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Abstract
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge
acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning
or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex
sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with
small models for relational triple extraction tasks. The framework includes an evaluation model that can extract
related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the
model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive
experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate
extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model
can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.

Keywords: Information Extraction, Language Modelling, Evaluation Methodologies

1. Introduction

Relational triple extraction plays an important role
in knowledge acquisition. This task aims at extract-
ing triples (subject, predicate, object) (or (s, p, o))
from a given natural language sentence. Current
large language models (LLMs) have demonstrated
the capacity to effectively extract triples from simple
sentences via zero-shot or few-shot learning (Wei
et al., 2023; Wadhwa et al., 2023). However, it
is still unsatisfactory when the sentences contain
multiple relational triples or mention many entities
and relations. When LLMs executing multiple triple
extraction tasks, they often miss out triples, which
means the low recall of the results (see Table 1).

In the field of relational triple extraction, numer-
ous short sentences contain a substantial number
of triples (Cheng et al., 2021). This presents a
significant challenge for LLM-based extraction. Al-
though we can meticulously design instructions
or use few-shot in-context learning to improve the
triple extraction capabilities of LLMs, it is still dif-
ficult to rectify the issue of incomplete extraction
from complex sentences by just modifying instruc-
tions or incorporating phrases such as ‘extract
as many results as possible’ into the prompts,
as shown in Figure 1(a) and Table 1. This phe-
nomenon could potentially be attributed to the fact
that the majority of the training corpus of LLMs is
composed of simple sentences, which means the
distribution is significantly biased towards contain-

ing few triples, leading models to overlook some
correct triples when dealing with complex sen-
tences. Previous research has demonstrated that
fine-tuning a large model using task data can ef-
fectively enhance its relation extraction capabilities,
yielding more accurate extraction results (Wadhwa
et al., 2023). However, we observed that the fine-
tuned LLMs still encounter the issue of a signif-
icantly lower recall compared to precision in the
case of multiple triples, as Table 1 and Table 3
show. On one hand, the volume of fine-tuning task
data is relatively small compared to the original
training data of LLMs, making it insufficient to al-
ter the bias of the triplet distribution. On the other
hand, the decoding method of the generative lan-
guage model is not well-suited for the extraction
of multiple different relational triples. Even if we
compel the large model not to generate the <EOS>
token unless it produces enough triples, the model
still lacks the capability to find more valid triples. In-
stead, it repeats the generated contents, as shown
in Figure 1(b).

As a result, relying solely on LLMs to achieve
complete extraction results in multiple triple extrac-
tion tasks is proved to be a considerable challenge.
Conversely, traditional small models are prone to
extract an excessive number of triples, leading to
high recall but low precision results. It is because
these models lack the ability to identify what triples
are not mentioned (Chu et al., 2020; Jiang et al.,
2020).
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(a) (b)

Figure 1: (a) Illustration of multiple relational triple extraction by LLMs, based on ChatGPT or Vicuna-13B.
Both models are given appropriate instructions, limited predicates list and asked to extract as many as
possible. (b) Compelling LLM to generate more triples results in repetitive outputs.

Dataset Fine-tune Precision Recall

NYT10 w/o fine-tune 13.75 7.75
NYT10 w/ fine-tune 78.05 46.38
SKE21 w/o fine-tune 41.30 34.17
SKE21 w/ fine-tune 72.56 57.42

Table 1: Precision and recall when extracting multi-
ple relational triples by a large language model. We
only consider the complex sentences that contain
more than 7 triples. The model used is Vicuna-13B
for NYT10 and Qwen-7B for SKE21.

Hence, the model collaboration methods that
amalgamate the strengths of small models and
LLMs are a natural consideration for addressing
the multiple relational triple extractions. However,
as previously mentioned, traditional small models
can easily generate incorrect entity pairs when
dealing with complex sentences. If these results
are directly incorporated into the extraction pro-
cess, such as providing them to the LLMs as part
of the prompt, it can easily mislead the LLMs and
compromise extraction precision.

