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Abstract
We introduce a multi-view document clustering model called DMsECN (Deep Multi-structure Ensemble Clustering
Network), comprising a multi-structure processor and a hybrid ensemble clustering module. Unlike existing models,
DMsECN distinguishes itself by creating a consensus structure from multiple clustering structures. The multi-
structure processor comprises two stages, each contributing to the extraction of clustering structures that preserve
both consistency and complementarity across multiple views. Representation learning extracts both view and
view-fused representations from multi-views through the use of contrastive learning. Subsequently, multi-structure
learning employs distinct view clustering guidance to generate the corresponding clustering structures. The hybrid
ensemble clustering module merges two ensemble methods to amalgamate multiple structures, producing a
consensus structure that guarantees both the separability and compactness of clusters within the clustering results.
The attention-based ensemble primarily concentrates on learning the contribution weights of diverse clustering
structures, while the similarity-based ensemble employs cluster assignment similarity and cluster classification
dissimilarity to guide the refinement of the consensus structure. Experimental results demonstrate that DMsECN
outperforms other models, achieving new state-of-the-art results on four multi-view document clustering datasets.
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1. Introduction
Multi-view document clustering has gradually be-
come an important task in fields such as text
mining and sentiment analysis, owing to the fact
that a single document sample can be described
from different views (Hassani et al., 2020; Zhang
et al., 2022). In addition to the conventional con-
tent view, multi-view news documents encompass
view delineating their propagation behavior, view
elucidating their headlines, view delineating asso-
ciated news articles, and more. These views de-
pict the news documents from various perspec-
tives that allow us to understand documents com-
prehensively. The extraction of valuable clustering
partitions, by taking into account both consistency
and complementarity across all views, has been
garnering heightened attention.
Recently, for achieving outstanding clustering
performance, various deep multi-view cluster-
ing methods have been proposed (Zhu et al.,
2019; Bai et al., 2021; Xu et al., 2021a; Yang
et al., 2022; Bai et al., 2022; Hu et al., 2023).
These approaches amalgamate pre-learned low-
dimensional representations from each view to
create a view-fused representation that governs
cluster partitioning across multiple views. Guided
by the consistent clustering objective, both indi-
vidual view and view-fused representations un-
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dergo refinement. Numerous recent studies have
demonstrated that enhancing individual view and
view-fused representations can improve cluster
partitioning accuracy, resulting in superior perfor-
mance in deep multi-view clustering.
However, acquiring a shared document repre-
sentation from multiple perspectives necessitates
data from various views to maintain an identical
manifold structure, a concept that runs counter
to the reality that similarity(structure) can fluc-
tuate across different views. Current method-
ologies cannot ensure the optimality of the con-
sensus structure, as the manifold structure from
each view fails to provide mutually support ev-
idence. Adjusting the representation of various
views solely based on the final unified cluster-
ing objective might result in an excessive reliance
on representation consistency, jeopardizing the in-
herent diversity within multi-view document data
and potentially leading to the loss of distinctive
features. Hence, determining how to emphasize
the divergent manifold structure of each view, all
the while preserving consistency in the represen-
tation space, constitutes a significant research in-
quiry within the domain of deep multi-view docu-
ment clustering tasks.
Unfortunately, the effective utilization of differ-
ent manifold structure of each document view
faces two inescapable issues: (1) How to explore
the view-specific clustering structure from various
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Figure 1: The distinctions between existing methods and the proposed network.

document views? While each view within a partic-
ular document sample pertains to the same sub-
ject, variations in data type or focal perspective
can yield distinct clustering structures among dif-
ferent document views. The initial challenge re-
volves around the extraction of clustering struc-
tures from diverse views, while preserving consis-
tency and complementarity in their features. (2)
How to ensemble the multiple clustering struc-
tures? A clustering process that emphasizes dis-
tinct views independently is bound to result in mul-
tiple clustering structures. Hence, the integra-
tion of these diverse clustering structures into a
coherent clustering arrangement, ultimately yield-
ing the final cluster assignment, holds paramount
importance in the comprehensive landscape of
multi-view document clustering. As different views
exhibit distinct manifold structures, the clustering
structure derived from the representation may ex-
hibit inconsistency with the ultimate clustering task
objective. Hence, the second issue lies in the for-
mulation of a flexible ensemble aimed at achieving
a consensus structure.

