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Abstract
Existing Grammatical Error Correction (GEC) methods often overlook the assessment of sentence-level syntax
and semantics in the corrected sentence. This oversight results in final corrections that may not be acceptable in
the context of the original sentence. In this paper, to improve the performance of Grammatical Error Correction
methods, we propose the post-processing task of Correction Acceptability Discrimination (CAD) which aims to
remove invalid corrections by comparing the source sentence and its corrected version from the perspective of
"sentence-level correctness". To solve the CAD task, we propose a pipeline method where the acceptability of
each possible correction combination based on the predicted corrections for a source sentence will be judged by a
discriminator. Within the discriminator, we design a symmetrical comparison operator to overcome the conflicting
results that might be caused by the sentence concatenation order. Experiments show that our method can averagely
improve F0.5 score by 1.01% over 13 GEC systems in the BEA-2019 test set.
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1. Introduction

Grammatical Error Correction (GEC) is the task
to correct different types of errors in written text,
such as misspelled words, word choice errors, and
grammatical errors. In recent years, many works
(Bryant et al., 2019; Grundkiewicz et al., 2019;
Omelianchuk et al., 2020; Tarnavskyi et al., 2022)
show that using larger pre-trained language mod-
els with bigger training datasets can help get better
performance for GEC task. For example, the T5
XXL model which has 11B parameters is used in
the current state-of-the-art (SOTA) seq2seq-based
GEC system (Rothe et al., 2021).

To further improve the performance, the ensem-
bling strategy has also been explored. For ex-
ample, some works combine multiple GEC sys-
tems’ corrections and use the optimization method
like nonlinear integer programming to get an opti-
mal corrections combination (Kantor et al., 2019;
Lin and Ng, 2021; Qorib et al., 2022; Tarnavskyi
et al., 2022). Particularly, Tarnavskyi et al. (2022)
achieves the SOTA result (76.05 of F0.5 score) for
ensembles on the BEA-2019 benchmark by simply
using the majority votes over the predicted taggers
for output edit spans. However, the above ensem-
ble based methods work with more than one base
GEC model and require even more time and re-
sources for training, which makes them hard to
be deployed in some low-resource environments.
Moreover, existing GEC methods, whether ensem-
bled or not, neglect to judge the correctness of
sentence-level syntax and semantics for the cor-
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rected sentence, causing the final obtained correc-
tions unacceptable to the source sentence.

In this paper, to reject the invalid corrections
outputted by the GEC system, we propose a new
post-processing task named Correction Accept-
ability Discrimination (CAD) where each correction
combination from the output sentence of the ex-
isting GEC system will be applied to the source
sentence and then compared with the source sen-
tence from the perspective of "sentence-level cor-
rectness". The goal of the CAD task is to find the
correction combination that has the best correct-
ness. Though the grammatical acceptability is also
included in the task of Linguistic Quality Evalua-
tion (LQE) (Conroy and Dang, 2008; Zhao et al.,
2019a; Zhu and Bhat, 2020; Daudaravicius et al.,
2016), there is no comparison made between two
sentences as required in our CAD task. That is,
LQE methods merely consider the grammatical cor-
rectness for a single sentence, and when a GEC
system mistakenly corrects the semantic informa-
tion of a source sentence, the wrong corrections
will not be found by LQE methods.

To solve the CAD task, a straightforward idea
is to view CAD as a binary classification problem.
Specifically, the source sentence Ssrc and its cor-
rected version Scorr are firstly concatenated in an
ordered pair [Ssrc, Scorr], then use a classifier to
predict 1 if score(Ssrc) ≤ score(Scorr) otherwise 0.
However, the concatenation order of two sentences
may cause conflict in predicting results. For exam-
ple, the prediction result based on [Ssrc, Scorr] indi-
cates Scorr is better than Ssrc, but when different
concatenation order for the same pair of sentences
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is used as the input, i.e., [Scorr, Ssrc], the predicted
probability may still be higher than 0.5 implying
Ssrc is more correct than Scorr.