Motivated by the above considerations, we pro-
pose an evaluation-filtering model based on the
transformer architecture to generate candidate re-
lational entity pairs and construct an LLMs-based
relational triple extraction framework in conjunc-
tion with this model. This model has the following
characteristics: First, the model works at the token
level, enabling the evaluation of candidate entity
pairs represented with arbitrary tokens, so that it
can accurately extract the positive entity pairs and
tolerate noisy candidates. Second, our model can
be easily integrated into the process of LLM-based
relation triple extraction as a plug-in, significantly
enhancing the extraction recall rate. The model
can also be seamlessly combined with traditional
extraction models to improve the precision. In sum-

mary, our main contributions are as follows:

• First, we construct an extraction framework
that integrates both the small models and
LLMs. This framework provides the filtered
positive entity pairs to the LLMs as part of the
prompt, thereby guiding the model to consider
more entity pairs and assign proper relations
to them.

• Second, we propose a fast and robust evalua-
tion model that can be used to effectively filter
wrong extracted results and generate positive
entity pairs. It is loosely coupled with the ex-
traction process and can be injected into any
small model and LLM-based method to en-
hance the recall and F1 score of results.

• Third, we conduct extensive experiments to
show that the proposed method can success-
fully enhance the performance of LLMs in re-
lational triple extraction, particularly in terms
of the recall rate. Additionally, supplementary
experiments also indicate that the evaluation-
filtering method can boost extraction precision
when applied to traditional small models.

2. Related Works

2.1. Large Language Models for
Relational Triple Extraction

Large Language Models (LLMs) have gained
widespread attention due to their strong ability
for various NLP tasks. In addition to the robust
GPT series (Brown et al., 2020; OpenAI, 2023),
open-source LLMs have been also widely stud-
ied and applied, including Llama series (Touvron
et al., 2023a,b), Qwen (Bai et al., 2023) and Vi-
cuna (Zheng et al., 2023). Recent studies on LLMs
suggest that they perform well in a variety of down-
stream tasks, even when provided with only a few



8892

examples as instructions (Agrawal et al., 2022; Je-
blick et al., 2023). In extraction-related tasks, some
works show that with proper prompting, ChatGPT
can achieve comparable performance with the su-
pervised methods on zero-shot or few-shot settings
of extraction tasks (Wei et al., 2023; Gao et al.,
2023; Tang et al., 2023). For open-source LLMs,
previous work shows Flan-T5 (Chung et al., 2022)
can yield outstanding performance by supervising
and fine-tuning and suggests LLMs should be a
standard baseline for relation extractions (Wadhwa
et al., 2023). However, these studies did not specifi-
cally consider the model’s extraction ability on com-
plex sentences containing multiple relational triples.
Furthermore, the manual evaluation of the results
was not as rigorous as exact matching, and most
of these studies focus on chatGPT and do not con-
sider various open-source LLMs.

2.2. Model Collaboration in the Era of
Large Language Models

Current methods of model collaboration involving
large language models can be primarily catego-
rized into three types. First, the output results of
the small model are utilized as a component of the
overall framework to assist the LLMs to perform bet-
ter on downstream tasks (Xu et al., 2023; Leviathan
et al., 2023). Second, large and small models are
collaboratively trained based on task data to effi-
ciently utilize the unlabeled data and minimize the
bias of models (Lang et al., 2022). Third, ensem-
bling multiple prompts or multiple LLMs to achieve
more stable output results, as well as improved
generalization performance (Allingham et al., 2023;
Jiang et al., 2023).

In the field of relational triple extraction, research
based on traditional models is relatively compre-
hensive, and some novel and effective multi-step
or joint methods are proposed to extract multiple
triples (Li et al., 2019; Wei et al., 2020; Yu et al.,
2020; Xie et al., 2021). For example, RERE (Xie
et al., 2021) carefully compares different types of
multi-step settings and shows that the relation-
then-entity extraction paradigm exhibits a good
performance since it suffers less from the problem
of data imbalance, which is often encountered in
relational triple extraction tasks. However, these
methods cannot fully solve complex relational triple
extraction tasks. Inspired by this, we propose to
design an evaluation model and integrate this small
model as a plug-in within the extraction framework
based on LLMs.

3. Methods

3.1. Solution Framework

Our LLM-based relational triple extraction frame-
work comprises two stages (see Figure 2). In the
first stage, the LLMs directly extract triples from
sentences according to the provided instructions.
Subsequently, in the second stage, we design an
"evaluation-filtering" method, which extracts the
positive entity pairs by our evaluation model and
uses prompts to inform the LLMs that "these entity
pairs may have certain relations in the relations
list". These candidate pairs will be provided to
the LLMs along with the instructions and the first-
stage extraction results. LLMs will further scrutinize
these candidates and assign appropriate relations
based on their language comprehension capabili-
ties, thereby achieving comprehensive and accu-
rate extraction results. An example of the whole
workflow is shown in Figure 3.

