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Abstract
Addressing the challenges related to data sparsity, cold-start problems, and diversity in recommendation systems is
both crucial and demanding. Many current solutions leverage knowledge graphs to tackle these issues by combining
both item-based and user-item collaborative signals. A common trend in these approaches focuses on improving
ranking performance at the cost of escalating model complexity, reducing diversity, and complicating the task. It is
essential to provide recommendations that are both personalized and diverse, rather than solely relying on achieving
high rank-based performance, such as Click-through rate, Recall, etc. In this paper, we propose a hybrid multi-task
learning approach, training on user-item and item-item interactions. We apply item-based contrastive learning on
descriptive text, sampling positive and negative pairs based on item metadata. Our approach allows the model to
better understand the relationships between entities within the knowledge graph by utilizing semantic information
from text. It leads to more accurate, relevant, and diverse user recommendations and a benefit that extends even
to cold-start users who have few interactions with items. We perform extensive experiments on two widely used
datasets to validate the effectiveness of our approach. Our findings demonstrate that jointly training user-item
interactions and item-based signals using synopsis text is highly effective. Furthermore, our results provide evidence
that item-based contrastive learning enhances the quality of entity embeddings, as indicated by metrics such as
uniformity and alignment.

Keywords: knowledge graph neural network, semantic contrastive learning, multi-task learning, cold-start
problems, diversity recommendation, content recommendation

1. Introduction

The prevalence of content platform services has
made a vast collection of media content accessible
to consumers. As a result, personalized recommen-
dation systems have improved the user experience
by understanding their preference and identifying
relevant content. Furthermore, accurate and di-
verse recommendations have emerged as essen-
tial elements within recommendation systems.

Collaborative Filtering (CF) (Miyahara and Paz-
zani, 2000; Linden et al., 2003; Hofmann, 2004;
Su and Khoshgoftaar, 2006; Jeunen et al., 2022)
has been a popular approach in recommendation
systems where the system predicts the preferences
of a user based on the preferences of similar users.
CF-based methods capture user-item interactions
by specific operations such as inner products (Sar-
war et al., 2001; Wang et al., 2017) or neural net-
works (He et al., 2017). In the context of this study,
we refer to the term ‘item’ as ‘content’ moving for-
ward. However, there are several problems associ-
ated with a CF-based model. It requires a signifi-
cant amount of user-content data in order to prevent
data sparsity problems (Srebro et al., 2004; Rennie

† These authors are corresponding authors.

Figure 1: Performance Decline in Cold-Start Sce-
nario. In order to establish a baseline for comparing
our model, we take into account the KGCN (Wang
et al., 2019b), a pivotal component of KG recom-
mendation models. ‘Cold-start users’ refers to the
subgroup of test users positioned in the bottom 1%,
signifying those with the most limited user-content
interactions.

and Srebro, 2005; Takács et al., 2008). Moreover,
it has a cold-start problem (Yu et al., 2004; Ado-
mavicius and Tuzhilin, 2005) which means that it
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struggles to make recommendations for new users
with no existing data. To tackle these issues, re-
searchers have turned to exploring the addition of
user and content features (Cheng et al., 2016) and
linking them together (Yu et al., 2014; Zhang et al.,
2016; Zhao et al., 2017; Huang et al., 2018; Wang
et al., 2018a,b).

Recent research has focused on constructing a
Knowledge Graph (KG) that links contents to their
attributes and incorporating these graphs into col-
laborative interactions. Wang et al. (2019b) intro-
duced the Knowledge Graph Convolutional Net-
work (KGCN) as an extension to non-spectral GCN
techniques, specifically for recommender systems.
Several variant models (Wang et al., 2019a,c, 2020,
2021) utilize new machine learning techniques,
such as adding latent variables or network layers.
These studies have been proposed with a specific
focus on enhancing the performance of rank-based
recommendations. While performance improve-
ment is undoubtedly important, overemphasizing
ranking-based measures as an evaluation metric
can lead to overlooking qualitative factors such as
diversity and critical situations such as cold-start.
Figure 1 visually demonstrates the decline in per-
formance in the cold-start scenario. Notably, in the
domains of both movie and book recommendations,
a more significant reduction in the Normalized Dis-
counted Cumulative Gain (NDCG)@100 is evident
in the baseline model when compared to our model.