Therefore, to improve the robustness against dif-
ferent concatenation order for CAD task, we design
a sentence pair correctness discriminator which is
insensitive to the concatenation order when com-
paring the correctness of two sentences. Par-
ticularly, within the discriminator, we propose a
symmetrical comparison operator to fuse two sen-
tences’ embeddings and apply a score function to
output the correctness score for each sentence.
Moreover, based on the discriminator, we further
propose a pipeline method to improve the perfor-
mance of existing GEC methods by removing the
wrong corrections from their output results. In the
pipeline, we first construct a set of sentence pairs
by applying different correction combinations to the
source sentence. Then each sentence pair will
be fed into the discriminator and two correctness
scores will be predicted. Finally, we select the cor-
rection combination that has the highest relative
correctness score as the final result.

Our contributions can be summarized as follows:

• To compare and evaluate a pair of sentences
from the perspective of sentence-level correct-
ness, we propose a new task named Correc-
tion Acceptability Discrimination (CAD).

• To address the CAD task, we design a sen-
tence pair correctness discriminator which can
generate correctness score for each sentence.
Users can judge which sentence is more cor-
rect by comparing their scores.

• We also design a pipeline method based on
the discriminator to improve the performance
of existing GEC systems.

• Experiments show our discriminator can
achieve 94% accuracy for correctness com-
parison of sentence pairs. Then we apply our
discriminator to further check the correction
results of 13 GEC systems. The results show
that our pipeline method can averagely im-
prove F0.5 score by 0.89% to each system in
the BEA-2019 test set.

2. CAD Task

Given a source sentence Ssrc and its corrected
version Spre predicted by the existing GEC sys-
tem, the predicted corrections Cpre = {c1, ..., cn}
can be extracted by comparing Ssrc with Spre.
Similarly, we can get ground truth corrections
Cgold by comparing Ssrc with the target sentence
Sgold. Each correction can be formulated as a tu-
ple (Start_pos,End_pos, Correct_tokens) where
the start position Start_pos and the end position

Ssrc Would do you please join us ?
Sgold Would you like to join us ?
Spre Would you please joining us ?
Sopt Would you please join us ?
Cgold (1, 2, ‘’), (3, 4, ‘like to’)
Cpre (1, 2, ‘’), (4, 5, ‘joining’)
Copt (1, 2, ‘’)

Table 1: An example of CAD task. The F0.5 score
of Spre with Cpre is 0.5 while Sopt with Copt is 0.83.

End_pos is the error span detected in Ssrc, and
Correct_tokens is the corresponding correction ap-
peared in the output sentence Spre. The correction
is valid if it is in Cgold. Since Cpre may contain some
invalid corrections, the task of correction accept-
ability discrimination aims to find the intersection
set Copt of Cgold and Cpre, i.e., remove corrections
that are not in the Cgold from the Cpre.

Example. As illustrated in Table 1, by comparing
Ssrc with Sgold, there are two ground truth correc-
tions in Cgold: c1 = (1, 2, ‘’) and c2 = (3, 4, ‘like
to’). However, the predicted sentence Spre has an
invalid correction over Ssrc, i.e., (4, 5, ‘joining’) in
Cpre. After performing the CAD task, the subset of
only valid corrections Copt will be found and Sopt

can be derived by applying Copt over Ssrc.

3. Our Proposed Method

3.1. Overview

The key to solve the CAD task is to discriminate
whether each correction is acceptable to the source
sentence, hence we propose a 3-step pipeline to
reject invalid corrections from the output sentence
of the existing GEC system. The main workflow is
shown in Figure 1:
Step 1: Sentence Pair Construction. The main
purpose of this step is to build the input for cor-
rectness acceptability comparison in Step 2. To
this end, we first extract all predicted corrections
Cpre = {c1, ..., cn} with ERRANT toolkit (Bryant
et al., 2017) by comparing the source sentence
Ssrc with the sentence Spre output by the exist-
ing GEC system. Next, we further combine dif-
ferent corrections that n corrections can make 2n

sentence pairs and apply each combination Ccorr

(Ccorr ⊂ Cpre) to Ssrc to form its corrected version
Scorr. After that, a set of sentence pairs can be
constructed by grouping each Scorr and Ssrc.
Step 2: Correctness Discrimination. As the core
of the whole pipeline, this step uses a discrimina-
tor model to return the correctness comparison
results for each sentence pair from Step 1. Within
the discriminator, we design a symmetrical scoring
operator to produce correctness scores Psrc and
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Figure 1: The framework of proposed pipeline method for CAD task

Pcorr for Ssrc and Scorr respectively without consid-
ering their concatenation order. By comparing Psrc

and Pcorr, we know which sentence is more cor-
rect. Note that, the discriminator should be trained
with the existing GEC datasets in advance.
Step 3: Correction Selection. This step aims
to select the best correction combination based
on Cpre and generate the optimized version Sopt

for Spre. To get the best correction combination,
we further calculate the relative correctness score
Pcorr/Psrc for each sentence pair and select the
highest one.

