for each.

5.1. Acquiring Research Papers
We process the available dump of the S2ORC
dataset3 (Lo et al., 2020) to collect research papers
tagged as ‘Computer Science’. To fetch papers on
a particular topic, we check whether the topic name
(or its abbreviation) appears within the paper ab-
stract. Although simple, this method promises a
high recall (as a work on the topic of say, Named
Entity Recognition, is highly likely to have the topic
name within the abstract itself). For building our
evidence database, we only consider papers for
which the full-text is publicly available in some form
and subsequently, its parsed full-text exists within
the S2ORC dump. We processed over 100 million
papers from S2ORC and collected over 20,000 CS
papers on the above topics (2260 papers on NER,
8445 on SUMM, and 9522 on MT) having a publicly
available full-text. From each collected paper p, we
obtain a list L of individual sentences containing at
least one citation. Thus, every sentence s ∈ L has
one or more REFs, each referring to a cited paper.
We further process every s to extract one or more
evidence spans.
By using paper parses from S2ORC (Lo et al., 2020),
the inherent noise from the PDF parsing process is

3https://github.com/allenai/s2orc

https://github.com/allenai/s2orc
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Evidence span (e) Primary cited paper metadata (p) support (s)

‘fasttext’ {‘title’: ‘Enriching word vectors with subword
information’, ‘year’: 2016, ‘authors’: ...}

34

‘Caffe’ {‘title’: ‘Caffe: Convolutional Architecture for Fast
Feature Embedding’, ‘year’: 2014, ‘authors’: ...}

8

‘Gadag’s method uses R-precision metric to evaluate
the result of the paraphrased sentence’

{‘title’: ‘N-gram Based Paraphrase Generator from Large
Text Document’, ‘year’: 2016, ‘authors’: ...}

1

‘demonstrated that AL outperformed random sampling
for a simulated clinical NER task’

{‘title’: ‘A study of active learning methods for named
entity recognition in clinical text’, ‘year’: 2015,
‘authors’: ...}

1

‘proposed to compress LSTM-based neural machine
translation models with pruning algorithms’

{‘title’: ‘N-gram Based Paraphrase Generator from Large
Text Document’, ‘year’: 2016, ‘authors’: ...}

1

Table 1: Examples of evidence span and primary cited paper with their corresponding support from the
evidence database D. The first evidence spans contain simple entity mentions while the last three capture
various types of claims.

topic #spans avg #chars avg #tokens #cited papers
NER 23803 117.46 20.27 19041
SUMM 79345 118.89 20.37 59659
MT 108692 123.29 21.33 78743

Table 2: Key statistics on the created evidence
databases for 3 popular CS subtopics

minimized since, wherever applicable, S2ORC con-
siders the available latex source leading to a more
reliable parse. Also, the [REF] to cited paper map-
pings for our acquired papers are of high quality
since S2ORC explicitly resolves bibliographic links
among in-corpus paper clusters.

5.2. Extracting Evidence Spans
From a sentence s containing at least one citation
(a numbered [REF]), we extract relevant spans for
each [REF], which serve as the evidence spans.
First, for every sentence s ∈ L, we group together
sets of co-occuring [REF]s into unit REFGROUPs. For
example, if s = “There are two broad types of
text summarization approaches, namely, extrac-
tive [REF1, REF2, REF3] and abstractive [REF4]”, we
would group REFs 1 through 3 into REFGROUP1 and
REF4 into REFGROUP2. Thus, REFGROUP1 would refer
to 3 cited papers. The processed sentence s′ would
be: “There are two broad types of text summariza-
tion approaches, namely, extractive REFGROUP1 and
abstractive REFGROUP2.” We then extract evidence
spans for each REFGROUP in s′.
We first isolate entity mentions in s′ by processing
its dependency parse structure. We generate a
dependency parse tree for s′ and begin a graph
traversal from every REFGROUP-type node. Tokens
visited during the traversal form the evidence span
for the particular source REFGROUP. The traversal
proceeds from a current node curr to a child node
child only if:

1. pos(curr) − pos(child) = 1, where pos(token) is
the index of token in the processed sentence s′

2. ∃ an edge in the produced dependency parse
tree from curr to child encoding one the follow-
ing relationships: ‘COMP’ or ‘AMOD’