In this paper, we introduce a novel recommen-
dation approach that leverages semantic text in-
formation using KGCN to enhance performance
from multiple perspectives. Our method uses text
embeddings obtained from Pre-trained Language
Models (PLMs) to understand the relationships be-
tween entities in KG. PLMs (Kenton and Toutanova,
2019; Liu et al., 2019) have addressed numerous
limitations of simple one-hot vector encoding. Ad-
ditionally, the utilization of contrastive learning with
PLMs has exhibited superior performance in sen-
tence representation (Radford et al., 2019; Raffel
et al., 2019; Oh et al., 2022). However, this ap-
proach has not been explored in enhancing the
training of KG-based recommendations. Our study
investigates the effectiveness of semantic embed-
dings which are learned through content-based con-
trastive learning. We apply the proposed method
to the MovieLens-20M(Harper and Konstan, 2015)
and Book-Crossing1 datasets. The evaluation of
our proposed approach is conducted along three
dimensions: (1) Recommendation performance us-
ing Click-Through Rate (CTR) such as Area Under
the Curve (AUC) and F1-score, along with rank-
ing metrics including Recall and NDCG in both
standard and cold-start scenarios, (2) Assessing

1https://grouplens.org/datasets/
book-crossing/

the level of personalization and diversity of rec-
ommended contents by Inter- and Intra- list diver-
sity metrics, and (3) Measuring the quality of em-
beddings through metrics that assess uniformity
and alignment. The experimental evaluation shows
that our proposed method outperforms baseline
approaches by taking into account users’ person-
alized interests and diversity in the recommenda-
tion process, with an even more substantial perfor-
mance boost for cold-start users. In addition, the
results from the experiments confirm that content-
based contrastive learning effectively regularizes
content embeddings to achieve better uniformity
and alignment of positive pairs in both movie and
book domains. Our contributions in this paper are
as follows:

• We propose a multi-task learning approach
that utilizes user-content and content-content
interactions to enrich content recommenda-
tions from various perspectives.

• To the best of our knowledge, we are the first to
introduce content-based contrastive learning
with semantic text for better KG entity relation-
ships, yielding accurate, diverse user recom-
mendations.

• Our empirical assessment affirms the effective-
ness of our approach in improving recommen-
dation performance, personalization, diversity,
and the quality of content embeddings, extend-
ing its utility to demanding scenarios such as
those involving cold-start users.

• We provide insights into the importance of com-
prehensive evaluation and analysis in obtain-
ing valuable recommendations, emphasizing
the need to consider multiple factors beyond
rank-based performance metrics.

2. Related Works

2.1. Pre-trained Language Model
Pre-trained Language Models (PLMs) have shown
outstanding performance on many Natural Lan-
guage Processing (NLP) tasks related to under-
standing the semantic meaning of sentences and
context. Fine-tuned Transformer-based (Vaswani
et al., 2017) language models such as Bidirec-
tional Encoder Representations from Transformers
(BERT) (Kenton and Toutanova, 2019) or Universal
sentence encoder (Cer et al., 2018) models have
been successfully applied in various domains in-
cluding text classification (Sun et al., 2019), named
entity recognition (Kim et al., 2022), question an-
swering (Yang et al., 2019), and semantic search
(Deshmukh and Sethi, 2020; Esteva et al., 2020;

https://grouplens.org/datasets/book-crossing/
https://grouplens.org/datasets/book-crossing/
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(a) Multi-task model (b) Content-based contrastive loss (CL)

Figure 2: Overview of the Proposed Model. (a) Illustration of a knowledge graph structure and a model
with multiple objectives. The loss from user-content interactions is labeled Lbase, and the content-based
contrastive loss is CL. (b) Detailed process of our proposed objective function CL. To generate initial
content node embeddings, a pre-trained language model encodes the synopsis of each content. The
positive and negative pairs are selected for each content based on their genre or title metadata (as outlined
in Section 3.1).

Figure 3: Sampling Positive/Negative Pairs Using Cross-encoder for CL

Rome et al., 2022). These models are capable
of capturing more intricate relationships between
words and sentences, including contextual informa-
tion.

PLMs in Recommendation Fine-tuned PLMs
have gained significant attention in recommenda-
tion tasks. Penha and Hauff (2020) worked on the
usage of BERT in conversational recommender
systems. They highlighted the effectiveness of pre-
trained transformer models, particularly BERT, in
language modeling and their capacity to implicitly
retain factual information for recommendation pur-
poses. Spillo et al. (2023) employed a fine-tuned
BERT to encode content-based representations
and subsequently integrated them into graph convo-
lutional networks to capture collaborative and struc-
tured item data. The pre-trained BERT achieved
outstanding breakthroughs in the ranking task as
well which is critical in the recommendation task.
The BECR model, introduced by Yang et al. (2021),
presented a re-ranking scheme that combines deep
contextual token interactions with traditional lexi-
cal term-matching features. Wu et al. (2021) pro-
posed an end-to-end multi-task learning framework
for product ranking with fine-tuned domain-specific
BERT to address the issue of vocabulary mismatch
between queries and products. Rauf et al. (2024) in-
troduced BCE4ZSR which utilizes fine-tuned trans-
former models to distill knowledge from a larger
encoder to enhance news recommendations.