To address above issues, we propose a deep
multi-structure ensemble clustering network for
multi-view document clustering, named DMsECN.
The model comprises two components: the multi-
structure processor and the hybrid ensemble clus-
tering module. The distinctions between existing
methods and the proposed network are visualized
in Figure 1. The existing models merge the view
representations and employ it directly to gener-
ate the consensus structure, preserving solely the
inter-view consistency. In contrast, our proposed
model acquires a clustering structure for each
view representation using multi-structure proces-
sor, and ultimately employs a hybrid ensemble
clustering module to secure a consensus structure
for clustering while simultaneously preserving both
consistency and complementarity across different
views. Within the multi-structure processor, con-

trastive learning is employed to bolster represen-
tation learning, while distinct view clustering guid-
ance is utilized to generate corresponding clus-
tering structures for all view and view-fused rep-
resentations. In the hybrid ensemble clustering
module, we employ attention-based and similarity-
based structure ensemble to produce a consensus
structure, which is refined using consensus clus-
tering guidance for clustering.

2. Related Work
Deep Multi-view Clustering Motivated by the
promising progress of deep learning in unsuper-
vised problems, many recent works have been fo-
cused on the deep learning-based multi-view clus-
tering. Most of these methods rely on the gener-
ative models to learn latent representations from
data, such as autoencoder-based methods (Wang
et al., 2015; Zhang et al., 2019; Lin et al., 2021;
Ke et al., 2022; Abavisani and Patel, 2018), vari-
ational autoencoder-based methods (Xu et al.,
2021b; Yin et al., 2020), and generative adver-
sarial networks-based methods (Li et al., 2019b;
Zhou and Shen, 2020). Inspired by DEC (Xie et al.,
2016), a joint framework of deep multi-view clus-
tering is proposed which learns the multiple deep
embedded features, multi-view fusion mechanism
and clustering assignment simultaneously (Lin
et al., 2018). Researchers (Bai et al., 2021) have
investigated the extraction of complementary se-
mantic information from high-dimensional sample
data space using different enhanced semantic em-
bedders. DEMVC (Xu et al., 2021a) learns fea-
ture representation and clustering assignment of
all views through collaborative training, to better
mine the complementary and consistent informa-
tion of each view. A novel multi-view cluster-
ing method was proposed by learning a shared
generative latent representation that obeys a mix-
ture of Gaussian distributions (Yin et al., 2020).
In Multi-VAE (Xu et al., 2021b), all views’ clus-
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Figure 2: The overall architecture of proposed network.

ter representation and each view’s specific vi-
sual representations are disentangled by the pro-
posed view-common variable and view-peculiar
variables, respectively. In (Li et al., 2019b), gener-
ative adversarial networks were utilized to recon-
struct the samples from a common representation
that shared by multiple views.

Ensemble Clustering The purpose of ensem-
ble clustering is to combine multiple base cluster-
ing structures into a better and more robust con-
sensus structure (Topchy et al., 2005; Huang et al.,
2023). Previous ensemble clustering based meth-
ods can mostly be classified into 3 categories:
the pair-wise co-occurrence-based methods (Fred
and Jain, 2005; Iam-On et al., 2011), the me-
dian partition-based methods (Topchy et al., 2005;
Huang et al., 2016), and the graph partition-based
methods (Strehl and Ghosh, 2002; Huang et al.,
2018). And most of them are devised for single-
view data. With the emergence of multi-view data,
ensemble clustering as an efficient technique to
handle multi-view clustering task by utilizing com-
plementary information from multi-view data has
gradually gained attention. A multi-view ensem-
ble clustering (MVEC) (Tao et al., 2017) is pro-
posed to learn a consensus clustering from the
multiple co-association matrices built in multiple
views with low-rank and sparse constraints. Then,
Tao et al. (2019) further incorporated marginal-
ized denoising autoencoder into MVEC, and pre-
sented a marginalized multi-view ensemble clus-
tering method. Yan et al. (2020) proposed a clus-
tering scheme named synergetic information bot-
tleneck (SIB) for joint multi-view and ensemble
clustering. And Niu et al. (2023) proposed a multi-
view ensemble clustering approach using joint
affinity matrix, which is generated by sample-level
weight. In the study (Zhao et al., 2023), a dou-
ble high-Order correlation preserved robust multi-

view ensemble clustering (DC-RMEC) method is
devised, which preserves the high-order inter-view
correlation and the high-order correlation of origi-
nal data simultaneously.

