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Abstract

Existing studies on personalized sentiment classification consider a document review as an overall text unit and
incorporate backgrounds (i.e., user and product information) to learn sentiment representation. However, it is difficult
when these methods meet the current pretrained language models (PLMs) owing to quadratic costs that increase
with text length and heterogeneous mixes of randomly initialized background information and textual information
initialized from well-pretrained checkpoints during information incorporation. To address these problems, we propose
a knowledge-enhanced and parameter-efficient layer normalization (E2LN) for efficient and effective review modeling
via leveraging LN in transformer structure. Initially, a knowledge base is introduced that stores well-pretrained
checkpoints, structured text information, and background information. Based on such a knowledge base, the ability of
LN can be magnified as being a crucial component of transformer structure and then improve the performance of
PLMs in downstream tasks. Moreover, the proposed E2LN can make PLMs capable of modeling long document
reviews and incorporating background information with parameter-efficient fine-tuning and knowledge injecting.
Extensive experimental results were obtained for three document-level sentiment classification benchmark datasets.
By comparing the results, the effectiveness and efficiency of the proposed model was demonstrated. Code and Data
are released at https://github.com/yoyo-yun/E2LN.
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1. Introduction

Text sentiment classification and regression aim to
automatically determine users’ overall sentiment
polarities or intensities toward a particular topic or
event from texts used to survey user attitudes (Liu,
2012; Poria et al., 2023; Lu et al., 2023; Buechel
and Hahn, 2017; Lee et al., 2022). Recently, its
commercial potential has significantly increased
due to the exponential growth in online reviews on
various websites, such as IMDb and Amazon (Fang
and Zhan, 2015). Compared with traditional text
classification, personalized review sentiment clas-
sification requires an intelligent system to identify
fine-grained polarities in document-level reviews
(e.g., IMDb reviews ratings range 1–10 stars) in-
stead of binary or trinary ones, which can facilitate
numerous real-world applications.
One common solution to perform personaliza-

tion is to introduce external background knowledge,
such as user and product (UP) information, usually,
in the form of non-textual tokens (Tang et al., 2015;
Dong et al., 2017; Amplayo, 2019; Chen et al., 2016;
Wu et al., 2018). Most of these models are based
on traditional neural networks such as long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) and learn UP information with model
optimizations from scratch. Recently, pretrained
language models (PLMs) based on transformer
structures (Vaswani et al., 2017) have achieved
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considerable success in sentiment analysis (Zhou
et al., 2020; Yuan et al., 2023), such as BERT (De-
vlin et al., 2019). They outperform traditional neu-
ral networks owing to transfer learning, which ini-
tializes sentiment models from a well-pretrained
checkpoint. Despite continued efforts to improve
contextual representation for various tasks in nat-
ural language understanding, using transformers
to learn personalized sentiment representations is
still difficult. The key challenges are mainly twofold:
(1) The computational complexity in transform-

ers increases at a quadratic rate with the input text
length (Beltagy et al., 2020). As a result, a se-
ries of PLMs limit the maximum length to avoid
overwhelmed deployments (Devlin et al., 2019; Liu
et al., 2019). To address this issue, several meth-
ods have been adopted for efficiently modeling long
documents (Wu et al., 2020; Tay et al., 2020; Wang
et al., 2020). These methods are primarily divided
into two categories: hierarchical approach (Zhang
et al., 2019; Yang et al., 2020) and sparse attention
matrix approach (Beltagy et al., 2020; Zaheer et al.,
2020). However, neither can fully model the global
context of documents and may have suboptimal
performance in document-level review modeling
tasks (Wu et al., 2021).

(2) Pretrained checkpoints in transformer-based
models are agnostic to background information be-
cause only textual languages are encoded in the
pretraining phase. Accordingly, the heterogeneous
mixes of textual information from well-pretrained
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checkpoints and randomly initialized non-textual in-
formation make background information hard to in-
ject directly into PLMs. Although introducing differ-
ent knowledge injection modules can facilitate the
fusion of textual and non-textual information in the
fine-tuning phase, it usually relies on sophisticated
structure designs and large external parameters
to adapt the original structures via fully model fine-
tuning (FFT). For example, Zhang et al. (2021a)
proposed a multi-attribute attention (MAA) module
where 6 additional UP-specific transformer layers
stack over language-specific PLM checkpoints, rel-
atively making a large computational budget.
To address the aforementioned problems, this

study proposes a knowledge-enhanced and
parameter-efficient layer normalization (E2LN)
method over transformers, which mainly contains
two modules, including LN-based attentive pooling
(LNAP) and personalized LN (PLN), for efficiently
and effectively review modeling.
Regarding knowledge enhancements, the pro-

posed method is based on the knowledge base
which preliminarily contains three parts: 1) Off-the-
shelf well-pretrained checkpoints. They initialize
the parameters of the transformer structures for
downstream tasks; 2) Structured text information.
They are generated from chunk-wise hierarchical
texts via the LNAP and perform global textual knowl-
edge to facilitate models modeling long document
review texts; 3) Background information (i.e., UP).
They are zero-initialized as background embed-
ding and are then injected into transformer layers
via the PLN for personalization rendering. Here,
structure text information can be considered as
homogeneous information since they derive from
text information by attentive integration (i.e., LNAP).
Zero-initialized information in PLN cannot influence
textual information from checkpoints at the first step
in the fine-tuning stage thus it gradually facilitates
heterogenous information incorporation during fur-
ther fine-tuning (Zhang et al., 2023).
Moreover, the proposed E2LN is parameter-