2.2. Contrastive Learning

The objective of Contrastive Learning (CL) is to
obtain high-quality embeddings by bringing pairs
of samples with similar meanings together in close
proximity while pushing apart dissimilar ones (Had-
sell et al., 2006). A crucial topic in contrastive
learning revolves around the construction of pairs
of similar (positive) data points (xi, x

+

i ). Obtain-
ing positive pairs is more difficult than dissimilar
(negative) pairs because negative examples can
be drawn randomly from each training batch. In
NLP, researchers devise schemes to augment data
sets to produce more positive samples, such as us-
ing back-translation, paraphrasing, or generating
new sentences using generative models. Similar
objectives of contrastive learning have been exam-
ined in various contexts (Henderson et al., 2017;
Gillick et al., 2019; Karpukhin et al., 2020; Gao
et al., 2021). In Equation (1), zi represents the
embeddings of sentence xi, z+i denotes positive
samples that are similar to zi. Additionally, t refers
to a temperature hyperparameter suggested by Wu
et al. (2018). The loss of N in-batch negative sam-
ples (Chen et al., 2017) can be expressed using
the following equation.

−log e(sim(zi,z
+

i )/t)

∑N
j=1 e

(sim(zi,z
+

j )/t)
(1)
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CL in Recommendation Park and Lee (2022)
proposed contrastive learning for a music recom-
mendation system based on Siamese neural net-
works (Koch et al., 2015) as follows:

L = yD2 + (1 − y)max(margin −D,0)2 (2)

where y represents the label assigned to an item
pair and D stands for the distance between the
items. When presented with a pair of items labeled
as y = 1, the distance is reduced during training as
L =D2. Conversely, for a pair of items labeled as
y = 0, the distance gets close to the margin value
according to max(margin−D, 0)2. Ma et al. (2023)
applied K-means clustering algorithms to produce
prototypes for user and item clusters, aiming to min-
imize the disparity between these prototypes using
a contrastive objective detailed in Equation (1). The
work by Li et al. (2023) introduces graph contrastive
learnings across multiple and separate domains to
explore both domain-shared and domain-specific
preference features for target users to improve rec-
ommendation performance, especially in sparse
interaction scenarios.

3. Proposed Methods

Our main goal is to explore how content-based
contrastive learning using semantic text affects rec-
ommendation performance when it is trained jointly
with conventional collaborative loss. In Figure 2 (a),
our proposed model is depicted, where we denote
the conventional collaborative loss as Lbase and
our proposed loss as CL. Further details about the
model will be discussed in this section.

3.1. Sampling Strategy
Figure 3 illustrates the positive/negative sampling
process to train via CL. (1) We transform the
metadata of the genre or the genre and title into
sentences through a simple template. When we
use the genre information solely, we create a
sentence by utilizing the template: “The genre(s)
of the (film|book) is/are [genre_list]." Likewise,
when using the genre and title information to-
gether, we follow the template: “A (movie|book)
title is (movie_title|book_title) (released_year). The
genre(s) of the (film|book) is/are [genre_list]." (2)
The transformed sentences are input to E and as-
signed embedding values. (3) The embeddings
are passed to the cross-encoder, Eranker, which
takes in a query and the embeddings for process-
ing. The query is one of the embeddings (Anchor
in Figure 3) and the cross-encoder ranks all the
other embeddings according to how similar they
are to the query. This process is performed for
each embedding. The positive and negative sets
are determined by selecting the top-n and bottom
n samples, respectively.

3.2. Content-based Contrastive Loss
To optimize the recommendation model, we adopt
conventional user-content interaction loss (Wang
et al., 2019b). The assumption is that interactions
between the user and the content should be given
high scores for positive preferences and low scores
for negative preferences. The loss function is as
follows:

Lbase = ∑
u∈U
{ ∑

c∶yuc=1
F(yuc, ˆyuc)

−
Su

∑
i=1

Eci∼p(ci)F(yuc, ˆyuc)}
(3)

where ˆyuc is predicted probability, F is cross-
entropy loss, and p is a user’s negative preference
sampling distribution. Su is the number of negative
samples for user u, which is equal to ∣{c ∶ yuc = 1}∣.