3.2. Basic Idea of Evaluation Model

The evaluation model (bottom-right part of Fig-
ure 2) uses a sentence (a list containing N tokens)
as the input and outputs a token pair evaluation
matrix (N ∗N ). Each element in the matrix is an
evaluation score for a token pair. The evaluation
score of a token pair ti and tj is used to compose
the evaluation score of an entity pair (s, o), where
s contains ti and o contains tj . Obviously, for an in-
put sentence, no matter how many candidate pairs
are to be evaluated, only one inference is needed
to get the evaluation matrix. Our goal is to build
such a model that scores candidate entity pairs
based on the sentence from which the triples are
extracted, as Problem 1 shows.

Clearly, this evaluation model could be used as
a filter, removing the extracted candidate entity
pairs with low scores while retaining those with
high scores. After this filtering process, we can
obtain a set of precise and complete positive sam-
ples (i.e., truly related entity pairs), which can then
be supplied to LLMs as prompts to facilitate high-
precision extraction of multiple relational triples.

Problem 1 (Evaluation of entity pairs) Given a
sentence T and a candidate entity pair set C, the
evaluation model outputs a score F (s, o) for each
pair (s, o) ∈ C.

Moreover, in order to overcome the noisy en-
tity problem, we use token-level representation to
support any possible entities in the sentence.

Rationality for providing entity pairs Note that
we only evaluate entity pairs (s, o) and provide
them to LLMs, ignoring the predicate p. The ra-
tionality of ignoring the predicate is as follows.
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Figure 2: Model framework. On the bottom left is an arbitrary entity-extraction model. On the bottom right
is our evaluation model, which outputs a token pair scoring matrix.

Figure 3: An example of the workflow of our
Evaluation-Filtering method.

First, we find that in most real datasets, the en-
tity pairs are more accurate than predicates in a la-
beled sample1. Second, the model structure based
on entity pairs evaluation is more straightforward.
It only needs to generate one evaluation matrix
for a sentence, while the evaluation model for en-
tire (s, p, o) triples requires to generate k matrices,
where k represents the number of relations con-
tained within the sentence.

Rationality of token based representation Our
model aims at evaluating any candidate entity pairs

1E.g., in the NYT11 training set, there are 20% wrong
triples, but only 6% wrong entity pairs.

in the sentences. However, extracting the en-
tity span accurately is still a problem (Dixit and
Al-Onaizan, 2019; Ji et al., 2020). For example,
“Gates and Steve” might be wrongly identified as
an entity (in Figure 4). Thus, it is necessary to
evaluate the candidate "entities" represented by
arbitrary tokens.

3.3. Self Labeling

The evaluation model has to distinguish between
correct entity pairs and wrong entity pairs, which is
a binary classification task, thus we need positive
and negative training samples. In original extrac-
tion datasets, a sentence is labeled with some
triples, which correspond to some entity pairs with
one of the target relations. Obviously, these entity
pairs are positive samples (y = 1). Then, it is im-
portant to obtain negative samples. We generate
negative samples with the following assumption:

Assumption 1 If a labeled sentence contains mul-
tiple triples, which involve multiple entities, then the
unlabeled entity pairs are negative samples.

Rationality of Assumption 1 Assumption 1 will
generate a false negative entity pair (e1, e2) only
when all the four conditions are satisfied (“*” means
any relations or entities):

• (e1, ∗, e2) is mentioned in the sentence.

• Any triples (e1, ∗, e2) are not labeled in the sen-
tence.
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Figure 4: This sentence contains 6 entity pairs, but only 2 pairs are positive.

• Triple (e1, ∗, ∗) or (∗, ∗, e1) is labeled in the sen-
tence.

• Triple (e2, ∗, ∗) or (∗, ∗, e2) is labeled in the sen-
tence.

However, it is seldom the case that the four condi-
tions are simultaneously met. The false negative
case means that an annotator (no matter whether it
is distant supervision via knowledge base or hand
annotation via human) labels other triples in a sen-
tence for both e1 and e2, but only misses the rela-
tion between them.