Next, we discuss the implementation details of
the proposed discriminator model and the correc-
tion selection strategy in the following sections.

3.2. Discriminator Implementation

The discriminator is the main component of Step 2
and it will be iteratively invoked to compare which
sentence is more correct for each sentence pair
from Step 1. To this end, we propose to train a
discriminator model with the set of sentence pairs
(Ssrc, Sgold) from existing GEC datasets. First, we
use BERT (Devlin et al., 2019) to encode two input
sentences separately, thus we can get each token’s
hidden state in the sentence. Then following the
previous work of Sentence-BERT (Reimers and
Gurevych, 2019), we apply the mean pooling to all
tokens’ hidden states of a sentence and get two
sentence embeddings Esrc and Egold.

After representing two sentences, a simple way
to find which sentence is more correct is to concate-
nate two sentence embeddings and use a full con-
nection layer for binary classification. However, as
mentioned in the introduction, the performance of
this idea cannot be guaranteed once the concate-
nation order is switched. Therefore, as highlighted
with the yellow color background in Figure 1, we
design a symmetrical score operator motivated by
the work of (Reimers and Gurevych, 2019) where
no concatenation is involved. The computation for
the operator is defined as follows:

Efusion = F (Esrc, Egold) (1)

Pi = Normalize(score(Ei, Efusion)) (2)

F is the fusion strategy as shown in Table 3,
i.e., Hadamard product and add. Efusion is a vec-
tor containing fused information of Esrc and Egold,
and it plays the role of anchor to help discriminate
between the error sentence Esrc and the target
sentence Egold. Particularly, since we know in ad-
vance that the target sentence Sgold is more correct
than the source sentence Ssrc, we define the score
function score as shown in Sec 4.5 to scale the out-
put into a probability. Then we further calculate the
correctness score Pi for a sentence Si in Equation
2, where we use softmax or sigmoid function for
normalization. Hence, Pi is in the range of [0, 1]
and the larger Pi denotes the higher correctness
acceptability.

The training goal of the discriminator is to maxi-
mize the difference between the Ssrc and Sgold in
terms of the correctness acceptability. Hence, we
define the loss function as follows:

loss = − log(
Pgold − Psrc + 1

2
)× 1

1− wer
(3)

where two parts are involved: (1) Pgold−Psrc+1
2 de-

notes the correctness difference based on the cor-
rectness scores obtained by Equation 2; (2)Simi-
lar to the edit distance(Ristad and Yianilos, 1998),

1
1−wer can be viewed as an inflation factor which
makes low-correctness sentence with large word
error rate wer (Klakow and Peters, 2002) farther
away from the high-correctness sentence. wer is
calculated by the following equation:

wer =
r + d+ a

lsrc + lgold
(4)

where r, d and a represent the number of words
substitution, deletion, and insertion by Sgold to Ssrc,
respectively. lsrc, lgold are the lengths of Ssrc and
Sgold. Dividing by the sum of the lengths of two
sentences is to limit the wer to be between 0 and
1.

Based on the above training mechanism, our dis-
criminator is able to effectively discriminate each
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sentence pair (Ssrc, Scorr) from Step 1 by compar-
ing their correctness scores, and a larger differ-
ence indicates more correctness of one sentence
against the other. But it is also important to note
that for the same source sentence Ssrc in different
sentence pairs, it may have different correctness
scores. Hence, to find the best correction com-
bination Copt, directly choosing the highest Pcorr

among different sentence pairs will not work. We
present our correction selection strategy in the fol-
lowing section.