efficient since: 1) We propose a straightforward
but efficient LN-tuning (LNT) of parameter-efficient
fine-tuning (PEFT) with gain and bias terms of LN to
bridge pretraining and fine-tuning stages; 2) LNAP
is external-parameter-free where only original gain
and bias terms of LN are used for attentive calcu-
lation; 3) In comparison with previous knowledge
injection methods such as multi-attribute attention
(MAA) (Zhang et al., 2021a), PLN is much lighter
due to vector-shaped gain and bias parameters
accommodating UP information. The features of
parameter efficiency in E2LN can also shed light on
large PLMs, such as Flan-T5 (Chung et al., 2022)
and LLaMA (Touvron et al., 2023), performing per-
sonalized sentiment analysis and other personal-
ized services due to the same transformer struc-

tures all of they used.
Extensive experiments were conducted on three

benchmark datasets: IMDB, Yelp-2013, and Yelp-
2014 (Tang et al., 2015). Experimental results
demonstrated that the proposed model yield on-
par or better performance compared to previous
high-performance models even with fewer train-
able parameters. Additionally, an ablation study
and complexity analysis reveal the effect and high
efficiency of the proposed method in personalized
sentiment analysis.

2. Related Work

Personalized Sentiment Analysis. Text senti-
ment analysis is intended to automatically deter-
mine the attitudes of people toward a certain tar-
get natural language text. To identify exact sen-
timents, personalized sentiment analysis usually
uses personalized background information, such as
UP information, over long-document reviews (Tang
et al., 2015; Amplayo, 2019; Zhang et al., 2021a).
Background information is generally collected from
social networks, such as Amazon and IMDb, identi-
fied with token IDs. However, most existing studies
consider each of them as an overall text unit and
then use traditional neural networks (e.g., LSTM)
to perform sentiment analysis (Bermingham and
Smeaton, 2011; Kim, 2014; Chung et al., 2014).
To address this problem, a hierarchical attentive
network (HAN) has been proposed for personal-
ized sentiment analysis (Yang et al., 2016; Chen
et al., 2016; Wu et al., 2018). To facilitate trans-
former modeling for long documents, two meth-
ods have been proposed: hierarchical structure
(e.g., Hierarchcial BERT (Zhang et al., 2019)) and
sparse attention (e.g., Lonformer (Beltagy et al.,
2020) and BigBird (Zaheer et al., 2020)). However,
these models cannot fully model global document
contexts (Wu et al., 2021).
Normalization. It is one of the most significant
components in neural networks that can normalize
representations to obtain smooth gradients, fast
learning, and improved generalization. For exam-
ple, batch normalization (Ioffe and Szegedy, 2015),
layer normalization (Ba et al., 2016), and group
normalization (Wu et al., 2020) are in normalization
family. Furthermore, recent research has discov-
ered that normalization can be extended to broader
applications, such as style transfer (Lee et al., 2021;
Sun et al., 2021) and recognizing salience informa-
tion (Liu et al., 2017; yichao liu et al., 2021). These
models mentioned that the gain and bias terms in
normalizations were trainable parameters for scal-
ing and shifting and the gain (or scaling) term can
further present importance of features. This study
extended LN to accomondate background informa-
tion and proposed an LNAP to capture structured



8879

… a wonderful location … … the terrible environment …

MatMul

SoftMax

Mask(opt.)

MatMul & Scale

Q K V

Feedforward Neural Network



1





Integrate









11

Inject

Layer Normalization-based Attentive Pooling

C
o
n
caten

atio
n

L
in

ears

(a) Knowledge Base (b) E2LN-based Transformer Structure

ii. Structured information (integrated from sequence)

iii. Background information (marked from social network)

Zero-initialization

……… … …

…

…… …

Multi-head attention

Layer Normalization

Add

Add

For each head

…

…… …

………

……

… ……

………

…

1W −
0

L

x

1 ,( 1)c l−
h 2 ,( 1)c l−

h

2c
x1c

x

( 1)l−
s

mask

( 1)l−
r

( 1)l−
f

( 1)l−
h

1 ,( 1)c l−
f 2 ,( 1)c l−

f

1 ,( )c ls 2 ,( )c ls

( )l
h

Initialize
Bert

RoBerta

i. Well pre-trained checkpoints

0
x

1
x

1C−
x

0
x

1
x

1C−
x 0s 1s 1Cs −

Q
K

0
x

1
x

1C−
x

0
x

1
x

1C−
x 0s 1s 1Cs −

Q
K

ue

pe

wonderful

. . .

. . .

tasty
. . .

. . .

fast

good

. . .

. . .

terrible
poor

. . .

wonderful

. . .

. . .

tasty
. . .

. . .

fast

good

. . .

. . .

terrible
poor

. . .