Consider s′1 = “They used an IEX parser REFGROUP0
to encode the ...” and s′2 = “... past few years
has been focused on extractive summarization
REFGROUP2 ...”. With the above rules, we capture
‘IEX Parser’ as the evidence span with citation
REFGROUP0 and ‘extractive summarization’ as that
with citation REFGROUP2.
In addition to dependency-parse based extraction,
we extract evidence spans based on the sequence
of tokens in s′. We split s′ into contiguous spans
based on positions of REFGROUPs, and map each
split span to its antecedent REFGROUP. Lastly, we
use two additional conditions to include the entire
sentence as a possible evidence span:

1. The REFGROUP occurs at the sentence end. If s′3
= “Context embeddings were generated using
Sentence Transformers REFGROUP0”, REFGROUP0
could either be a citation for (a) ‘Sentence Trans-
formers’ or (b) the complete sentence

2. Only one REFGROUP exists within s′. If s′4 = “They
used ROUGE and METEOR metrics REFGROUP0
for evaluating their models”, it would be benefi-
cial to consider the full sentence as an evidence
span for REFGROUP0.

Note that we apply the above dependency parse
and token sequence based extraction rules in a
hierarchical fashion. As an example, for s′5 = “They
used BERT REFGROUP0, a popular Large Language
Model REFGROUP1, to generate text embeddings
REFGROUP2”, we have the following evidence spans
(e’s) and their corresponding sets of cited papers
(captured within the REFGROUPs):

‘BERT’ → REFGROUP0
‘Large Language Model’ → REFGROUP1
“to generate text embeddings” → REFGROUP2
Complete Sentence → REFGROUP2

5.3. Populating Evidence Database
We process every sentence (containing at least
one citation) from each collected paper to extract
evidence spans (ei’s), i ∈ {1, 2, ..., |D|} and corre-
sponding REFGROUPs. We then resolve REFGROUPs
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Query q1
‘In the first step, we only look at one Transformer block, and describe how to learn the position representation
driven by a dynamical system ...’

Retrieved Evidence e1 ‘In the simplest case we use word embeddings and add position encodings to them; we use ...’
Recommendation p1 {‘title’: ‘Attention is all you need’, ‘year’: 2017, ‘authors’: ...}

Query q2 ‘FastAlign’
Retrieved Evidence e1 ‘FastAlign’
Retrieved Evidence e2 ‘The alignment is induced with FastAlign’
Retrieved Evidence e3 ‘One such method is the FastAlign word-alignment model’
Recommendation p1 {‘title’: ‘A simple, fast, and effective reparameterization of ibm model 2’, ‘year’: 2013, ...}

Table 3: Demonstration of our evidence-grounded paper recommendation system – For a particular query,
ILCiteR presents a ranked ordering of retrieved evidence span and recommended citation pairs.

into their component REFs. We populate the ev-
idence database D using pairs of ei’s and sets
of pairs of cited paper (pji ) and support (sji ), j ∈
{1, 2, ..., |Pi|}. We fetch papers within Pi from the
resolved REFs’ metadata in S2ORC. The support
count sji contains the number of times we observed
pji being cited for the evidence span ei. Within D,
ei’s are unique. Therefore, D could be regarded
as a map from evidence spans (e’s) to sets to cited
paper and support pairs (P ’s). During construction,
we do not perform any additional semantic confla-
tion of ei’s; only occurrences of matching evidence
spans are continually conflated.

5.4. Dataset Statistics
We provide key statistics of our evidence databases
created for the 3 CS subtopics in table 2. Also, as
an illustration, we present some evidence spans
and their primary cited article with corresponding
support in table 1. Here, we only show the most
prominent cited article from the set P with its sup-
port. The first two evidence spans in table 1 are
simple entity mentions while the last three repre-
sent various types of claims. We make our evi-
dence databases (and evaluation splits) publicly
available4.

6. Evidence-grounded
Recommendation

In this section, we describe our overall methodol-
ogy for evidence-grounded paper recommendation.
Our task formulation can be found in Sec. 3. Given
a query q, we first pre-fetch a set of m candidate
evidence spans from D (Sec. 6.1). We then adopt
a conditional neural rank ensembling approach to
re-rank pre-fetched evidence spans based on their
similarity to q (Sec. 6.2.1). In that, we conditionally
ensemble a ranking of evidence spans based on
semantic similarity only for lengthier queries. Lastly,
we rank the collection of candidate papers based
on both the relevance of their underlying evidence
span and other paper-specific features (Sec. 6.2.2).
An overview of our recommendation methodology,
namely ILCiteR, is presented in Figure. 2.