3.3. Correction Selection Strategy

To get the best correction combination, we can re-
fer to the relative correctness score which can be
defined either by (Pcorr −Psrc) or Pcorr

Psrc
. Since two

scores are derived by softmax function, we have
Pcorr + Psrc = 1 and using either above definition
both work theoretically. However, in practical imple-
mentations, due to the precision of floating-point
number specification (IEEE 754) (Kahan, 1996),
the results of (Pcorr −Psrc) might be the same and
some correction combinations cannot be differenti-
ated. Hence, we finally adopt the ratio Pcorr

Psrc
as the

computation for the relative correctness score for
each sentence pair.

As a result, the final sentence Sopt for Ssrc will be
found by selecting the highest relative correctness
score among all sentence pairs.

In addition, considering that n corrections can
make 2n sentence pairs in Step 1, the calculation
cost is unacceptable when n is large. So in our
selection strategy, we manually set a threshold
T (T < n). Specifically, we first sort the correc-
tion combinations in decreasing order based on
the correction number each Ccorr has, then select
correction combinations that contain more than n′

corrections, where n′ is defined as the minimal
value that satisfies

∑n
i=n′

(
n
i

)
≤ 2T − 1. We will

later discuss the empirical determination of T in
our experiments.

4. Experiments

4.1. Datasets

According to the pipeline shown in Figure 1, we
divide existing datasets to the following four groups
and summarize them in Table 2.
Training Datasets for Discriminator. Follow-
ing the datasets setting in BEA-2019 shared task
for GEC (Bryant et al., 2019), we use the follow-
ing datasets for training our discriminator: FCE
(Yannakoudakis et al., 2011), NUCLE (Dahlmeier
et al., 2013), LANG-8 (Mizumoto et al., 2011), and
W&I+LOCNESS (Bryant et al., 2019) Corpus.
Validation and Test Datasets for Discriminator.
We split W&I validation set into two parts, one with

Corpus Sentences Tok. Corr.
Training Sets for Discriminator

FCE (train) 17,715 19.6 2.43
LANG-8 498,359 13.5 2.38
NUCLE 21,354 26.0 2.03
W&I 22,737 21.3 2.73

Validation Sets for Discriminator
FCE (dev) 1,370 19.7 2.50
W&I (dev P1) 1,408 23.6 2.74

Test Sets for Discriminator
FCE (test) 1,792 18.3 2.54
W&I (dev P2) 1,411 21.9 2.55

Test Sets for CAD Task
CoNLL-2014 (test) 1,313 23.0 4.58
BEA-2019 (test) 4,478 19.1 -

Table 2: Statistic of used datasets. Tok. means
the average token number in each example. Corr.
means the average correction number in each ex-
ample.

FCE’s validation set for discriminator validation,
and the other with FCE’s test set for discriminator
evaluation.
Test Datasets for CAD Task. As a post-
processing task to improve the performance of
GEC systems, we follow Omelianchuk et al. (2020);
Awasthi et al. (2019) to report results on CoNLL-
2014 test set (Ng et al., 2014) evaluated by official
M2 score (Dahlmeier and Ng, 2012) and BEA-
2019 test set evaluated by ERRANT (Bryant et al.,
2019). We first use GEC systems to correct the
source sentence Ssrc in test sets and obtain the
predicted sentence Spre. Then based on Step 1
introduced in Section 3.1, we construct a set of
corrected sentences Scorr as the test set for the
CAD task.

4.2. Evaluation Metrics

Discriminator Evaluation Metrics. To test our dis-
criminator, we define two metrics: (1) Acc1vs1gold , the
ratio of the number of correct discriminations to the
total number of input sentence pairs of (Ssrc, Sgold).
This metric can be used to measure the model’s
ability of distinguishing incorrect sentences and
corresponding ground truth ones. (2) Acc1vsNgold , the
ratio of number of found Sgold to the total number
of Sgold and the input sentence pairs to the dis-
criminator are (Ssrc, Scorr) where Scorr represents
corresponding sentences with different correction
combinations from Sgold. As Sgold is directly re-
lated to Copt, the metric can measure the ability of
filtering invalid corrections.
Pipeline Evaluation Metrics. Since our proposed
pipeline can be used to improve the performance
of existing GEC systems, following previous GEC
work (Omelianchuk et al., 2020; Awasthi et al.,
2019), we use the precision P , recall R and F0.5
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as the evaluation metrics.