3. The proposed network
Consider a multi-view document dataset com-
prising V distinct views, denoted as X =
{X1, · · · , XV }, each containing diverse informa-
tion. Within each view, there are N samples, rep-
resented as Xv = {xv

i }Ni=1. The goal of multi-view
clustering is to group these multi-view document
samples intoK clusters by mining various cluster-
ing structures. For the sake of simplicity, we em-
ploy a dataset with only 2 views as an example.

3.1. Overview of DMsECN
The overall structure of DMsECN is shown in Fig-
ure 2, including a multi-structure processor and
a hybrid ensemble clustering module. The multi-
structure processor is comprised of representa-
tion learning and multiple structure learning pro-
cesses. To be more precise, within the repre-
sentation learning phase, a shared semantic en-
coder is employed for the extraction of represen-
tations from the various views. Additionally, con-
trastive learning is leveraged between every two
views to augment the view representations. Dur-
ing the multi-structure learning process, diverse
clustering guidance is applied to view and view-
fused representations, ultimately encouraging the
clustering head to achieve an improved clustering
structure. The hybrid ensemble clustering module
comprises two essential components: attention-
based ensemble and similarity-based ensemble.
Specifically, the attention-based ensemble is fo-
cused on learning the contribution weights of var-
ious clustering structures. On the other hand,
similarity-based ensemble leverages cluster as-
signment similarity and cluster classification dis-
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similarity to guide the refinement of the consensus
structure.

3.2. Multi-structure Processor
To learn multiple structures of different type rep-
resentations, we design a multi-structure proces-
sor. Initially, view and view-fused representations
are extracted during the representation learning
phase. Subsequently, various clustering heads
are employed on the representations to derive the
clustering structure.
Representation learning A shared pre-trained
semantic encoder, denoted as E(·), is introduced
to encode each document view. For the i-th docu-
ment in the v-th view, xv

i , its view representations
fv
i ∈ Rd are obtained as follows,

fv
i = hv(zi) = tanh(W v

h z
v
i + bvh)

zvi = E(xv
i )

(1)

where hv(·) represents a multi-layer perceptron
(MLP) layer with a hyperbolic tangent (tanh) acti-
vation function. W v

h and bvh denote the weight and
bias parameters of hv(·), respectively.
To attain the desired separability amongmulti-view
document samples while maintaining consistency
within views, we incorporate contrastive learning
as an aid to representation learning. Different view
representations from the same sample are em-
ployed as positive pairs, while view representa-
tions from distinct samples are utilized as negative
pairs. Formally, given a document sample xi, pos-
itive pairs (fv

i , f
¬v
i ) are generated for each view v

of fv
i , in which ¬v is one of the other document

view except v. We set the negative pairs by pairing
each view of document sample with all views from
other document samples. The contrastive loss Lrl

can be computed by

Lrl =
1

2N

∑
(a,b)∈P

− log exp(sim(a, b)/τ)∑
c s.t. (a,c)∈N exp(sim(a, c)/τ)

(2)
whereN represents the number of document sam-
ples, P denotes the set of positive pairs, and N
represents the set of negative pairs. In this con-
text, we employ cosine similarity sim(·), with τ
serving as the temperature parameter to govern
the level of softness. By default, we set τ = 1.
During the representation learning stage, the min-
imization of Lrl facilitates the convergence of dif-
ferent view representations from the same sam-
ple, thus ensuring consistency among views, while
concurrently driving apart the view representations
of distinct samples, thereby enhancing separabil-
ity between samples. After performing view repre-
sentation learning, we generate a view-fused rep-
resentation for each document sample by sum-
ming the individual view representations

∑
fv
i , de-

noted as f0
i .