4https://github.com/sayarghoshroy/ILCiteR
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Figure 3: Conditional neural rank ensembling –
re-rank candidate evidence text spans based on
lexical and semantic similarity to the query q.

6.1. Pre-fetching
To reduce the search space of evidence spans, we
first prefetch a set of ≤ 100 candidate evidence
spans from the evidence database D that have
the highest lexical similarity to the query q. These
candidate evidence spans are then re-ranked in
order of their similarity to the query q during the
conditional rank ensembling step (Sec. 6.2.1).
Given a query text span q, we score each evi-
dence span (e) in the evidence database D using
Okapi-BM25 (Robertson and Zaragoza, 2009) and
BM25Plus (Lv and Zhai, 2011). We formally write
out the Okapi-BM25 score and the BM25plus score
as follows.
Okapi-BM25 Given a query q with tokens
q1, q2, ..., ql, the Okapi-BM25 score for
a particular evidence span e can be written
as: BM25Okapi_score(e, q) =

∑l
i=1IDF(qi) ·

f(qi,e)·(k1+1)

f(qi,e)+k1·(1−b+b· |e|a )
. Here, f(qi, e) equals the num-

ber of times the token qi is found within the evidence
span e, |e| equals the number of tokens within the
evidence span e, and a is the average token length
of evidence spans within the evidence database D.
k1 and b are hyperparameters.
Also, IDF(qi) = ln( |D|−n(qi)+0.5

n(qi)+0.5 + 1), where n(qi)

https://github.com/sayarghoshroy/ILCiteR
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Topic Method MRR R@1 R@3 R@5 R@10

NER
BM25Okapi 0.34558 0.260 0.380 0.430 0.512
BM25Plus 0.34735 0.262 0.386 0.436 0.510

Conditional Ensembling 0.35155 0.266 0.390 0.438 0.514

SUMM
BM25Okapi 0.37052 0.282 0.410 0.458 0.530
BM25Plus 0.37324 0.284 0.410 0.460 0.540

Conditional Ensembling 0.37687 0.290 0.414 0.458 0.542

MT
BM25Okapi 0.43568 0.332 0.506 0.546 0.620
BM25Plus 0.44071 0.338 0.500 0.558 0.636

Conditional Ensembling 0.44456 0.342 0.516 0.556 0.628

Table 4: Performance of proposed conditional neural rank ensembling approach and lexical similarity
based baselines. In general, conditional ensembling significantly improves recommendation performance.

Topic Method MRR R@1 R@3 R@5 R@10

NER

SciBERT only 0.26246 0.188 0.268 0.342 0.428
Ensemble BM25Okapi + SciBERT 0.31272 0.228 0.334 0.404 0.506
Ensemble BM25Plus + SciBERT 0.30772 0.220 0.338 0.400 0.496

Ensemble BM25s + SciBERT 0.31502 0.222 0.344 0.418 0.510
Conditional Ensemble 0.35155 0.266 0.390 0.438 0.514

SUMM

SciBERT only 0.31555 0.234 0.346 0.392 0.496
Ensemble BM25Okapi + SciBERT 0.34795 0.266 0.374 0.414 0.520
Ensemble BM25Plus + SciBERT 0.35251 0.274 0.370 0.408 0.526

Ensemble BM25s + SciBERT 0.35822 0.270 0.392 0.438 0.530
Conditional Ensemble 0.37687 0.290 0.414 0.458 0.542

MT

SciBERT only 0.38589 0.288 0.430 0.488 0.560
Ensemble BM25Okapi + SciBERT 0.42961 0.342 0.458 0.514 0.614
Ensemble BM25Plus + SciBERT 0.44116 0.352 0.472 0.542 0.630

Ensemble BM25s + SciBERT 0.44305 0.356 0.474 0.540 0.636
Conditional Ensemble 0.44456 0.342 0.516 0.556 0.628

Table 5: Metrics achieved by re-ranking using SciBERT-based semantic similarity only, naive ensemble of
lexical and semantic similarity ranks, and our proposed conditional neural rank ensembling approach.

represents the number of evidence spans within D
that contain qi.
BM25plus BM25Plus has an additional
free parameter, δ, with a default value of
1.0. The BM25Plus score can be written
as: BM25Plus_score(e, q) =

∑l
i=1IDF(qi)·(

f(qi,e)·(k1+1)

f(qi,e)+k1·(1−b+b· |e|a )
+ δ

)
.