4.3. GEC Systems

We select a variety of popular GEC systems to
verify the effectiveness of our CAD task: (1) GEC-
ToR (Tarnavskyi et al., 2022), which designs cus-
tom token-level transformations for GEC tasks and
some SOTA results can be achieved based on it
(Omelianchuk et al., 2020). (2) PIE (Awasthi et al.,
2019), which presents a new parallel-iterative edit
(PIE) architecture and uses an iterative predictive
editing approach. (3) UEdin-MS (Grundkiewicz
et al., 2019), which proposes a simple unsuper-
vised synthetic error generation method to increase
the amount of training data. (4) Kakao (Choe et al.,
2019) uses noise to construct large amounts of
fake data and uses transfer learning to build syn-
thetic models for GEC tasks. (5) PRETLARGE (Kiy-
ono et al., 2019), which conducts research on how
to generate and use pseudo-data. (6) IBM (Kan-
tor et al., 2019), which ensembles GEC systems
in a nonlinear combinatorial fashion. (6) Scoring
(Sorokin, 2022), which identifies the edits as posi-
tive or negative and calculates the probabilities to
combine them.

4.4. Implementation Details

Discriminator. We implement our discriminator
model with the base-cased version of BERT1 which
contains 110M parameters. We truncate the sen-
tence with a limit of 50 tokens and use a batch size
of 128. We apply AdamW optimizer with a learning
rate 1e-5 for 5 epochs and select the checkpoint
with the highest Acc1vsNgold in development sets as
our final model’s parameters.
GEC Systems. We use GECToR (Omelianchuk
et al., 2020) based on different pre-trained
models, including BERT, RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019),
RoBERTa-large, RoBERTa+XLNet (R+X) and
BERT+RoBERTa+XLNet (B+R+X) for comparison.
For PRETLARGE, we follow Kiyono et al. (2019)
to incorporate it with the following techniques:
Synthetic Spelling Error (SSE) (Lichtarge et al.,
2019), Right-to-left Re-ranking (R2L) (Sennrich
et al., 2016) and Sentence-level Error Detection
(SED) (Asano et al., 2019).
Threshold Setting. The only hyperparameter in
our pipeline is the threshold T , i.e., the number of
corrections for each source sentence Ssrc. Figure
2 shows ratios of different correction numbers in
training sets, which can reflect the distribution of
error numbers in sentences. To balance the cost
of calculation and the coverage of all correction’s

1https://huggingface.co/bert-base-cased

Figure 2: Ratios of correction numbers in training
sets

combinations, we set the threshold T to 8 in our
experiments which can cover 98.9% cases.

4.5. Ablation Study for Discriminator

We provide an ablation analysis of our proposed
discriminator by using different components on two
test datasets. The experimental results are shown
in Tables 3. Overall, our proposed method outper-
forms other variants for all test cases. Specifically,
for different method variants:

• Pooling strategy , where we use BERT to
obtain sentence embeddings with two pool-
ing strategies: using the output’s CLS-token
and computing the mean of all output vectors
(MEAN-strategy). We can observe that using
MEAN-strategy is better than CLS-token on
two test sets.

• Embedding fusion strategy , where we fuse
the embeddings of two sentences with three
embedding fusion strategies: Hadamard prod-
uct, add, subtract and take the absolute value.
The results suggest that using subtract and
take the absolute value operation is better than
the others. The most significant improvement
is gained on W&I dev P2 test set with up to a
6.73% increase of Acc1vsNgold .

• Symmetrical score operator , where we use
two score functions (Ei·Efusion√

k
where k is the

embedding dimension of Ei and linear layer
with learnable weight W ∈ R2d×1 where d is
the dimension of sentence) and two normaliza-
tion functions (softmax and sigmoid function)
to output correctness score. The decrease in
Acc1vsNgold suggests that using softmax function
is beneficial for our discriminator. Moreover,
we can observe that up to 0.42% and 1.45%
improvement on Acc1vsNgold can be obtained on
two test sets respectively. For W&I dev P2 and
FCEtest set, the accuracy of using Ei·Efusion√

k
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Pooling strategy Fusion strategy Score + Norm function wer W&I dev P2 Acc1vsNgold (%) FCE test Acc1vsNgold (%)

mean |s1 − s2| cdot + softmax ! 80.65 81.64
CLS |s1 − s2| cdot + softmax ! 75.41 77.18

mean s1+s2
2 cdot + softmax ! 79.59 79.46

mean s1 ⊙ s2 cdot + softmax ! 73.92 73.60
mean |s1 − s2| linear + softmax ! 80.37 80.52
mean |s1 − s2| linear + sigmoid ! 78.32 75.43
mean |s1 − s2| cdot + sigmoid ! 80.23 80.19
mean |s1 − s2| cdot + softmax # 80.01 80.29

Table 3: Ablation study results for discriminator in terms of Acc1vsNgold (%) on two test sets.