Figure 2 (b) illustrates a detailed process of our
proposed content-based contrastive loss (CL). The
loss function is represented by Equation (4). C is a
collection of sentences transformed from metadata
of the genre or the genre and title. The positive
and negative sets from Section 3.1 are denoted by
P ⊂ C and N ⊂ C, respectively. P contains sam-
ples that are similar to the content while N contains
dissimilar samples. hc denotes the representation
of the transformed sentences c ∈ C. Let h+c and
h−c indicate positive and negative sample of hc. In-
ner product, sim(hc, h

+

c ) = hc ⋅ h+c , is used for our
similarity function.

CL = ∑
c∈C
{ ∑

c+∈P
F(ycc+ , sim(hc, h

+
c ))

− ∑
c−∈N

F(ycc− , sim(hc, h
−
c ))}

(4)

L = γLbase + (1 − γ)CL + λ∣∣Θ∣∣22 (5)

Finally, we obtain the loss function to train Equa-
tion (3) and (4) jointly in Equation (5), where γ
is a balancing hyper-parameter of losses. Θ =
{U,V,R,Wi, bi,∀i ∈ {0, 1, α}} is the model parame-
ter set, U , V , and R are the embedding tables for all
users, nodes (contents and attribute entities), and
relations, respectively. Wi and bi denote weights of
ith-layer and α layer represents an additional layer
specifically dedicated to content embeddings. The
last term is an L2-regularizer parameterized by λ
on Θ.

3.3. Training
Our approach follows the training procedure of the
Knowledge Graph Convolutional Network (KGCN)
(Wang et al., 2019b). KGCN follows the identical
node feature update mechanism as spatial GCN.
The difference lies in the aggregation of importance
scores for each relation across all users. In the
equation H(l+1) = σ(H(l)W (l) + b(l)), the variables
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Figure 4: Inference Using the Trained Contents and
Users Embedding. The process dot signifies the in-
ner product operation, while σ denotes the sigmoid
transformation. Each user embedding, indexed by
n, undergoes an inner product operation with each
content embedding, indexed by m, followed by ap-
plying the sigmoid transformation. This procedure
enables the model to rank all content for each user.

H(l), W (l), and b(l) represent the node features,
trainable weights, and bias at layer l, respectively.
In a standard GCN, H(l) is derived through the ag-
gregation, either by summation or concatenation
(Hamilton et al., 2017) of a node’s inherent fea-
tures with those of its neighboring nodes. In con-
trast, KGCN introduces an additional step where
an importance score is applied to each neighbor
node’s features before aggregation. KCGN is best
optimized through the use of the summation ag-
gregator while we adopt the concatenation aggre-
gator since initializing node features for contents
and attribute entities differs in our method. Our
content embeddings are derived from the synopsis
representation using the encoder E, while other
entity embeddings are initialized randomly. Con-
catenation ensures that both features are consid-
ered when updating the weights (Poursafaei et al.,
2022). We represent the initial embedding of con-
tents as hc =MLP (E(xc)), where xc corresponds
to the synopsis text of each content, E refers to
an encoder and MLP is a multilayer perception.
As the output representation of E varies in dimen-
sions depending on the encoders used, we utilize
an additional MLP layer to align the embedding
dimensions with those of other node embeddings.
Note that the MLP layer only processes content
embedding and not other attribute entity embed-
dings.

3.4. Inference
Figure 4 illustrates the sequence of steps in the
inference process. After training the graph using
KGCN as detailed in Section 3.3, embeddings are
generated for users, content, attribute entities, and
relations. Notably, attribute entity embeddings and
relation embeddings are not utilized in this work.
We compute the inner product between each user
and all content embeddings, followed by applying
a sigmoid transformation. Consequently, we can
rank all content items based on individual users,
facilitating personalized content recommendations.

4. Experiments

In this section, we demonstrate the efficacy of the
proposed method under two different scenarios,
movie and book recommendations.

4.1. Experimental Setup

Table 1: Basic statistics and hyper-parameter set-
tings for the two datasets (u-c: # of user-content in-
teractions, c-c: # of content-content interactions by
leveraging genre metadata or both genre and title
metadata respectively, K: neighbor sampling size,
η: learning rate, d: dimension of embeddings, λ:
L2-regularizer, γ: balancing parameters for losses
weight).