With standard BM25Okapi (Robertson and
Zaragoza, 2009), the term frequency normalization
by the length of the evidence span would not be
perfectly lower bounded. Therefore, Okapi BM25
would tend to score longer evidence spans unfairly
as having a relevancy score similar to that of
shorter evidence spans not containing the query
tokens. The BM25Plus algorithm (Lv and Zhai,
2011) resolves this drawback by introducing the
parameter δ.
We consider an evidence span from D as a can-
didate evidence span for query q if it was among
the top-50 highest scored evidence spans by ei-
ther BM25Okapi or BM25Plus. We found that pre-
fetching 50 evidence spans for each of BM25Okapi
and BM25Plus provided a reasonably high recall
and the effects of increasing this threshold beyond
50 were negligible. We thus create a set of m can-
didate evidence spans Eq = {eq1, e

q
2, ..., e

q
m} from

D.
Note that the pre-fetching step in our evidence-
grounded citation recommendation task differs from
traditional pre-fetching in past works on local cita-
tion recommendation (Gu et al., 2022; Ebesu and
Fang, 2017). Earlier works directly pre-fetched can-

didate research articles. In contrast, we fetch evi-
dence spans that are relevant to the query q.

6.2. Two-step Ranking
We first re-rank evidence spans obtained from the
pre-fetching step using our conditional neural rank
ensembling approach and subsequently rank the
collection of candidate papers.

6.2.1. Conditional Rank Ensembling
We formulate a conditional neural rank ensembling
method to re-rank pre-fetched candidate evidence
spans (evidence spans in Eq = {eq1, e

q
2, ..., e

q
m}).

Our design choice is based on the following ob-
servation. For smaller and simple queries, utiliz-
ing overlap of key lexical items is important since
shorter queries typically contain mentions of no-
table named entities. However, when the query is
long and complex, effectively capturing its seman-
tics becomes crucial. To this end, for short queries,
we use a rank ensemble of BM25Plus (Lv and Zhai,
2011) and BM25Okapi (Robertson and Zaragoza,
2009). When the query length exceeds a thresh-
old, we leverage a pre-trained SciBERT (Beltagy
et al., 2019) model. SciBERT is a Transformer-
based (Vaswani et al., 2017) Large Language
Model (similar to BERT (Devlin et al., 2019)) pre-
trained on large corpora of text from scientific re-
search papers. We define the semantic similarity
score for eqi (i ∈ {1, 2, ...,m}) as the cosine similar-
ity between the 768-dimensional [CLS] embeddings
of the query q and eqi .
Formally, if Eq and Ee are the SciBERT generated
embeddings of the initial [CLS] tokens of the input
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query q and a candidate evidence span e, the se-
mantic similarity score between q and e could be
written as: semantic_score(q, e) = Eq·Ee

|Eq|·|Ee| , where
Eq, Ee ∈ R768.
We ensemble the SciBERT-based semantic simi-
larity rank with the BM25Plus rank to produce the
ranked ordering for lengthier queries. We thus ob-
tain an evidence rank rqi for each eqi . At the end
of this step, we sort eqi ’s based on rqi ’s in ascend-
ing order and pass the rank-sorted order: [eqi , e

q
i ,

..., eqi ] to the final paper recommendation step. A
rough overview of our conditional rank ensembling
approach is shown in Fig. 3.

6.2.2. Recommending Papers with Evidence
From the previous evidence re-ranking step, we
obtain the ranked order of m candidate evidence
text spans for query q: Eq = [eq1, e

q
2, ..., e

q
m], with P q

i

being the set of pairs of research paper and sup-
port associated to eqi obtained from the evidence
database D (i ∈ {1, 2, ...,m}). Here, for any j < k,
eqj would be more similar to q than eqk.
For each eqi , we obtain the associated set of |P q

i |
cited papers with their supports from D:

P q
i = {(1pqi , 1s

q
i ), (2p

q
i , 2s

q
i ), ..., (|P q

i |p
q
i , |P q

i |s
q
i )}

With js
q
i being the support for paper jp

q
i in P q

i ,
j ∈ {1, 2, ..., |P q

i |}. We now rank the set of all pa-
pers among pairs in all P q

i ’s, accounting for: (1)
the highest observed rank of a particular paper’s
associated evidence span, (2) the paper’s compos-
ite support, and (3) its recency. We formally define
each of these components as follows:

1. The lowest observed rank of a paper p:
pr = mini∈{1,2,...,m} Ri(p),

where Ri(p) = i if ∃ s s.t. (p, s) ∈ P q
i , else

Ri(p) = ∞
2. The total support for a paper:

ps =
∑m

i=1 Si(p)

where Si(p) = s if ∃ s s.t. (p, s) ∈ P q
i , else

Si(p) = 0

3. The recency of a paper (recp), which in our case,
simply holds the year of publication

We rank papers in the following order of prece-
dence: (1) pr (lower is better), (2) ps (higher is
better), (3) recp (higher is better).
For every evidence span, we obtain a ranked order
of cited papers. We aggregate this into a ranked
ordering of evidence span and recommended cita-
tion pairs. Thus, each paper recommendation for a
query q is grounded in the accompanying evidence
span, which provides explicit interpretability. Our
evidence database could be dynamically up-scaled
to include evidence spans from newly published
papers.

7. Experiments and Analysis
We evaluate the performance of our evidence-
grounded recommendation system and present
some key insights.

7.1. Evaluation Set Creation
For a particular topic, we first create an evaluation
candidates set Ec containing candidate queries and
their ground truth cited papers extracted5 from the
200 most recent papers on that topic which were not
considered while creating D. This ensures that D
does not contain any mappings extracted from pa-
pers that contribute to the evaluation set, reproduc-
ing a real-world evaluation setting. We then create
our final evaluation set E by picking 500 datapoints
(d’s) from Ec satisfying the following condition:
For some d = (q, {p′1, p′2, ..., p′a}) ∈ E, there is
at least one pair of evidence span e and a set
P of pairs of cited paper and support, with P =
{(p1, s1), (p2, s2), ..., (pb, sb)}) such that (e, P ) ∈ D
and for some (i, j) with i ∈ {1, 2, ..., a} and j ∈
{1, 2, ..., b}, p′i = pj . Here, q is the query and
{p′1, p′2, ..., p′a} is the set of ground truth cited pa-
pers for q.
This ensures that for every datapoint d in E, at least
one ground truth paper exists within the set of all
candidate papers in D.

7.2. Interpretable Paper
Recommendation

We show two examples to demonstrate the work-
ing of our evidence-grounded local citation rec-
ommendation system (ILCiteR) in table 3. In ta-
ble 4, we compare the performance of our proposed
conditional neural rank ensembling approach for
re-ranking evidence spans with lexical similarity
based baselines. We use the Mean Reciprocal
Rank (MRR) and Recall@N measures (with N =
1, 3, 5, 10) as automatic evaluation metrics.
From table 3, for q1, we see that our system ex-
tracts a highly relevant evidence span (describing
the Transformer model with a focus on position
embeddings). q2 demonstrates that handling entity
mentions is relatively straightforward for our system
– several pieces of evidence spans from existing
papers are provided to suggest why p2 should be
cited for the entity mention ‘FastAlign’.
From table 4, we see that our conditional neural
rank ensembling approach improves recommenda-
tion performance over BM25Okapi and BM25Plus
on Recall@1, Recall@3, and MRR, for all topics.
Overall, we see performance improvements on all
metrics with conditional rank ensembling with the
exception of R@5 for SUMM, MT and R@10 for MT
(where lexical similarity using BM25Plus leads to
better recommendations). We performed t-tests

5Applying the procedure detailed in Sec. 5.2
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Query q
‘exploit monolingual data in two ways: through self-learning by forward-translating the monolingual source data to
create synthetic parallel data ...’

Method BM25 ensemble (BM25Okapi + BM25Plus)
Retrieved Evidence e1

‘By applying a self-training scheme, the pseudo parallel data were obtained by automatically translating the source-
side monolingual corpora ...’

Model Reco. p1 {‘title’: ‘Transductive learning for statistical machine translation’, ‘year’: 2007, ...}

Method Conditional Neural Rank Ensembling
Retrieved Evidence e1

‘... employing a self-learning algorithm to generate pseudo data, while the second is using two NMT models to predict
the translation and to reorder the source-side monolingual sentences’

Model Reco. p1 {‘title’: ‘Exploiting source-side monolingual data in neural machine translation’, ‘year’: 2016, ...}

Table 6: Conditionally utilizing semantic similarity scoring (using SciBERT) for lengthier contexts helps
retrieve accurate evidence text spans leading to better recommedations.