(cdot) is higher than that of using linear layer.
Therefore, the symmetrical score operator is
defined as follows:

Efusion = |Esrc − Egold| (5)

Pi = softmax(
Ei · Efusion√

k
) (6)

• Loss function w/o wer , where we don’t use
the word error rate wer in loss function. The
degraded performance proves that using wer
for training is effective.

4.6. Comparison Study for Discriminator

Considering that the goal of CAD task is to find the
optimal sentence Sopt with the best correction com-
bination Copt in terms of the correctness accept-
ability, existing linguistic quality evaluation methods
as mentioned in Section 1 can also achieve this
purpose to some extent. Hence, we compare our
discriminator with following baselines:

• GRUEN (Zhu and Bhat, 2020), which compre-
hensively considers the linguistic quality of a
sentence from the four aspects of Grammati-
cality, Non-redundancy, Focus, Structure and
Coherence.

• PPL-GPT2 (Radford et al., 2019), which cal-
culates each sentence’s perplexity (PPL) with
GPT-2 (Radford et al., 2019) and the sentence
with the lowest PPL is selected as the result.
In our tests, we use the GPT-2 with 117M pa-
rameters2.

• Single-Sent is a regression method based on
the BERT model and its input is a single sen-
tence and the output is its corresponding cor-
rectness score. The training examples consist
of two groups: (1) Ssrc with the regression tar-
get 0, and (2) Sgold with the regress target 1.
BERT is used to derive representations of Ssrc

and Sgold. In testing, we select the sentence
with the highest regression score among Ssrc

and its corrected versions Scorr as the result.

2https://huggingface.co/gpt2

W&I dev P2 FCE test
Method Acc1vs1gold Acc1vsNgold Acc1vs1gold Acc1vsNgold

GRUEN 84.76 61.80 85.04 58.71
PPL-GPT2 87.88 67.90 88.39 66.69
PPL-GPT2 (fine-tuned) 92.22 75.76 91.57 71.99
Single-Sent 92.84 77.18 93.86 77.62
Joint-Sents (src first) 94.54 69.81 94.70 69.75
Joint-Sents (corr first) 93.69 67.26 94.31 66.63
Ours 93.91 80.65 95.03 81.64

Table 4: Comparing our discriminator with four
baselines in terms of Acc1vs1gold (%) and Acc1vsNgold (%).

• Joint-Sents is a binary classification method
based on BERT. Ssrc and one of its corrected
version Scorr are concatenated first and em-
bedded by BERT. Then we classify the sen-
tence pair with special token CLS’s embed-
ding. The selection step is the same as Step
3 mentioned in Section 3.3.

Note that, Single-Sent and Joint-Sents are two
alternatives that constructed by us to generate cor-
rectness scores. Moreover, since Joint-Sents is
sensitive to the sentence concatenation order, we
train the model with different concatenation orders
for a pair of sentences (Ssrc, Sgold). Specifically,
when Ssrc occurs first, the target label is 1, and
when Sgold is concatenated before Ssrc, the target
label becomes 0.
Comparison Results. We compare our discrimi-
nator with the above baselines on two test datasets
and report their results in Table 4. Obviously,
for Acc1vsNgold which reflects the key to improve the
performance of GEC systems, our discriminator
achieves the best performance for all test cases.
For example, on two datasets of W&I dev P2 and
FCE test, our discriminator significantly outper-
forms GRUEN by up to 18.85% and 22.93%, and
PPL-GPT2 by up to 12.75% and 14.95%. This
is because GRUEN and PPL-GPT2 methods only
consider the linguistic quality of one single sen-
tence without considering the comparison with the
source sentence. Our discriminator is also much
better than baselines of Single-Sent and Joint-Sent
in terms of Acc1vsNgold , which further proves its ef-
fectiveness for capturing the sentence with better
correctness.