MovieLens-20M Book-Crossing
# users 138,159 17,860

# contents 16,954 14,967
u-c 13,501,622 139,746
c-c 336,176 / 305,172 221,617 / 223,140

# entities 102,569 77,903
# relations 32 25

# KG triples 499,474 151,500
K 4 4

# layers 2 1
optimizer Adam Adam

η 2e-2 2e-4
d 32 64
λ 1e-7 2e-5
γ 8e-1 8e-1

batch size 65,536 (ours: 30,000) 256
Text source TMDB3 Goodreads4, Google Books5

Dataset We use the MovieLens-20M (Harper and
Konstan, 2015) and Book-Crossing2 datasets. The
MovieLens-20M dataset consists of approximately
20 million explicit ratings (ranging from 1 to 5) con-
tributed by users on the MovieLens website. Book-
Crossing dataset contains 1 million ratings (rang-
ing from 1 to 10). We follow Wang et al. (2019b)
when constructing a Knowledge Graph (KG), utiliz-
ing Satori by Microsoft. The basic statistics of the
two datasets and KGs are presented in Table 1.

2https://grouplens.org/datasets/
book-crossing/

https://grouplens.org/datasets/book-crossing/
https://grouplens.org/datasets/book-crossing/
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Table 2: Performance of the AUC and F1-score were evaluated and compared against the baseline
model. The highest performance is denoted in bold and the second best results are underlined. Statistical
significance was assessed using t-tests; significance levels are denoted by **p < 0.001, *p < 0.05.

Without Semantic Text With Semantic Text
Dataset Metric Lbase (Baseline) +CLgenre +CLtitle+genre Lbase +CLgenre +CLtitle+genre

Movie

AUC 0.9761 0.9773** 0.9775** 0.9763 0.9777** 0.9780**
p-value - 0.0007 1.96e-04 0.7290 0.0004 5.33e-05

F1 0.9290 0.9311* 0.9319** 0.9284 0.9320** 0.9324**
p-value - 0.0029 1.21e-04 0.7330 0.0002 6.96e-05

Book

AUC 0.6923 0.6911 0.6946 0.7019** 0.7010** 0.7009**
p-value - 0.6217 0.1411 2.39e-05 0.0008 0.0004

F1 0.6370 0.6336 0.6362 0.6362 0.6360 0.6354
p-value - 0.7930 0.1100 0.6011 0.6992 0.5824

We obtain 16,954 movie synopses from the
TMDB database3. This process entails using the
IDs mapped from MovieLens to the correspond-
ing IDs in TMDB which is given by the Movie-
Lens dataset. We attempt to gather synopses for
16,954 contents in our knowledge graph, but 169
of them are missing because they are not available
in TMDB. Given the absence of metadata in the
Book-Crossing dataset, we leverage ISBN data as-
sociated with each book entry to retrieve metadata
from Goodreads4(Wan and McAuley, 2018; Wan
et al., 2019) and Google Books5. Out of a total
of 14,967 books, this methodology resulted in the
successful acquisition of 11,156 genre information
and 10,294 synopses.

Encoders We utilize two pre-trained language
models (Encoder E in Figure 2 and Figure 3) to
represent text and one cross-encoder model (En-
coder Eranker in Figure 3) (Reimers and Gurevych,
2019) for ranking the contents. We use BERTbase

(Kenton and Toutanova, 2019) for E in Figure
2 to embed the initial input of each node’s syn-
opsis. E in Figure 3 uses multi-qa-mpnet-base-
dot-v16 to encode verbalized metadata. Eranker

uses ms-marco-MiniLM-L-12-v27 to rank the meta-
data embeddings according to similarity. We opt
for the multi-qa-mpnet-base-dot-v1 model due to
its proven superiority in embedding for semantic
search. This model is able to provide optimized
metadata embeddings when inputting to the cross-
encoder. The cross-encoder model, ms-marco-
MiniLM-L-12-v2 is fine-tuned on MS MARCO Pas-
sage Retrieval dataset (Bajaj et al., 2016). This par-
ticular model is highly robust in ranking text based

3https://www.themoviedb.org
4https://www.goodreads.com
5https://books.google.com
6https://www.sbert.net/docs/

pretrained_models.html
7https://www.sbert.net/docs/

pretrained_cross-encoders.html

on their similarity, as it has been fine-tuned using a
dataset that comprises real user queries and their
relevant text from the Bing search engine.

Hyper-parameters The hyper-parameters be-
sides batch size remain the same as those used in
the original learning process. Unlike the baseline
model, which utilizes a batch size of 65,536, we
take a batch size of 30,000 for the movie domain.
This adjustment is necessary to optimize training
for both loss functions due to the significantly lower
number of content-content interactions compared
to user-content.