Query q1
‘The synchronous context-free grammars introduced by are transduction grammars whose productions have some
restrictions’

Retrieved Evidence e1
‘The model is based on inversion transduction grammars (ITGs), a variety of synchronous context free grammars
(SCFGs)’

Retrieved Evidence e2
‘Among the grammar formalisms successfully put into use in syntax based SMT are synchronous context-free
grammars (SCFG) and synchronous tree substitution grammars (STSG)’

Model Reco. p1
{‘title’: ‘Stochastic inversion transduction grammars and bilingual parsing of parallel corpora’,
‘year’: 1997, ...}

True Reco. pg {‘title’: ‘Hierarchical phrase-based translation’, ‘year’: 2007, ...}

Table 7: Instance of an error made by our model. Though the ground truth recommendation pg is more
appropriate, evidence spans retrieved by our model are relevant, p1 is a sensible recommendation for q1.

which showed that our proposed conditional en-
sembling approach improves scores significantly
over unsupervised BM25Okapi’s ranking with a p-
value of 0.086 for MRR and Recall@5 metrics.

7.3. Ablation Studies
We perform several ablations to showcase the ef-
ficacy of our proposed conditional neural rank en-
sembling approach. In table 5, we present metrics
for re-ranking using SciBERT-based semantic simi-
larity only, naive ensemble of lexical and semantic
similarity ranks, and our proposed conditional rank
ensembling. Firstly, we notice that re-ranking with
plain SciBERT massively drops recommendation
performance. This suggests that lexical similarity is
a useful signal for evidence span re-ranking. Sec-
ondly, we observe that our conditional ensembling
approach consistently produces performance im-
provements on all metrics across all topics (R@1
and R@5 for MT are the only exceptions where naive
rank ensembling using SciBERT and lexical similar-
ity achieves better numbers). We performed t-tests
which showed that our proposed conditional rank
ensembling approach significantly improved model
performance over re-ranking evidence spans purely
using SciBERT, and a naive ensemble of SciBERT
and BM25, with a p-value of 5%7. In general, un-
conditionally ensembling with semantic similarity
for queries of all lengths worsens performance com-
pared to using semantic similarity ranks only when
necessary, i.e., when the query is lengthy enough.
We observed that a length threshold ≈ 2.5 times
the average token length for evidence spans (≈ 50

6An exception being Recall@5 for topic: NER where
conditional ensembling led to slightly worse results.

7An exception being topic: MT where the naive en-
semble’s MRR was similar to our proposed approach.

tokens) was optimal for ensembling with semantic
similarity-based ranks.
In table 6, we present a concrete example of how
conditionally leveraging semantic similarity scor-
ing (using SciBERT) for lengthy contexts helps evi-
dence span retrieval. For q, we are able to extract
a moderately relevant evidence span using ensem-
bled lexical similarity. But although the suggested
evidence span shares multiple common entities
with the query, the downstream recommendation is
incorrect (recommends a paper on statistical MT).
Without the semantic similarity based signal, the
ground truth paper does not appear among the
top-3 recommendations. Here, conditional rank
ensembling captures the semantics of q and accu-
rately retrieves an evidence span pointing to the
ground truth paper on neural machine translation.

7.4. Error Analysis
Consider the query q1 from table 7. The top-2 evi-
dence spans retrieved by our model were e1 and
e2 with the recommended citation being p1, which
was incorrect. We observe that the retrieved evi-
dences are relevant to q1, and p1 could possibly be
cited for such a context. However, the ground truth
citation pG is more appropriate for q1, especially
since the underlying topic is MT. Deciding whether
to cite a paper on the method itself (in this case,
Stochastic ITGs) or a paper on how the method is
applied to a specific task (here, Machine Transla-
tion) would require additional input fields like the
exact topic or area of the research paper from which
the query originates. Handling such cases is tricky
for our system since we have query as the only
input field. Note that our model suggests pg as rec-
ommendation #9 with the following evidence span:
‘use some grammar at their core, for instance: (a)
synchronous context-free grammars (SCFG)’.
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Query q2
‘bidirectional long short-term memory with conditional random field model (BiLSTM-CRF) exhibited promising
results’