Our method also performs relatively better than
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CoNLL-2014 (MaxMatch) BEA-2019 (ERRANT)
System P (%) R (%) F0.5 (%) ∆ P (%) R (%) F0.5 (%) ∆
GECToR (RoBERTa) 73.91 41.66 64.00 77.13 55.26 71.47
GECToR + gruen 75.67 37.21 62.70 -1.30 79.8 50.22 71.39 -0.08
GECToR + gruen(fine-tuned) 75.61 37.37 62.76 -1.24 79.74 50.44 71.44 -0.03
GECToR + ppl 77.18 38.27 64.14 0.14 79.77 51.13 71.73 0.26
GECToR +ppl(fine-tuned) 76.68 38.73 63.92 -0.08 79.63 51.90 71.94 0.47
GECToR + Single-sent 76.81 38.02 63.79 -0.21 79.12 52.64 71.89 0.42
GECToR + Joint-sents(src first) 75.88 38.62 63.60 -0.40 79.83 50.68 71.59 0.12
GECToR + ours 75.05 40.84 64.28 0.28 78.85 54.29 72.24 0.77

Table 5: Results for different correctness discrimination methods over GECToR (RoBERTa). ∆ is the
improvement of F0.5.

CoNLL-2014 (MaxMatch) BEA-2019 (ERRANT)
System P (%) R (%) F0.5 (%) P (%) R (%) F0.5 (%)
GECToR (BERT) 72.07+1.17 42.13-0.75 63.06+0.41 71.41+2.02 55.96-0.85 67.67+1.18
GECToR (RoBERTa) 73.91+0.95 41.66-0.47 64.00+0.28 77.13+1.61 55.26-0.84 71.47+0.77
GECToR (XLNet) 77.49+1.31 40.15-0.61 65.34+0.40 79.18+1.84 54.11-1.08 72.46+0.82
GECToR-large (RoBERTa) 76.47+0.98 37.78-0.40 63.47+0.30 80.67+2.09 53.47-0.81 73.22+1.05
PIE 65.99+2.67 43.69-0.95 59.88+1.35 - - -
UEdin-MS - - - 72.28+2.06 60.12-1.02 69.47+1.22
Kakao - - - 75.19+2.00 51.91-0.52 69.00+1.15
Scoring (combined) 79.10+0.63 38.30-0.25 65.20+0.21 82.40+0.72 54.50-0.45 74.70+0.34
GECToR (R+X) 76.56+0.65 42.63-0.46 66.05+0.16 79.34+1.18 57.46-0.83 73.72+0.54
GECToR (B+R+X) 77.11+0.42 43.28-0.33 66.68+0.09 78.81+1.07 58.42-0.76 73.67+0.49
PRETLARGE(SSE+R2L) 72.40+0.81 46.07-0.43 64.97+0.35 72.14+1.70 61.77-0.79 69.80+1.05
PRETLARGE(SSE+R2L+SED) 73.26+0.78 44.17-0.40 64.73+0.31 74.71+1.19 56.67-0.68 70.24+0.62
IBM (UEdin-MS+Kakao) - - - 78.31+1.70 58.00-1.00 73.18+0.85
∆ +1.37 -0.51 +0.39 +1.92 -0.96 +1.01

Table 6: Results for improvements in GEC systems. Original results for GEC systems are copied from
original papers. The values after ’+’ and ’-’ symbols mean the improvement and deterioration, respectively.

other baselines in terms of Acc1vs1gold except for the
case of Joint-Sent on W&I dev P2 test dataset.
One possible reason is that Joint-Sent uses a lin-
ear layer to classify the high-quality sentence which
is good for Acc1vs1gold . However, as mentioned above,
the metric Acc1vsNgold plays a more important role in
the setting of GEC, hence it is reasonable to infer
that our discriminator is advantageous for improv-
ing the performance of existing GEC systems. The
results of Table 5 prove the inference.

In Table 5, we list the performance of GECToR
(RoBERTa) in the first row as the reference, and
then we apply different discrimination baselines
to GECToR (RoBERTa) and list their testing re-
sults below. We can easily observe that compared-
with the reference performance, both the precision
scores P and F0.5 have been increased while recall
scores R are all dropped. This is because adding
the discrimination step will inevitably remove some
valid corrections, but the precision in the mean-
time can be greatly improved due to the fact that
many invalid corrections are also rejected from
the results of GECToR (RoBERTa). Moreover, we
also find that our discriminator gets the best perfor-
mance of F0.5 among all baseline methods, which
demonstrates the ability of our discriminator for im-
proving GECToR (RoBERTa). In the next section,

we further explore the ability of our discriminator
for more GEC systems.