Multi-structure learning Given a document
sample xi, the representation learning process ex-
tracts V view representations {fv

i }Vv=1 from each
view and acquires an additional view-fused rep-
resentation f0

i . The objective of multi-structure
learning is to discern distinct clustering structures
from the (V +1) representations. In particular, di-
verse clustering heads {ζv(·)}Vv=0 are employed to
derive distinct clustering structures {Av}Vv=0 from
representations {{fv

i }Ni=1}Vv=0. Furthermore, dis-
tinct guidancemechanisms are employed to adjust
the centroids of the clustering heads {{µv

k}Kk=1}Vv=0

corresponding to the different representations.
The calculation of multiple clustering structures
is accomplished using the clustering idea of
DEC (Xie et al., 2016), applied to both view repre-
sentations {fv

i }Vv=1 and view-fused representation
f0
i . For the sake of simplicity, we omit the super-
scripts representing views in the subsequent de-
scriptions. Each element aik of the cluster struc-
ture matrix A ∈ RN×K can be estimated using the
Students’ t-distribution as follows:

aik = ζ(fi, µk) =
(1 + ||fi − µk||2)

−1∑
k′ (1 + ||fi − µk′ ||2)−1 (3)

where, aik is the i-th row and k-th column element
of A, signifying the allocation probability of the i-th
sample in the view to the k-th cluster.
Given the inherent inconsistency between the
clustering structures embedded in the view repre-
sentation and the view-fused representation, we
have devised distinct clustering guidance for each
of them. The aim is to refine the centroids of the
clustering heads, ultimately achieving clustering
allocation improvement.
1) View structure guidance: To emphasize rep-
resentations assigned with high confidence and to
mitigate the distortion of the clustering structure
space caused by large clusters, we introduce the
target structure P ∈ RN×K , which is regarded as
the target structure of the view cluster structure.
The elements in P can be estimated using:

pik =
(aik)

2/
∑

i′ ai′k∑
k′((aik′)2/

∑
i′ ai′k′)

(4)

where pik is the i-th row and k-th column element
of P , aik is the element in clustering structure A.
Upon acquiring the target structure P , we employ
the KL divergence between the view structure A
and the target structure P as the learning objec-
tive to guide the optimization of the clustering head
centroid µk:

Lvs =

V∑
v=1

KL(P v||Av) =

V∑
v=1

∑
i

∑
k

pvik log
pvik
avik
(5)

2) View-fused structure guidance: The introduc-
tion of the view-fused structure learning objective
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is motivated by the consideration of both represen-
tation space and structure space, aiming for an im-
proved alignment with multi-view document clus-
tering tasks. Specifically, we introduce the deep
divergence-based clustering Loss (Kampffmeyer
et al., 2019) to enhance the discriminative capac-
ity of the learned structure. This loss comprises
three terms, as presented below:

Lvfs =
1

K

K−1∑
i=1

K∑
j>i

αT
i Qαj√

αT
i QαiαT

j Qαj

+ triu(A0A0T )

+
1

K

K−1∑
i=1

K∑
j>i

mT
i Qmj√

mT
i QmimT

j Qmj

(6)
where αi is the i-th column of the view-fused struc-
ture matrix A0, Q denotes the kernel similarity ma-
trix estimated by Qij = exp(−||f0

i − f0
j ||2/(2σ)2),

with σ serving as the Gaussian kernel bandwidth,
set to a default value of 0.15. triu(·) refers to the
strictly upper triangular, and mij = exp(−||αi −
ej ||2/(2σ)2), where ej corresponds to corner j of
the standard simplex in RK .
In addition, we devise a self-generated margin
center loss Lmc to facilitate the acquisition of
cluster-relevant structures. This, in turn, directly
contributes to the enhancement of the discrimina-
tive properties of the view-fused structure. Lmc is
formulated as:

Lmc =
∑
i

max(0,∆+ ||f0
i − µ0

yi
|| − ||f0

i − µ0
¬yi

||)

(7)
where µ0

yi
is the yi-th (the cluster label of view-

fused structure α0
i ∈ A0) cluster center of semantic

embedding {f0
i }Ni=1, µ¬yi is the ¬yi-th (a randomly

selected cluster label other than yi) cluster center,
∆ represents the margin that controls the distance
between intra- and inter-class pairs.