4.2. Evaluation Metrics

Our evaluation is conducted through Fidelity Jurity8,
an authoritative research library that provides rec-
ommender system evaluations and encompasses
three different experimental scenarios. First, we
evaluate Click-Through Rate (CTR) prediction by
measuring interactions in the test set using the Area
Under the Curve (AUC) and F1-score metrics. Sec-
ond, we use the trained model to select top-K con-
tents with the highest predicted probability for each
user in the test set in order to make top-K recom-
mendations. The evaluation is performed through
Recall@K and Normalized Discounted Cumula-
tive Gain (NDCG)@K. Furthermore, we assess
NDCG performance under a cold-start scenario
to analyze how it is impacted by varying levels of
user activity. Third, we assess the diversity among
users’ recommended content lists using the Inter-
list diversity@K metric:

∑i,j,{ui,uj}∈I(cosine_distance(Rui ,Ruj))
∣I ∣

(6)

where U denote the set of N unique users, ui, uj ∈
U denote the ith and jth user in the user set,
i, j ∈ {1, ...,N}. Rui is the binary indicator vector
representing provided recommendations for ui. I

8https://github.com/fidelity/jurity

https://www.themoviedb.org
https://www.goodreads.com
https://books.google.com
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_cross-encoders.html
https://www.sbert.net/docs/pretrained_cross-encoders.html
https://github.com/fidelity/jurity
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Table 3: Performance of Recall@K and NDCG@K of the proposed model compared to the baseline
model. The highest performance is denoted in bold and the second best results are underlined.

Recall@K NDCG@K
Model 5 10 20 50 100 5 10 20 50 100

Without Semantic Text

M
ovie

Lbase (Baseline) 0.0734 0.1228 0.1967 0.3214 0.4581 0.0677 0.0970 0.1312 0.1811 0.2216
+CLgenre 0.0659 0.1199 0.1999 0.3337 0.4679 0.0681 0.0972 0.1327 0.1824 0.2244
+CLtitle+genre 0.0683 0.1237 0.1976 0.3400 0.4738 0.0706 0.1006 0.1343 0.1866 0.2286

Book

Lbase (Baseline) 0.0619 0.0741 0.0926 0.1217 0.1585 0.0586 0.0641 0.0690 0.076 0.0825
+CLgenre 0.0636 0.0778 0.0973 0.1317 0.1677 0.0630 0.0688 0.0732 0.0811 0.0873
+CLtitle+genre 0.0774 0.0927 0.1115 0.1433 0.1784 0.0596 0.0643 0.0703 0.0793 0.0846

With Semantic Text

M
ovie

Lbase (Baseline) 0.0754 0.1222 0.2016 0.3260 0.4599 0.0753 0.1036 0.1363 0.1834 0.2265
+CLgenre 0.0755 0.1312 0.2082 0.3357 0.4727 0.0810 0.1097 0.1405 0.1911 0.2324
+CLtitle+genre 0.0754 0.1325 0.2136 0.3418 0.4714 0.0882 0.1154 0.1498 0.1983 0.2419

Book

Lbase (Baseline) 0.0425 0.0645 0.0808 0.1245 0.1685 0.0679 0.0742 0.0794 0.0871 0.0938
+CLgenre 0.0730 0.0865 0.1032 0.1468 0.1823 0.0684 0.0756 0.0809 0.0904 0.0968
+CLtitle+genre 0.0675 0.0856 0.1041 0.1431 0.1933 0.0744 0.0789 0.0820 0.0892 0.0961

is the set of all unique user pairs, ∀i < j,{ui, uj} ∈ I.
Additionally, we calculate the average pairwise co-
sine distances of the contents recommended to
a user based on the content embeddings of our
trained model. Then the results from all users are
averaged as the metric Intra-list diversity@K:

1

N

N

∑
i=1

∑p,q,{p,q}∈Iui (cosine_distance(vui
p , vui

q ))
∣Iui ∣

(7)
where vui

p , vui
q are the content features of the pth

and qth content in the list of contents recommended
to ui, p, q ∈ {0, 1, ..., k−1}. Iu is the set of all unique
pairs of content indices for ui,∀p < q,{p, q} ∈ Iui .
Lastly, we verify the quality of our embeddings by
using alignment and uniformity metrics (Wang and
Isola, 2020). The alignment metric serves to gauge
the proximity of features within positive pairs, while
the uniformity metric evaluates the distribution of
normalized features on the hypersphere.