PLN

LNAP

pu

Inject

Figure 1: Framework of E2Transformer.

text information. Compared with previous studies,
the proposed method does not require additional
modules, such as fully connected networks and
CNNs, to construct injection and attention modules.
Parameter-efficient Fine-tuning. PEFT provides
a solution to alleviate the cost of FFT for PLMs
with ever-growing sizes and demonstrate on-par
performance as FFT. Currently, PEFT methods are
mainly divided into two categories: 1) sparse tun-
ing methods, that fine-tune a small of parameters
in well-pretrained checkpoints (Guo et al., 2021;
Sung et al., 2021; Tay et al., 2020; Zhou et al.,
2020). For example, Ben Zaken et al. (2022) pro-
posed a BitFit method which only tunes bias-term
parameters in PLMs for downstream task adapta-
tion; 2) adding and fine-tuning a relatively small
number of parameters, including adapter (Pfeiffer
et al., 2020), a low-rank version of adapter dubbed
LoRA (Hu et al., 2021), P-tuning (Liu et al., 2023),
prompt-tuning (Lester et al., 2021), and prefix tun-
ing (Li and Liang, 2021). Closest to our method, Qi
et al. (2022) indicates LNT is a viable PEFT method
effectively and efficiently against the gap between
pretraining and fine-tuning phases and orthogonal
to other PEFT methods. The main difference is that
our proposed method is not only for downstream
tasks adaptation but also for knowledge extraction
and injection.

3. Methodology

Figure 1 shows the framework of E2Transformer
that aims to learn a robust personalized review rep-
resentation. It primarily comprises two parts: a
knowledge base and an E2Transformer structure
or E2LN-based transformer structure. The knowl-
edge base activates the structure for efficiently and
effectively handling long document reviews.
An online review is usually a long textual docu-

ment x with a fine-grained rating y and background
information b. Personalized sentiment classifica-
tion task requires a sentiment model f(x,b) that
takes the text x and background information b as
inputs and automatically learns to determine the
sentiment ŷ, which is expected to be close to the
golden rating y. Here, background information is
assigned special IDs to present specific domains.
For example, we use a pair of user ID u and prod-
uct ID p to indicate a review written by the user u
toward the product p, i.e., b = {u, p}.

3.1. The Knowledge Base
Well-pretrained Checkpoints. They are off-the-
shelf weights in transformers learned from a large
number of general texts and are then fine-tuned for
downstream tasks as general knowledge.
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Background Information. To represent UP infor-
mation, a special word-embedding technique is
adopted to convert discrete UP IDs into dense ones,
denoted as eu ∈ Rdu and ep ∈ Rdp , respectively.
Background representation can render text repre-
sentation in transformer structures in forward prop-
agation and update itself during backward learning.
Structured Text Information. It is constructed
from textual sequence representation via LNAP us-
ing a sliding window, which stores global document
contexts and can be easily injected into transformer
structures for document modeling.

3.2. E2Transformer Structure

Similar to the transformer structure (Vaswani et al.,
2017), we adopted a well pretrained tokenizer
to split a given text into discrete N tokens x =
{x0, x1, · · · , xN−1}. Before x is fed into the trans-
former layer, it is word-embedded and added
with positional embeddings, denoted as h0 =
{h00, h01, · · · , h0N−1} ∈ RN×dh , with dh dimension-
ality as well as the input of the first encoder layer.
To efficiently model long documents, we also view
the sequence using a sliding window of size W
to segment the entire text into C = N/W chunks
h(0) = {h0,(0),h1,(0), · · · ,hC−1,(0)} ∈ RC×W×dh ,
where the zero-padding method is used to ensure
exact division.

Every E2Transformer layer (E2Layer) has a struc-
ture similar to the vanilla transformer encoder layer,
mainly containing four components: multi-head at-
tention (MHA), PLN, feedforward neural network
(FFN), and LNAP. Compared with the original trans-
former encoder layer, E2Layer is only technically
knowledge-enhanced and parameter-efficient. Sub-
sequently, we introduce these components follow-
ing information forward propagations.
Multi-head Attention. MHA takes as layer in-
put h(l−1) and updates the token representa-
tion through interactions within sequential tokens,
where l ∈ [1 : L] refers to the lth layer in an
E2Transformer structure with L layers.

The MHA first maps the inputs into queries, keys,
and values via linear projections, denoted as Q =
[Qc]C−1c=0 ∈ RC×W×dh , K = [Kc]C−1c=0 ∈ RC×W×dh ,
and V ∈ RN×dh , respectively. It then computes
the relatedness a between Q and K in each chunk
using scaled-dot product alignment functions. For
each chunk c, a is formulated as

ac = (Qc ·Kc>)/
√
dh ∈ RW×W (1)

Next, chunk-wise attention scores are mapped
onto full-range attention maps in a sparse format
filled with zero paddings. The final attention score

is denoted as

a = softmax(


a0 0 · · · 0
0 a1 · · · 0
...

... . . . ...
0 0 · · · aC−1

�mask(x))
(2)

where mask(·) is the function for generating input
masks, which then calculates Hadamard products
(�) with sparse attention scores to ignore useless
padding tokens in attention interactions. Finally,
V is multiplied by sparse attention to update the
sequential representation:

h̃ = a · V ∈ RN×dh (3)

Based on multi-head mechanism, all headwise vec-
tors are concatenated into a dense vector and then
projected into a comprehensive vector r ∈ RN×dh
with dh dimensionality.