Optimization In an effort to ensure preservation
of both consistency and complementarity between
different views, we concurrently optimize the view
structures and the view-fused structure as part of
our overall objective, outlined as follows:

LMsP = Lvs + Lvfs + Lmc (8)

3.3. Hybrid Ensemble Clustering Module
Following the multi-structure learning process, we
acquire a set of view structures and a view-fused
structure. Subsequently, it becomes imperative
to assess the distinct contributions of these vari-
ous structures and integrate them into a consen-
sus structure for the final clustering partition. To
this end, we have developed a hybrid ensem-
ble clustering module comprising the hybrid en-
semble and self-supervised consensus clustering

guidance, which facilitates the derivation of the fi-
nal consensus structure from multiple clustering
structures.

Hybrid ensemble Hybrid ensemble contains
an attention-based structure ensemble and a
similarity-based structure ensemble.
1) Attention-based structure ensemble: An
attention-based structure ensemble is introduced
to evaluate the different contributions of various
view structures and integrate different structures
into a consensus structure representation by self-
attention mechanism.
Given a set of view structures and a view-fused
structure {Av}Vv=0, we treat them as a sequential
view input for the attention layer. The ensemble
structure representation E is estimated as follows:

E = Reshape(Att(Stack({Av}Vv=0))) (9)

where the Att(·) refers to a self-attention layer,
and Stack(·) denotes the stack operation, where
the corresponding output shape is (N, (V +1),K).
Reshape(·) changes the shape of Att(·)’s output
to (N, (V + 1) × K). Through the process of
attention-based learning, the ensemble structure
representation E captures both intra- and inter-
view interactions.
2) Similarity-based structure ensemble: In or-
der to incorporate the relationships between ev-
ery pair of document samples, we have designed
a similarity-based structure ensemble that consid-
ers both clustering assignment similarity and clus-
tering assignment dissimilarity. More specifically,
the clustering assignment similarity ensemble can
be divided into two components, one dependent
on soft cluster assignment and the other on hard
cluster partition. The soft cluster assignment simi-
larity ensemble matrixMs can be calculated using
the clustering structures {Av}Vv=0:

Ms = ÃÃT /K

Ã = [A0, A1, · · · , AV ]
(10)

where the [, ] is the concatenated operation, K is
the number of clusters. The hard cluster partition
similarity ensemble matrix Mh can be estimated
by the similar way:

Mh = ĀĀT /K

Ā = [oh(A0), oh(A1), · · · , oh(AV )]
(11)

where the oh(·) represents the one-hot function,
which maps soft cluster assignment to hard cluster
partition.
The pair-wise dissimilarity (Hussain et al., 2014)
is also used as clustering assignment dissimilarity
ensemble to combine the various structure. The
pair-wise dissimilarity is calculated as the number



8871

of differences in the multiple hard clustering par-
titions with respect to each document. And the
dissimilarity matrix is transformed into a similar-
ity matrix Mpd by cosine similarity. As opposed
to the similarity matrix Ms,Mh, the Mpd takes into
account not only how any two documents are as-
signed by the different clustering processes, but
also their relationship with other classified docu-
ments.
Finally, we can simply get the final similarity-based
structure ensemble:

M = Ms +Mh +Mpd (12)

Note that, theM can be used to get clustering par-
tition directly.
Consensus clustering guidance In order to
promote consensus structure learning in the final
clustering partition space, an ensemble cluster-
ing head g(·) is built for attention-based ensem-
ble structure representation E to get its ensemble
structure Ae as follows:

Ae = g(E) (13)

We still retain the KL divergence loss between the
ensemble structure and its corresponding target
structure as the main clustering guidance within
the ensemble clustering module. By employing
similar calculations in Eq.(4), we can obtain Pe for
ensemble structure Ae. The loss Lkl takes the fol-
lowing form:

Lkl = KL(Pe||Ae) (14)

Taking into account that the clustering result with
K clusters can have K factorial equivalent struc-
tures, we propose to gauge the disagreements be-
tween partitions by means of the similarities be-
tween samples as an auxiliary loss in consensus
clustering. This approach is justified as cluster-
ing results are considered similar when their corre-
sponding similarity matrices are in close proximity.
The specific objective is as follows:

Lau =

V∑
v=0

||M −AvAvT ||F (15)

where M is the similarity-based structure ensem-
ble matrix learned by Eq.(12), and Av is the
view clustering structure matrix learned by multi-
structure processor.
Optimization In this module, we design a dual-
objective self-supervised mechanism, which uni-
fies the hybrid ensemble in a uniform module.
Therefore, the multiple structures can not only im-
prove the separability of multi-view document data
by learning a consensus structure, but also effec-
tively feedback the view and view-fused represen-
tations and structures. The total loss is as follows:

LHEC = Lkl + λLau (16)

where λ > 0 is a hyper-parameter that controls
the optimization of the hybrid ensemble clustering
module.