4.7. Improvements for GEC Systems

We select 13 existing GEC systems in total to inte-
grate with our pipeline method. Due to some GEC
systems do not report their results on the testing
datasets, finally we have 10 GEC systems on the
CoNLL-2014 test set and 12 GEC systems on the
BEA-2019 test set. Table 6 shows the improve-
ments for GEC systems by applying our pipeline
on two test datasets.

Our pipeline improves both P and F0.5 for all
test cases, which demonstrates that our discrim-
inator is effective in removing invalid corrections.
Results show our method decreases on metric R,
one reason is that our discriminator may mistak-
enly remove some valid corrections. However, F0.5

metric which gives more weight to precision P than
to recall R is more emphasized on GEC tasks(Ren
et al., 2018). Hence our pipeline is of great signifi-
cance to GEC tasks.

Particularly, for GEC systems that have relatively
lower performance, our pipeline can greatly im-
prove their results. For example, as shown in Table
6, the GEC systems PIE and UEdin-MS have been
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improved by up to 2.67%, 2.06% of P on CoNLL-
2014 and BEA-2019, respectively.

5. Related Work

Many post-processing approaches have been pro-
posed to improve GEC performance by removing
error corrections. In this section, we note several
prior works from the perspective of ensemble learn-
ing for GEC task and the linguistic quality evalua-
tion.

The most widely applied post-processing
method for GEC is ensemble learning because
each GEC system has its pros and cons for differ-
ent error types. One simple ensemble method is
independently training several GEC models, which
have the same architecture with different initial
parameters, and averaging all models’ probabil-
ity distributions in inference (Zhao et al., 2019b;
Awasthi et al., 2019; Omelianchuk et al., 2020). Tar-
navskyi et al. (2022) find ensemble by voting with
predicted edits works better than averaging proba-
bilities to their sequence tagging approach. In the
supervised ensemble, integer linear programming
is used to optimize the F0.5 score by combining dif-
ferent GEC systems and reviewing proposed edits
(Kantor et al., 2019; Lin and Ng, 2021; Qorib et al.,
2022). However, these existing post-processing
methods only focus on each correction itself and
ignore the relevant semantic information of these
corrections combined with the source sentence.
Moreover, these methods only work with more than
one GEC system, which require huge resources
that are unacceptable in some real scenarios. Our
proposed pipeline method can work with all exist-
ing GEC techniques whether they are ensemble
based or not.

There exist several linguistic quality evalua-
tion methods that can also be adapted for post-
processing the results of GEC systems. (Zhu
and Bhat, 2020) utilizes a BERT-based model and
four manually set features (grammaticality, non-
redundancy, focus, structure, and coherence) to
evaluate the sentence quality. (Ludwig et al., 2021)
uses Transformer to vectorize essays, and pro-
poses to use classification or regression to output
essays to obtain essay evaluations. (Wang et al.,
2022) use BERT to represent articles, and use
multiple losses and transfer learning from out-of-
domain essays to further improve the performance
of essay scoring. However, when using these ex-
isting LQE methods to compare the Ssrc with the
Scorr, they focus more on the sentence itself and
ignore the semantic relation between the two sen-
tences. Our correctness discriminator model can
evaluate the grammatical acceptability by compar-
ing with the source sentence with its corrected
version, which is more suitable for GEC tasks.

6. Conclusion

This paper has presented a new task of CAD, and
the proposed pipeline method for solving the task
is "plug-and-play" with existing GEC systems. As
the core of the pipeline, the discriminator we de-
signed can effectively remove invalid corrections
from the output of a GEC system. The extensive
experiments have shown that our discriminator has
an obvious advantage over existing linguistic qual-
ity evaluation methods for correctness acceptability
comparison. Moreover, the F0.5 scores of all 13
selected GEC systems have been improved after
applying our pipeline.

In the future, we will explore more effective strat-
egy for optimizing the discriminator, and we are
interested in adapting CAD task to other languages
like Chinese and Russian.
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