4.3. Main Results
We present the results of our study in tables with ab-
breviated notation. Our baseline model is referred
to as Lbase(Baseline), trained identically to the orig-
inal KGCN model (Wang et al., 2019b). The ‘With
Semantic Text’ section of the tables indicates that
the respective models were trained using textual
input to represent the content embeddings. The
notation +CL(genre∣title+genre) denotes that a model
is trained using content-based contrastive loss and
Lbase jointly. CLgenre refers to the utilization of
content-content interactions extracted from genre
metadata, while CLtitle+genre indicates the use of
such interactions obtained from both genre and ti-
tle. All results in the tables are averaged over ten
random trials.

Figure 5: Comparing Model Performance Across
a Spectrum of User Activity Levels. The distribu-
tion on the x-axis is based on the number of user-
content interactions of each test user. For example,
1% refers to the test users with the fewest user-
content interactions.

In the CTR prediction experiment, we utilize a
t-test, with each model subjected to ten trials and
a comparison against the baseline model. Table 2
provides a summary of AUC and F1-score results.
The results reveal that the models that employed
our content-based contrastive loss function and
semantic text information exhibited superior perfor-
mance overall. The results obtained from Table 3
highlight that our proposed model performs better
than the baseline for all K in the top-K recommen-
dation evaluation. Moreover, Figure 5 underscores
that our best model in both domains shows a lesser
drop in NDCG@100 for test users with few user-
content interactions compared to the baseline.

An evaluation of the diversity of recommenda-
tions in our models is performed with the find-
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Table 4: Performance of Intra- and Inter- List diversity of the proposed model compared to the baseline
model. The highest performance is denoted in bold and the second best results are underlined.

Without Semantic Text With Semantic Text
Dataset Metric Lbase (Baseline) +CLgenre +CLtitle+genre Lbase +CLgenre +CLtitle+genre

Movie Inter@20 0.7054 0.7478 0.7511 0.6952 0.7615 0.7806
Intra@20 0.1997 0.3427 0.2667 0.1970 0.4407 0.4201

Book Inter@20 0.2963 0.3207 0.3196 0.3374 0.3494 0.3670
Intra@20 0.0048 0.0029 0.0024 0.0168 0.0135 0.0162

(a) Movie (b) Book

Figure 6: Performance of Embedding Quality. ℓalign-ℓuniform plot of models by γ which represents a
weight of base loss, Lbase. Embeddings obtained from the trained model using synopsis data are marked
with star points(☀), while circle points( ) indicate embeddings obtained from the model trained without
synopsis data. The color of points represents the NDCG@20. For both ℓalign and ℓuniform, lower numbers
are better.

ings presented in Table 4. Our proposed model,
trained using CLgenre+title, achieved the highest
performance in Inter-list diversity, while CLgenre or
Lbase(with semantic text) exhibited the best perfor-
mance in Intra-list diversity. In the context of CTR or
ranking-based performance, we found that in most
cases, the use of both genre and title resulted in
superior performance. However, such an approach
may not always be optimal in terms of diversity. For
instance, in the movie domain, if we assume that
the user rates Despicable Me highly, then Despi-
cable Me 2 might also be recommended due to a
similar title. Consequently, it can boost ranking-
based performance when a user consumes the
recommended content. However, due to their simi-
lar embeddings, it adversely impacts the diversity
performance of the recommendations. For this rea-
son, we conclude that using CLgenre+title scored
lower diversity performance compared to CLgenre.
It is imperative to clarify the Intra-list diversity result
of the book domain, as they exhibit significantly
lower numbers in comparison to others. This is
due to the fact that each user typically engages

in approximately seven user-content interactions,
in contrast to the movie dataset, where there are
approximately 100 interactions. Furthermore, the
low Intra-list Diversity scores imply that the rec-
ommended items for each user exhibit significant
similarities and this trend becomes more conspicu-
ous when the model is trained without semantic text.
This finding contributes to the examination of the
subsequent embedding quality result (uniformity
and alignment). Figure 6 presents a comparison
of the uniformity and alignment of embeddings gen-
erated by various models trained using the CL loss
function, based on different γ values, along with
their corresponding NDCG@20 scores. In general,
models that have superior alignment and unifor-
mity demonstrate better performance (Wang and
Isola, 2020). In the movie domain, we observed
that the utilization of semantic text mostly produces
better uniformity in models, regardless of the value
of γ. Additionally, it can be observed that as the
value of gamma decreases, the alignment value
also tends to decrease. If a model does not use
the semantic text information, it can be inferred that
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Table 5: Comparison of performance utilizing text generated by a generative AI, LLaMA to the model using
human-generated text and the baseline model. Recall@20 and NDCG@20 are respectively represented
by R@20 and N@20.