4. Experiments
4.1. Multi-view Document Datasets
We employed 4 multi-view document datasets for
conducting extensive experiments. Statistics of
the datasets are summarized in Table 1.
The BBC dataset is derived from the BBC cor-
pus which is a news article corpus originated from
the BBC News. The BBC dataset contains 2, 225
news documents which are randomly selected
from 5 topical areas of BBC corpus, in particu-
lar, “business”, “entertainment”, “politics”, “sports”,
and “technology”. Each news document in the
BBC dataset is described with the headline view
and the content view.
We constructed the HUFF dataset to investigate
the experimental performances of our proposed
model on datasets with large number of clusters.
The HUFF dataset is investigated by collecting
22, 756 timeline news blogs from 10 topical areas of
the HUFFPOST website1. Each news blog is rep-
resented in the headline and the short description
view. The HUFF-mini dataset is a subset of the
HUFF dataset, which contains 3, 456 blogs from
3 distinguish topical areas, in particular, “Latino
Voices”, “Environment”, “Education”.
The TOUTIAO dataset is a newly generated news
article dataset collected from the TouTiao News2.
It contains 790 documents organized in 4 classes,
in particular “Culture”, “Military”, “Technology”, and
“Sports”. Each document is described by the
headline view, the content view and converted au-
thor view.

Table 1: Summary of datasets.

Dataset No. of samples No. of classes Input length of each view

BBC 2,225 5 24 & 288

HUFF-mini 3,456 3 120 & 120

HUFF 22,756 10 120 & 120

TOUTIAO 790 4 100 & 100 & 100

4.2. Experimental setting
we compared the proposed DMsECN with 16
multi-view clustering models. Among them, we
selected recent multi-view clustering models de-
veloped by traditional machine learning strategies
that shows good clustering performances, includ-
ing a series of models for multi-view subspace
clustering (Brbić and Kopriva, 2018) (P-MLRSSC,
C-MLRSSC, P-KMLRSSC and C-KMLRSSC), a

1https://www.huffpost.com
2http://www.toutiao.com
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Table 2: Experimental results of multi-view document clustering on all experimental datasets (%). The
best and second-best results are marked in bold and underline, respectively. Symbol “-” denotes no
results are reported.

Method BBC HUFF-mini HUFF TOUTIAO
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

P-MLRSSC 87.26 66.80 71.30 62.33 35.59 28.78 - - - 71.75 60.46 53.00
C-MLRSSC 87.37 66.90 71.51 62.41 35.63 28.71 - - - 71.13 63.06 54.96
P-KMLRSSC 93.21 80.94 84.51 55.12 17.11 10.53 - - - 56.80 37.01 29.60
C-KMLRSSC 93.41 81.05 84.62 56.36 18.87 12.39 - - - 58.35 37.69 30.63

MCDCF 85.02 73.83 72.73 40.25 4.95 2.19 - - - 91.38 81.65 79.69
FMR 87.46 67.94 73.01 59.78 26.86 22.52 - - - 68.35 53.60 53.59

MSC_IAS 46.82 19.33 15.93 63.58 32.79 26.06 39.76 34.06 25.16 58.35 42.97 31.75
SMVSC 92.00 80.76 80.64 79.11 53.77 51.29 51.69 36.81 34.58 86.20 65.32 66.97
APMC 90.74 76.06 79.38 59.95 29.44 20.20 42.14 26.01 22.57 93.16 83.37 83.14
SGF 92.40 78.80 82.80 64.32 30.60 24.52 43.01 24.02 20.09 91.80 78.82 80.00
DGF 90.70 74.42 78.76 64.11 32.33 26.81 19.04 8.06 3.10 93.24 81.46 83.10