Retrieved Evidence e1
‘Among others, the model of bidirectional Long Short Term Memory with a conditional random field layer (BiLSTM-
CRF), exhibits promising results’

Retrieved Evidence e2
‘which is based on a bidirectional long short-term memory (LSTM) network with a conditional random field (CRF)
over the output layer’

Retrieved Evidence e3
‘Our framework is based on a bidirectional long short-term memory network with a conditional random fields
(BiLSTM-CRFs) for sequence tagging’

Model Reco. p1 {‘title’: ‘Neural architectures for named entity recognition’, ‘year’: 2016, ‘venue’: ‘NAACL’, ...}
Model Reco. p2 {‘title’: ‘Bidirectional LSTM-CRF models for sequence tagging’, ‘year’: 2015, ...}

True Reco. pg
{‘title’: ‘End-to-end sequence labeling via bi-directional lstm-cnns-crf’, ‘year’: 2016, ‘venue’:
‘ACL’, ‘authors’: ...}

Table 8: Instance of an error made by our model – though the ground truth recommendation pg does not
match the primary model recommendation p1, p1 is an appropriate recommendation for q1 as it was cited
for claims that are very similar to q2.

Query q3 ‘The use of tokens to condition the output of NMT started with the multilingual models’
Retrieved Evidence e ‘... the idea to multilingual NMT by concatenating parallel data of various language pairs and marking the source ...’
Model Reco. p {‘title’: ‘Google’s multilingual neural machine translation system: Enabling zero-shot translation’,

‘year’: 2017, ‘venue’: ‘TACL’, ...}

True Reco. pg
{‘title’: ‘Google’s multilingual neural machine translation system: Enabling zero-shot translation’,
‘year’: 2016, ...}

Table 9: Recommendation error due to multiple versions of the same paper.

We have a similar case in table 8. Here, our model
retrieves highly relevant evidence spans (e1, e2,
and e3) and recommends papers p1 and p2. We
observe that the evidence span e1 is very similar
to q2 and p1 is indeed a valid citation for q2. Here,
the ground truth citation points to a paper on the
more general use of LSTM-CNNs-CRFs (in end-
to-end sequence-labeling) while p1 is a paper on
the topic of interest, i.e., neural models for Named
Entity Recognition, from the same year. p2, which
is ranked second by the model, is very similar to pg.
And one could even argue that since p2 is about
LSTM-CRFs for sequence tagging, it is more ap-
propriate for q2 compared to pg which is a work
on using LSTM-CNNs-CRFs for general sequence
labeling. Thus, we observe that even when the
model recommendations for a query do not match
the ground truth, the retrieved evidence spans are
highly relevant and the model recommended pa-
pers are quite appropriate.
We also find another cause of error due to multiple
versions of the same paper (Table 9). The model
recommendation p was deemed as a failure (as we
do not conflate paper nodes from different years)
since the ground truth citation was a pre-print ver-
sion of the same paper from an earlier year.

7.5. Implementation Details
We use publicly available implementations of
BM258, with default values for all hyperparame-
ters. For generating dependency parses, we uti-
lized spaCy’s9 default dependency parser based
on Honnibal and Johnson (2015) and Nivre and
Nilsson (2005). We used HuggingFace’s10 imple-
mentation of SciBERT-cased. Our codebase for ex-

8https://github.com/dorianbrown/rank_bm25
9https://spacy.io/

10https://huggingface.co/

perimentation and analysis has been shared11.

8. Conclusion
In this work, we introduced the task of evidence-
grounded local citation recommendation, with an
explicit focus on recommendation interpretability.
We contribute a novel dataset with over 200,000
evidence spans and sets of cited paper and sup-
port pairs, covering three subtopics within Com-
puter Science. Our proposed recommendation
system, ILCiteR, solely uses distant supervision
from a dynamic evidence database and pre-trained
Transformer-based language models, requiring no
explicit training. Our findings demonstrate how
a conditional neural rank ensembling approach,
which utilizes semantic similarity-based ranks for
lengthier queries, significantly improves down-
stream paper recommendation performance over
purely lexical and semantic similarity based re-
trieval and naive rank ensembling techniques. In fu-
ture, we plan to study the effects of jointly consider-
ing distant supervision from an evidence database
and a secondary database of claims, findings, con-
tributions, and named entities extracted from scien-
tific papers for the evidence-grounded local citation
recommendation task.
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