To model the aforementioned local tokens in
each chunk using global document contexts, struc-
tured text information s(l−1) ∈ RC×dh in the
knowledge base is extended to E2Transformer
input h(l−1), generating structure-enhanced keys
by concatenating s at the end of each chunk hc

({[hc; s]}C−1c=0 ) and structure-enhanced values by
concatenating s at the end of the sequence ([h; s]),
denoted as KSe ∈ RC×(W+C)×dh and V Se ∈
R(N+C)×dh , respectively, where [; ] denotes the
concatenation method. To this end, the structure-
enhanced attention score for each chunk aSe,c ∈
RW×(W+C) is calculated using Eq. (1) with Qc and
KSe,c as inputs. Furthermore, aSe andmask([x; s])
are mapped in the shape of N × (N +C) using Eq.
(2), as shown in Figure 1. Consequently, structure-
enhanced outputs h̃Se ∈ RN×dh are generated
using Eq. (3) with aSe and V Se as inputs, sim-
ilar to h̃ in the dimensionalities. Therefore, the
structure-enhanced representation of the MHA out-
put rSe ∈ RN×dh is successively captured in multi-
head mechanism.
Personalized Layer Normalization. Based on LN
in the transformer, we propose a PLN to render the
token representation rSe = [rSe0 , rSe1 , · · · , rSeN−1],
generated from MHA, with personalized back-
ground information of eu and ep.
Before the introduction of PLN, LN is first de-

scribed. Let rn and rn
′ ∈ Rhd , n ∈ [0 : N − 1]

denote token representations before and after LN
operations, respectively.

rn
′ = LN(rn;λ, β) =

rn − µn
σn

� λ+ β

µn =
1

dh

dh∑
i=1

rni

σn =

√√√√ 1

dh

dh∑
i=1

(rni − µn)2

(4)
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where µn and σn denote the mean and standard
deviations of input rn, respectively, rni denotes the
ith dimension of rn, and λ ∈ Rdh and β ∈ Rdh
denote the affine transformation (i.e., gain and bias,
respectively) parameters for power preservation,
obtained by rescaling and recentering the normal-
ized representation (Wu et al., 2020).

The PLN injects background information by per-
sonalizing the gain and bias parameters in the origi-
nal transformer by further rescaling and recentering
them, respectively, as

λPe = (1+ linearλ([e
u; ep]))� λ

βPe = linearβ([e
u; ep]) + β

(5)

where linear(·) denotes a one-layer linear projec-
tion fusing user and product information. In prac-
tice, much more complex structures (e.g., multi-
layer perceptron or MLP, deep convolutional neural
networks or CNN, and graph neural networks) or
simpler method (e.g., concatenation, addition, and
weighted addition) can also be deployed. Using
these operations, a personalization-enhanced rep-
resentation rP e = [rPen ]N−1n=0 is generated as follows:

rPen = PLN(rSen + hn, e
u, ep)

= LN(rSen + hn;λ
Pe, βPe)

(6)

Note that [eu; ep] is zero-initialized to protect pre-
trained checkpoints from the noise that occurs ow-
ing to the random initialization of background in-
formation in the fine-tuning phase. Thus, it can
facilitate the fusion of textual and personalized in-
formation where they are located in heterogenous
distributions.
Feedforward Neural Network. The FFN was
constructed using two-layer linear projections with
a rectified linear unit (ReLU) activation function.
Through an FFN, the sequential representation is
further encoded as follows:

f = FFN(rPe) + rPe ∈ RN×dh (7)

where a residual network is also adopted to connect
the representations.
Layer Normalization-based Attentive Pooling.
LNAP uses the sliding window mechanism to view
the representation f in the shape of C ×W × dh
and generates structured text information stored in
the knowledge base as global document context,
maintaining the original power of the normalization
mechanism.
Previous studies revealed that the scale factor

(gain) parameters in LN can reflect salience infor-
mation in a representation vector (Guo et al., 2021;
Sung et al., 2021). Inspired by this, LNAP is pro-
posed to structure text information in each chunk,

which is formulated as follows:

scorecw = score(f cw) =
f cw − µcw
σcw

λ>

αcw =
exp(scorecw)∑W−1
w=0 exp(scorecw)

�mask(xc)

sc =
∑
w

αcw · LN(f cw;λ, β) ∈ Rdh

(8)

Through concatenation, structured text informa-
tion over chunks is integrated into the knowledge
base, which is denoted as s′ = [s0, s1, . . . , sC−1] ∈
RC×dh . Furthermore, f is input into Eq. (4) to cal-
culate the sequence representation h′. Both s′ and
h′ (i.e., h(l) and s(l)) are the inputs for the following
(l + 1)th transformer layer.
Training Objective. After the knowledge enhance-
ments, the E2transformer efficiently models long
document reviews and effectively captures robust
sequence representations via L layer propagations.
To generate the document representation, LNAP is
applied in the final layer. Subsequently, we use a
linear projection with a softmax activation function
as a classifier to predict sentiment distributions.
Inspired by the current PEFT methods, we fur-

ther adopt LNT method for computational costs
saving. In detail, LNT keeps only the gain and
bias terms of LN trainable. However, in the experi-
ments, we found that pure LNT (or LNT only) could
effectively perform UP injection but hard to pro-
mote adaptation in our tasks. To overcome these
limitations, we combine LNT with current PEFT
methods (i.e., LoRA, BitFit and other sparse fine-
tuning) for improvements, seeing Section 4.2 and
Appendices B.2.