MvDSCN 45.53 23.26 20.07 52.78 16.49 13.91 40.01 26.70 23.11 79.62 53.71 54.07
DEMVC 62.11 35.90 35.68 77.08 40.33 46.74 42.95 26.85 24.09 85.06 68.42 68.90
SURE 75.60 48.42 50.27 54.98 12.54 12.15 - - - - - -

DealMVC 64.63 46.93 44.48 61.69 34.41 36.38 52.72 36.91 33.95 76.84 59.03 51.97
ProImp 80.27 54.66 56.92 73.76 32.24 38.29 53.43 41.24 36.95 85.19 72.07 65.97

DMsECN 95.78 88.01 89.82 93.95 76.35 83.14 74.95 58.87 62.44 95.85 91.09 92.40

multi-view clustering model with deep concept
factorization (Chang et al., 2021) (MCDCF), and
some other multi-view clustering methods with
promising performances (FMR (Li et al., 2019a),
MSC_IAS (Wang et al., 2019), and SMVSC (Sun
et al., 2021)). To investigating the performances
of those models that make use of complemen-
tary and consistent information between the views,
we also chose 3 methods for comparison, in par-
ticular, APMC (Guo and Ye, 2019), SGF and
DGF (Liang et al., 2019). Deep clustering mod-
els are also investigated for comparison, includ-
ing autoencoder based models MvDSCN (Zhu
et al., 2019) and DEMVC (Xu et al., 2021a) and
contrastive learning based models SURE (Yang
et al., 2022), DealMVC (Yang et al., 2023) and
ProImp (Li et al., 2023).

We built our model on top of the pre-trained BERT
model (with 12-layer transformer) implemented in
PyTorch (Wolf et al., 2019) and adopt most of its
hyper-parameter settings. The input length for
each view is shown in Table 1. If the view input
exceeds the specified length, the view input will
be truncated. To speed up the training process
and avoid over-fitting, we forzen all the parame-
ters of BERT except the last two transformer lay-
ers. For the dimension of the latent view repre-
sentations, we set d = 2K in our experiment. In
the multi-structure processor, the representation
learning and multi-structure learning both are con-
ducted for 6-12 epochs with a 2e−5 learning rate
by the Adam optimizer. Within the hybrid ensem-
ble clustering module, training is conducted with

2e−5− 5e−5 learning rate by the Adam optimizer.
To measure the performance of multi-view clus-
tering methods, we employ 3 metrics(Gan et al.,
2007): Accuracy (ACC), Normalized Mutual Infor-
mation(NMI), and Adjusted Rand Index (ARI) for
evaluation. For all metrics, a higher value indi-
cates better performance.

4.3. Comparison with State of the Arts
Table 2 presents the results achieved by our
proposed model alongside those of other mod-
els. DMsECN outperforms all other models on all
datasets by a substantial margin. The most sig-
nificant performance enhancement was observed
in the HUFF-mini dataset, with improvements of
22.58%, and 31.85% in NMI, and ARI, respec-
tively. Even in the BBC dataset, which exhib-
ited the least improvement, NMI, and ARI ex-
perienced improvements of 6.96%, and 5.20%,
respectively. NMI places emphasis on informa-
tion sharing, while ARI prioritizes data consis-
tency. The improvements in NMI and ARI on
each dataset exceed those in ACC, indicating that
our proposed model excels in capturing the con-
sistency and complementarity between different
views, thereby enhancing both the separability
and the compactness between clusters.

4.4. Ablation Study
Multi-structure processor Since the multi-
structure processor is composed of represen-
tation learning and multi-structure learning, we
conducted ablation studies on these two phases
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Table 3: Clustering performance with multiple structures learning (%).

Lvs Lvfs+Lmc
BBC HUFF-mini HUFF TOUTIAO

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

89.71 72.55 76.37 87.79 60.89 67.18 68.87 53.31 52.51 93.82 84.09 87.25
4 90.29 73.94 77.71 88.86 63.62 69.84 52.66 40.87 30.56 94.33 86.19 88.57

4 93.71 82.43 85.22 92.97 73.33 80.62 76.98 60.75 65.87 95.47 89.63 91.41
4 4 94.79 84.86 87.59 93.32 74.62 81.43 74.54 58.34 61.57 95.59 90.25 91.74

separately.

Figure 3: The multi-structure processor w/ or w/o
representation learning.