Dataset Model R@20 N@20 Inter Intra

Movie
Lbase (Baseline) 0.1967 0.1312 0.7054 0.1997
+CLtitle+genre (Human-generated text) 0.2136 0.1498 0.7806 0.4201
+CLtitle+genre (LLaMA-generated text) 0.2106 0.1504 0.7717 0.4268

Book
Lbase (Baseline) 0.0926 0.0690 0.2963 0.0048
+CLtitle+genre (Human-generated text) 0.1041 0.0820 0.3670 0.0162
+CLtitle+genre (LLaMA-generated text) 0.1092 0.0807 0.3437 0.0151

the embeddings are highly anisotropic (Ethayarajh,
2019) since the alignment value decreases signifi-
cantly while the uniformity value does not decrease
much. However, this tendency is less prominent in
the book domain, aligning with our previous obser-
vations made during the examination of Intra-list
diversity. This can be explained by the relatively
low average number of user-content interactions
and the significant similarity in item embeddings.
When the user-content loss balancing parameter,
γ is set to a low value, the training process faces
challenges in achieving effective convergence, as il-
lustrated by the data points in the lower right corner
of Figure 6 (b). Thus, by calibrating the balanc-
ing parameter γ in accordance with the specific
dataset, we can acquire well-aligned embeddings
with enhanced diversity in recommendation perfor-
mance. Our best model, trained with loss functions
Lbase and CL with a γ value of 0.8, demonstrates
robust alignment and uniformity in the experimental
results.

4.4. Ablation Studies
In Section 4.1, we observed that a total of 169
synopses were missing from the movie dataset,
4,673 were absent from the book dataset, and the
model training proceeded without utilizing them.
It is uncertain whether this omission would have
any significant impact on the overall performance
of the model. In addition, it is worth noting that
manual annotation of data is often a resource-
intensive and time-consuming process. As such,
we seek to explore whether the use of generative
AI models could potentially aid in mitigating this
issue. We generated 16,954 movie and 14,967
book synopses by providing a clear and concise
prompt, “Briefly, a story of a (movie|book) named
(movie_title|book_title) released (released_year) is
about " to LLaMA9 (Touvron et al., 2023). As de-
tailed in Table 5, the results indicate that the model
trained using LLaMA-generated text delivers com-
parable performance with that of the model utiliz-

9https://ai.facebook.com/blog/
large-language-model-llama-meta-ai

ing human-generated text, sourced from TMDB,
Goodreads, and Google books with regard to diver-
sity and ranking performance.

5. Conclusion and Future Work

This paper proposes a hybrid recommendation ap-
proach that uses semantic text and a Knowledge
Graph (KG) in a multi-task learning framework. We
propose a novel content-based contrastive loss
function that is jointly optimized with a conventional
collaborative loss function. The content-based con-
trastive loss function utilizes a sampling strategy
that creates positive and negative sets for each
content based on its metadata. In this study, we
aim to explore the efficacy of multi-task learning on
KG neural networks that incorporate semantic text
information for content recommendations. We con-
duct our experiments to assess the performance
of the recommendation system from various per-
spectives. The results of our study demonstrate
that the proposed model surpasses the baseline
in terms of performance metrics based on ranking,
diversity, and embedding quality as well as when
confronted with a cold-start scenario. Through our
work, we provide insights into the importance of
comprehensive evaluation and analysis in obtaining
valuable recommendations, emphasizing the need
to consider multiple factors beyond rank-based per-
formance metrics.

Furthermore, our methods are agnostic to the
choice of model. By utilizing our proposed sam-
pling strategy and content-based contrastive objec-
tive, any KG-based model can be employed. We
performed intensive experiments on Knowledge
Graph Convolutional Networks (KGCN) to demon-
strate the effects of semantic embeddings and a
content-based multi-task learning approach in con-
tent recommendation. Our future research will fo-
cus on two possible avenues: (1) extending the
proposed methods to other KG-based neural net-
work models, and (2) assessing the suitability of
our approach within the context of real-world rec-
ommendation data.

https://ai.facebook.com/blog/large-language-model-llama-meta-ai
https://ai.facebook.com/blog/large-language-model-llama-meta-ai
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Ethical Considerations

Since our models were trained using the TMDB,
Goodreads, and Google Books dataset or the gen-
erated text of the LLaMA, generative language
model, there is a risk that they may propagate any
toxic or hateful content, such as racism, insults, or
xenophobia, present in the training data. To miti-
gate this, we suggest content moderation in prepro-
cessing to ensure our recommendations adhere to
ethical standards.
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