4. Experiments

4.1. Experiment Settings
Dataset and Metrics. We introduced three tradi-
tional document-level sentiment datasets (includ-
ing IMDB, Yelp-2013, and Yelp-2014) and two con-
vincing metrics (accuracy (Acc %) and root mean
squared error (RMSE)), following prior works on per-
sonalized backgrounds (Wu et al., 2018). Further
statistics of the datasets and detailed implementa-
tion descriptions were presented in Appendices A.
Baselines. We introduced current baselines to
compare with our method E2LN, with three groups:
(1) Backbones. Conventional neural networks

included CNN (Kim, 2014) and bidirectional LSTM
(BiLSTM) (Sachan et al., 2019); prevalent PLMs
from BERT family included BERT (B) (Devlin et al.,
2019) and RoBERT (R) (Liu et al., 2019).
(2) Long dependency information. These

models meant utilizing hierarchical structure or
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Models IMDB Yelp-2013 Yelp-2014
Acc RMSE Acc RMSE Acc RMSE

Backbones

CNN 40.5 1.629 57.7 0.812 58.5 0.808
BiLSTM 43.3 1.494 58.4 0.764 59.2 0.733
BERT 47.4 1.379 66.0 0.699 66.9 0.622

RoBERTa 49.3 1.248 68.9 0.604 69.0 0.606

+ Long Dependency

NSC 44.3 1.465 62.7 0.701 63.7 0.686
NSC+LA 48.7 1.381 63.1 0.706 63.0 0.715
ToBERT 50.8 1.194 66.7 0.662 66.9 0.620
HiBERT 51.7 1.192 67.1 0.632 67.4 0.627

Longformer (R) 53.6 1.129 69.6 0.586 69.6 0.590
BigBird (R) 53.7 1.121 69.8 0.585 69.5 0.599
CK-BERT 52.3 1.194 68.1 0.618 68.1 0.613

CK-RoBERTa 53.5 1.148 69.0 0.612 69.3 0.603

+ UP Background

UPA (NSC) 53.3 1.281 65.0 0.692 66.7 0.654
UAPA (NSC) 55.0 1.185 68.3 0.628 68.6 0.626
IAA (NSC) 56.4 1.158 - - 69.4 0.621

CHIM (BiLSTM) 56.4 1.161 67.8 0.646 69.2 0.629
MAA (CK-B) 57.3 1.042 70.3 0.588 71.4 0.573
MAA (CK-B)† 57.2 1.050 70.0 0.593 71.4 0.587
MAA (CK-R)† 58.3 1.015 71.6 0.562 72.5 0.567
MAA (B)† 53.0 1.141 69.3 0.594 70.0 0.579
MAA (R)† 54.8 1.074 71.5 0.578 72.4 0.565

Ours (FFT) E2LN (B) 58.4 1.050 70.4 0.586 71.4 0.571
E2LN (R) 59.8 0.972 71.9 0.562 73.0 0.555

+ PEFT

E2LN (B) LNT 44.8 1.158 64.6 0.676 65.1 0.674
E2LN (R) LNT 48.9 1.119 68.0 0.625 68.4 0.605

E2LN (B) MHA + LNT 58.4 1.052 70.3 0.595 71.3 0.582
E2LN (R) MHA + LNT 59.8 0.959 72.1 0.562 73.0 0.556

Table 1: Results of the proposed and baseline models. The boldface figures denoted the best results
among all methods and underscored figures denoted the best baseline results among each group. All
results were averaged over five runs. † especially denoted performance reimplementation from authors’
original codes under the same experimental environments as ours.

Models IMDB Yelp-2013 Yelp-2014
ours E2LN (B) 58.4 70.4 71.4

w/o U 52.0 67.3 67.7
w/o P 57.1 69.6 69.3
w/o UP 51.9 67.1 67.4
w/o Se 52.7 69.3 70.3

Table 2: Ablation study of accuracy on E2LN (B).

sparse attention for long document modeling, in-
cluding: NSC with local attention (LA) (Chen et al.,
2016), transformer over BERT (ToBERT) (Pap-
pagari et al., 2019), hierarchical BERT (HiB-
ERT) (Zhang et al., 2019), Longformer (Beltagy
et al., 2020) and BidBird (Zaheer et al., 2020).
Moreover, a cherry pick (CK) truncate strategy1
used in (Zhang et al., 2021a) and (Sun et al., 2019)
was applied to pick up length-limited tokens for
PLMs that restricted the maximum input length to
avoid quadratic costs increasing.
(3) UP background information. To perform

personalization, a series of UP injection methods

1The first 128 tokens concatenate the last 384 tokens,
empirically.

were introduced, including: user and product at-
tention (UPA), user attention and product attention
(UAPA), interactive attribute attention (IAA) (Zhang
et al., 2021b), MAA (Zhang et al., 2021a), and
CHIM (Amplayo, 2019).

4.2. Experiment Results
Comparative Results. The main results for all
methods were listed in Table 1. Regarding different
backbones, models performed to different extents
where PLMs outperformed traditional neural net-
works.

Compared with the first group, the second group
of methods relatively achieved better performance
on all three datasets, where, for example, NSC vs.
BiLSTM; ToBERT or HiBERT vs. BERT. Notably,
it could be found that with different truncate strate-
gies (CK and direct truncate2), models performed
with different results, especially for IMDB dataset.
This phenomenon indicted truncate strategies were
suboptimal since input tokens were empirically se-
lected, ignoring full consideration of complete re-

2Remaining the first 512 tokens in document-level
texts.
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Models IMDB Yelp-2013 Yelp-2014
E2LN (B)