1) Representation learning: The Figure 3 shows
the comparison between with representation
learning (w/ rl) and without representation learn-
ing (w/o rl) in multi-structure processor. From the
figure, we can observe that although BERT is a
pre-trained language model, it is still poor for se-
mantic encoding of short text documents. How-
ever, by designing the contrastive loss for repre-
sentation learning that fits with the multi-view doc-
ument data, the semantics of multi-view document
can already be mined. From the perspective of
multi-structure learning, this representation learn-
ing based on contrastive loss can expand the vari-
ability between different samples, which is also
useful for learning different clustering structures.
2) Multiple structure learning: To illustrate the ne-
cessity of multi-structure learning, we ablate view
structure guidance and view fusion structure guid-
ance in this part. Table 3 shows the experi-
mental details of ablation. Lvs and Lvfs+Lmc

are clustering guidance corresponding to view
structure learning and view fusion structure learn-
ing, respectively. Obviously, using Lvs can only
get a little improvement (about 1%-3%). This
may be because the clustering structure of the
views is not uniform. In addition, since the
view-fused guidance we designed introduces both
the measurement of structure distribution, cluster-
intra- and cluster-inter-distance, Lvfs+Lmc can
basically achieve similar performance to multi-

structure learning. This phenomenon is particu-
larly prominent on the HUFF dataset. In general,
multi-structure learning comprehensively consid-
ers the optimization of views and view fusion struc-
tures, which can not only preserve the diversity be-
tween views, but also explore the underlying con-
sistency in different views, and finally obtain a se-
ries of more robust clustering structures.

Table 4: The effectiveness of the hybrid ensemble
clustering module. (%)

Dataset Metric DMsECN w/o HECM DMsECN

BBC
ACC 94.79 95.78
NMI 84.86 88.01
ARI 87.59 89.82

HUFF-mini
ACC 93.32 93.95
NMI 74.62 76.35
ARI 81.43 83.14

HUFF
ACC 74.54 74.95
NMI 58.34 58.87
ARI 61.57 62.44

TOUTIAO
ACC 95.59 95.85
NMI 90.25 91.09
ARI 91.74 92.40

Hybrid ensemble clustering module We also
conducted experiments for evaluating the effec-
tiveness of the hybrid ensemble clustering mod-
ule of our proposed DMsECN. Experimental re-
sults are depicted in Table 4. The “DMsECN w/o
HECM” represents the proposed DMsECN with-
out hybrid ensemble clustering module. It is clear
that the introduction of hybrid ensemble clustering
module achieves better performances than “DM-
sECN w/o HECM” on all datasets. Therefore, this
module is useful for improving multi-view docu-
ment clustering performance through hybrid en-
semble. Specifically, refining ensemble structure
with consensus clustering guidance is helpful for
improving various clustering structures which pro-
motes the clustering performance in return.

4.5. Visualization
In the Figure 4, subfigures (a) and (b) are the rep-
resentation of headline view and content view ob-
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(a) (b) (c) (d) (e) (f)

Figure 4: Visualization of different structure on the BBC dataset using t-SNE.

tained by original semantic learner. The subfig-
ures (c) to (e) are the multiple clustering struc-
ture learned by multi-structure processor, respec-
tively. In which, subfigure (e) is the view-fused
structure. The subfigure (f) is the final consensus
structure learned by hybrid ensemble clustering
module. Compared with the structure of the orig-
inal representation, the multi-structure processor
has learned the basic cluster structure. Further-
more, the consensus structure obtained by hybrid
ensemble clustering has clear cluster boundaries.

5. Conclusion
In this paper, we propose a deep multi-structure
ensemble clustering network to cluster multi-view
documents. The DMsECN consists of two essen-
tial components. The multi-structure processor
extracts representations and clustering structures
from multiple views. The hybrid ensemble clus-
tering module is accountable for combining these
clustering structures and generating a consensus
structure that underpins the final clustering result.
Our major contributions lie in the preservation of
both consistency and complementarity between
different views, and in the generation of a consen-
sus that upholds cluster separability and compact-
ness.
In future work, we will consider introducing graph
convolutional networks (GCNs) in the stage of
ensemble clustering to better capture the inter-
sample structural relationships by mining neigh-
borhood cluster structure of each view, thereby
aiding multi-view document clustering tasks more
effectively.
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