PLN
w/ PLN (after MHA) only 58.4 70.4 71.4
w/ PLN (after FFN) only 57.5 70.5 71.4

w/ PLN (after MHA) & PLN (after FFN) 57.6 70.2 71.2

Module

+ MHA 57.8 70.3 70.7
+ FFN 58.6 70.0 70.8

+ MHA & FFN 57.8 69.8 70.8
w/ MHA only 58.1 70.3 70.9
w/ FFN only 57.8 70.1 70.6

Layer 1-6 layers only 57.4 70.2 70.7
7-12 layers only 58.2 70.2 71.1

Table 3: Accuracy of E2LN (B) for the investigation of UP injections. PLN means UP injections at
different LNs. Module and Layer denote other modules (not matrix but only bias terms) and layers in the
transformer structure activated for UP injection, respectively. w/ means only corresponding places where
UP is injected, and + presents additional injections utilized based on the proposed E2LN.

view information. Longformer (R) and BigBird (R)
could achieve better results in the second group
because they introduced sparse attentions to tackle
long documents. Unfortunately, they failed to di-
rectly enable PLMs such as BERT and RoBERTa to
model long documents over 512 tokens, requiring
further pretraining via warm-starting from RoBERTa
checkpoints on a large amount of corpus.
Incorporating with background information of

UP, the third group of methods achieved much
higher scores of Acc and lower figures of RMSE.
These findings revealed the importance of UP in
personalized sentiment analysis. From traditional
backbones to PLMs, most of current personalized
sentiment models have redesigned sophisticated
structures. Regarding MAA (CK-B), it removed
information-unpredictable tokens for satisfying the
input limitations of PLMs. By contrast, the pro-
posed E2LN achieved the best performance in a
more parameter-efficient UP injection way, demon-
strating its positive effect in personalized sentiment
classification tasks.
Moreover, it can be observed that pure LNT (or

LNT only) degraded the performance on all three
datasets. A possible reason might be that although
LN had shown its effectiveness in UP injections,
fine-tuning LN alone was not enough for task adap-
tation in sentiment analysis. However, combing
with previous PEFT methods such as sparse fine-
tuning of MHA (i.e., MHA+LNT) gained on-par per-
sonalized sentiment analysis performance than
FFT. More dynamic combinations between LNT
and other PEFT methods for personalized senti-
ment were reported in Appendices B.2.
Ablation Study. To validate the effectiveness of
the proposed E2LN method, an ablation experi-
ment were conducted in Table 2. Firstly, both Acc
and RMSE performance degraded with the elimina-
tion of user or product information, demonstrating
the effect of personalized background information
injection. Furthermore, the elimination of user infor-

mation affected the performance more than those
of product information, indicating that the person-
alized background information of users was more
crucial for sentiment analysis than product infor-
mation. This was because user information is di-
rectly related to the subjective sentiments of users
in reviews, whereas product information only con-
tained objective characteristics for certain products.
Next, we stopped integrating and injecting struc-
tured text information during the training and pre-
diction phases, and the results were consequently
lowered. Without structured text information, the
BERT-based model can only model the local infor-
mation of text input within the first 512 tokens, which
is not sufficient to effectively handle long-document
inputs.

4.3. Analysis of Knowledge
Enhancements

UP Injection. In transformer structures, we de-
noted two LNs deployed after MHA and FFN at
each layer as LN (after MHA) and LN (after FFN),
respectively. To explore how LN-based injections
influence the model performance, the first group
in Table 3 reported Acc scores of E2LN (B) with
personalized background information injections at
different LNs (called PLNs). E2LN (B) obtained the
best results when personalized background infor-
mation was injected into LN (after MHA), but not
into LN (after FFN). This may be because LN (after
FFN) had been extended to LNAP for structured
text information generating (see Figure 1). Both
structured and personalized knowledge injections
would impose a considerable burden on LN (after
FFN) with conflict gradients from multiple optimal
objectives.

To further compare and improve the performance
of the proposed method with other components in-
jecting UPs, we conducted experiments as shown
in 2nd-3rd groups. Specially, we had the following
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Models IMDB Yelp-2013 Yelp-2014
E2LN (B)
+AvgP 57.8 69.7 71.1
+MaxP 53.1 66.8 68.6
+AttP 57.9 70.1 71.3
+LNAP 58.4 70.4 71.4

Table 4: Acc Performance (%) of various pooling
methods embedded into E2LN (B).

findings. 1) Varying injection modules, different per-
formance gained. Comparing with MHA and FFN
based injections, LN based injections achieved rela-
tively better performance. Moreover, it can be found
that performance of dynamic combinations of var-
ious injections were sensitive to applied datasets
and suggested a flexible combination strategy for
real-world applications. 2) High-layer (7-12 layers)
injections outperformed low-layer (1-6) injections.
A possible reason might be that high layers in trans-
former structures could encode more semantic rep-
resentation than low layers, which encoded more
syntactic information, and semantic UP alignments
were more beneficial for personalization.
Effect of LNAP. We separately conducted experi-
ments on E2LN (B) with several other pooling meth-
ods, as shown in Table 4. Compared with fixed
pooling methods, that is, average pooling (AvgP)
and maximum pooling (MaxP), attentive pooling
methods, that is, attentive pooling (AttP) and LNAP,
achieved better results. This was because attentive
pooling methods can dynamically capture salient
information over sequences to obtain a robust rep-
resentation. AttP and LNAP obtained comparable
results, demonstrating the effect of LNAP. Com-
pared with AttP in structure, LNAP does not require
additional modules with external parameters for
fine-tuning.

To further reveal how structured text information
facilitates the handling of long documents, we con-
ducted a fine-grained analysis for different input
lengths, as shown in Figure 2. Regarding the dif-
ferent input lengths, the different comparative Acc
were pictured. Within 512 input tokens, both E2LN
w/o Se and E2LN that are initialized from BERT
achieved competitive results. When the number
of input tokens increased over 512, Acc of E2LN
(B) w/o Se sharply decreased, whereas E2LN (B)
preserved itself from such damage. This phe-
nomenon demonstrated the effect of the injection
of structured text information that was generated
from LNAP.

4.4. Analysis of Efficiency

Parameter Efficiency in PLN. In comparison with
MHA and FFN, injecting UP into LN is more
parameter-efficient. MHA and FFN contain high-

Figure 2: Bar plot for IMDB Dev Acc (Y-axis) on
different lengths (X-axis) of E2LN w/o Se and E2LN
over BERT.

Figure 3: Efficiency analysis for PLN and LNAP on
IMDB datasets.

dimensional matrix-shaped parameters (din× dout)
requiring dimensionalities of background informa-
tion (e.g., only for user)D = Nu×din×dout for injec-
tion alignments where Nu presents the number of
users. While for LN, it only contains vector-shaped
parameters (dv) requiring the dimensionalities of
D = Nu × dv. Here, in BERT checkpoints, there is
din = dout = dv = 768.
For the IMDB dataset, Figure 3(a) showed the

parameters requirements for alone user informa-
tion injection on different modules based on BERT
checkpoints. The order of injection modules by
requiring the number of external parameters was
FFN>MHA>LN, which was the same as the order
of the number of their parameters. What’s more, it
can be found that with 12 PLN equipped, the pro-
posed method was deployed with less parameters
than MAA (B) who stacked 6 personalized layers
over BERT checkpoints, further demonstrating the
efficiency.
Efficiency for Structured Textual Information.
In local chunk-wise context modeling, the com-
putational complexity is O

(
C ·W 2 · d

)
, where C

denotes the total number of chunks with size W ,
and d denotes the dimensionality of hidden states.
By injecting global document contexts into local
representations, the complexity is calculated as
O
(
C2 ·W · d

)
. Therefore, the total complexity of

the proposed model is O
(
C ·W 2 · d+ C2 ·W · d

)
,

which indicates that it is considerably more efficient
than the original transformer whose complexity is
O(N2 · d), where N is C ·W .
In practices, we also analyzed the statistics in

occupied training memory that were shown in Fig-
ure 3(b). With the input lengths extend, the mem-
ory in the training phase was occupied increasingly.
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Since MAA (B) introduced additional 6 Transformer
layers, it was generally allocated more memories
than our methods. With structural knowledge en-
hanced, the proposed method could break the input
length limitation in most of PLMs with a lower in-
creasing trend in memory occupations, consistent
with the abovementioned efficiency discussion.

5. Conclusions

In this paper, we proposed the E2LN to effec-
tively and efficiently model personalized reviews.
It adopted a knowledge base that contains three
aspects to leverage a robust review representation.
Experimental results for three document-level sen-
timent datasets showed that the proposed method
outperformed previous high-performance methods,
thereby demonstrating its effectiveness and effi-
ciency.
Future work could adopt exact opinion-based

structured information, such as aspect-based senti-
ments with sentiment holders, targets, expressions,
and polarity, for knowledge enhancement.
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A. Detailed Experimental Settings

A.1. Datasets
We introduced three traditional document-level sen-
timent analysis datasets with personalized back-
grounds (i.e., discrete UP information), includ-
ing IMDB, Yelp-2013, and Yelp-2014. The IMDB
dataset contained movie reviews rated in the range
of 1–10 stars, and the Yelp datasets contained
restaurant reviews with 1–5-star ratings. All the
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Datasets #labels #reviews #users #products #docs/user #docs/product Max. words Avg. words
IMDB 10 84,919 1,310 1,635 64.82 51.94 2,802 431.6

Yelp-2013 5 78,966 1,631 1,633 48.42 48.36 1,643 212.2
Yelp-2014 5 231,163 4,818 4,194 47.97 55.11 1,643 220.1

Table 5: Statistics of IMDB, Yelp-2013, and Yelp-2014 datasets.

Figure 4: Visualization of the change of terms on IMDB, Yelp-2013, and Yelp-2014 datasets.

du&dp 256 512 768 1024
256 57.4 57.8 58.2 58.0
512 57.6 58.1 58.5 58.0
768 57.4 57.9 58.0 57.8
1024 57.2 57.7 57.8 57.7

Table 6: Acc (%) performance on dev dataset
of IMDB with various dimensionalities of users
(column-wise direction) and products (row-wise di-
rection) embeddings.

datasets provided predetermined data splits, in-
cluding training, development (dev), and test sets.
Further statistics of the datasets were presented in
Table 5.

A.2. Experimental Settings
We mainly used well pretrained checkpoints of un-
cased BERT and RoBERTa in the base version3

to initialize the E2Transformer structure, which had
12 layers with a dimensionality dh of 768. In terms
of background embedding, UP word embeddings
were set as du of 768 and dp of 512, respectively,
associated to the best results for the dev sets in
the grid search strategy. The size of the sliding
windowW was set to 512. In the fine-tuning phase,
AdamW (Loshchilov and Hutter, 2019) was used
as the optimizer, with a learning rate of 2e-5. The
minibatch size was 16, and early stopping at three
epochs was implemented to avoid overfitting. The
experiments were conducted on two-way RTX 3090
GPU devices, and the code was implemented by

3https://huggingface.co/

PyTorch.

B. Further Experiments

B.1. Dimensions of Background
Information

In the knowledge base, personalized background
information is primarily present in the UP embed-
dings (eu and ep). The dimensionalities (du and dp)
of these embeddings exhibit a corresponding capa-
bility. To investigate the effect of UP embeddings
and the hyperparameter selection, we used a grid
search strategy to study the dev performance of
Acc scores with different dimensionalities on IMDB
dataset, as presented in Table 6. Evidently, very
small or very large dimensionalities of the user or
product equally degraded the final performance of
the model. A possible reason was that very small
dimensionalities cannot fully embed rich personal-
ized knowledge, whereas very large dimensionali-
ties may contain redundant information, resulting
in overfitting.

B.2. Effect of LN-Tuning
Setups. Since the proposed methods operated
LNs, we further investigated the effect of LNT and
its combinations with the previous PEFT methods.
Specially, for sparse fine-tuning, we took MHA,
FFN, and bias terms into account; for adapters,
we applied LoRA that introduced low rank matrices
of MHA for downstream task adaptations.
Results. Comparative results were reported in Ta-
ble 7. Initially, we found that pure LNT (or LNT only)
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Models IMDB Yelp-2013 Yelp-2014 #IN #FTAcc RMSE Acc RMSE Acc RMSE

FFT E2LN (B) 58.4 1.050 70.4 0.586 71.4 0.571 0.02 100
E2LN (R) 59.8 0.972 71.9 0.562 73.0 0.555 0.01 100

PEFT

E2LN (B) LNT 44.8 1.158 64.6 0.676 65.1 0.674 0.02 0.05
E2LN (R) LNT 48.9 1.119 68.0 0.625 68.4 0.605 0.01 0.04

E2LN (B) MHA + LNT 58.4 1.052 70.3 0.595 71.3 0.582 0.02 25.94
E2LN (R) MHA + LNT 59.8 0.959 72.1 0.562 73.0 0.556 0.01 22.78
E2LN (B) FFN + LNT 57.7 1.058 70.4 0.604 70.7 0.585 0.02 51.80
E2LN (R) FFN + LNT 58.8 0.948 71.7 0.584 72.4 0.562 0.01 45.50

E2LN (B) LoRA (q, k, v&o) + LNT 58.3 1.068 69.8 0.605 71.0 0.587 2.17 2.15
E2LN (R) LoRA (q, k, v&o) + LNT 58.2 0.991 71.4 0.578 72.1 0.568 1.91 1.90

E2LN (B) LoRA (q&v) + LNT 57.1 1.134 68.6 0.631 70.6 0.591 1.09 1.12
E2LN (R) LoRA (q&v) + LNT 57.2 1.023 70.4 0.590 71.2 0.572 0.96 0.98

E2LN (B) BitFit + LNT 46.3 1.326 65.1 0.670 64.9 0.676 0.02 0.13
E2LN (R) BitFit + LNT 49.8 1.124 68.6 0.611 68.6 0.604 0.01 0.11

Table 7: Results of comparison between LNT and several previous PEFT methods in a dynamic combina-
tion. #IN(%) counted external or injected parameters against the whole parameters of PLM backbones
and #FT (%) revealed the statistics of trainable parameter ratios for each pair of UP (ignoring the number
of UPs).

degraded the performance on all three datasets.
A possible reason might be that although LN had
shown its effectiveness in UP injections, fine-tuning
LN alone was not enough for task adaptation in sen-
timent analysis. Evidentially, the results of PEFT
groups proved that LNT provided a PEFT method
to shorten the gaps between pretraining and fine-
tuning phase in PLMs via dynamically combing
with previous PEFT methods; consequently, it (es-
pecially for MHA+LNT) gained on-par personal-
ized sentiment analysis performance than FFT.
Furthermore, it can be found that 1) sparse fine-
tuning of MHA (MHA+LNT) outperformed those of
FFN (FFN+LNT) in our settings with fewer train-
able parameters; 2) and matrix-based PEFT meth-
ods (LoRA+LNT) achieved better results than bias-
based PEFT methods (BitFit+LNT). This may be
because that the MHAmodule and the matrix terms
in transformer were critical factors in shortening
gaps between PLMs’ pre-training in large common
corpus and their fine-tuning phase for document-
level sentiment analysis.
Visualizations. We further visualized the change
of the fine-tuned terms at each layer for the bet-
ter understanding of LNT and UP injection. Spe-
cially, following (Qi et al., 2022) and (Ben Zaken
et al., 2022), we used ‖to − tf‖1/ dim(t) to mea-
sure the change of terms, where t presented the
terms that would be tuned during downstream task
adaptations, between initialized values to and fine-
tuned values tf . We conducted experiments on
IMDB, Yelp-2013 and Yelp-2014 with E2LN (R)
LoRA (q&v) + LNT, as illustrated in Figure 4.
It can be first observed that, in our settings, the

terms of gain and bias slightly changed where the
gain terms changed more than the bias terms. Al-
though the terms of gain and bias might not perform

well in downstream task adaptations (i.e., pure sen-
timent analysis), they were significantly changed
when UP information was injected, indicating our
PLN method was capable of enlarging solution
spaces of LN for personalization. Mover, varying
UP information changed the LN factors (both gain
and bias) to different distributions, revealing the
diversities of personal preferences in societies. We
also found that, with the incorporation of UP in-
formation, the changes in higher layers showed
relatively larger than those in lower layers. This
phenomenon also explained the aforementioned
findings where high-layer injections outperformed
low-layer injections in Table 3.
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