Token-level labeling The above process gen-
erates entity pair samples, and the labeled token
pairs can be simply and effectively obtained. For
example, in Figure 4, we simply split the negative
entity pair (Microsoft, Steve Jobs) into token pairs
(Microsoft, Steve) and (Microsoft, Jobs), which are
labeled as negative token pairs. This process
not only increases the number of training pairs,
but also enables the model to evaluate unseen or
wrong entities, or even any token sequence.

Note that, for any other token pairs in the sen-
tence (e.g. (founders, Microsoft)), they are not
labeled as negative or positive (y = 0). They will
be masked in the training process of our evaluation
model since we have no information about whether
they are positive or negative.

3.4. Evaluation Model Structure

Following the Transformer architecture, our evalua-
tion model adopts a BERT-based encoder and an
attention-like 2-dim decoder (as shown in the right
part of Figure 2).

3.4.1. Encoder

We use a regular Transformer model as our en-
coder. Specifically, we use BERT (Devlin et al.,
2019) for English and RoBERTa (Liu et al., 2019)
for Chinese. They have the same network struc-
ture.

More formally, for an input sentence with N to-
kens [t1, t2, ..., tN ], where t1 = [CLS] and tN =
[SEP ] are fixed special tokens, the BERT en-
coder converts these tokens into hidden vectors
[h1,h2, ...,hN ], where each hi is a d1-dimension
vector. In the BERT-base structure, d1 = 768.

3.4.2. 2-dim Decoder

For an input sentence with N tokens, the BERT-
based encoder encodes the tokens into N vectors
[h1,h2, ...,hN]. Then, following the computation of
the attention matrix in Transformers, we use a one-
head self-attention to compute the 2-dim attention
matrix as the output of the decoder. In detail, we
first use two linear layers to convert the vectors hi

to d2-dimension vectors qi and ki:

qi = W(q)hi + bq,

ki = W(k)hi + bk,
(1)

where W and b are trainable parameters of the
linear layers, and d2 = 64. Then, we compute their
scaled dot-product attention as the output:

Aij = qT
i kj/

√
d2. (2)

As proposed by Roformer (Su et al., 2021), it is
advantageous to add relative position embeddings
(RoPE) before computing the attention output. The
relative position embeddings Ri are realized by
constructing sine and cosine functions that satisfy
RT

i Rj = Rj−i, we refer the readers to (Su et al.,
2021) for technical details. The intuition is that
when encoding positional information Ri and Rj at
position i and j, the output attention will naturally
contain the relative positional information. The final
form of the attention output is:

A′
ij = (Riqi)

T (Rjkj)/
√
d2

= qT
i Rj−ikj/

√
d2.

(3)

Recall that this decoder (without the relative posi-
tion embeddings) is only a part of regular one-head
self-attention, although it has O(N2) outputs, its
computational cost is smaller than the Transformer-
based encoder. Hence, the cost of training such
an evaluation model is lower than a Transformer-
based extraction model.

3.5. Loss Function

Since our task is a classification task with posi-
tive and negative labels, we use the binary cross-
entropy loss function to train our evaluation model:

L = −
∑

i,j:yij=1

log (σ(A′
ij))−

∑
i,j:yij=−1

log (1− σ(A′
ij)),

(4)
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Dataset |T |>=0 |T |>=30 |T |>=50 |T |>=70 |T |>=100
avgE avgR #sen avgE avgR #sen avgE avgR #sen avgE avgR #sen avgE avgR #sen

NYT10 2.2 1.7 5000 2.2 1.8 4091 2.2 1.8 1798 2.3 1.9 441 2.3 2.1 51
NYT11-HRL 2.0 1.0 369 2.0 1.0 283 2.0 1.0 120 2.0 1.0 28 2.0 1.0 3

SKE21 3.3 2.4 1150 3.5 2.6 901 3.9 3.0 423 3.9 3.0 202 4.0 3.2 80
WikiKBP 2.1 1.1 182 2.2 1.2 98 2.1 1.0 25 2.3 1.2 6 - - -

Dataset |T |>=50 |T |>=100 |T |>=150 |T |>=200 |T |>=250
avgE avgR #sen avgE avgR #sen avgE avgR #sen avgE avgR #sen avgE avgR #sen

HacRED 7.1 7.4 1500 7.4 7.7 1372 8.2 8.8 1012 9.1 10.0 693 10.2 11.4 410

Table 2: The statistics of complex sentences of testing datasets. |T | means the number of tokens in
the sentences. |T | >= x only reports results for sentences with at least x tokens. avgE, avgR denote
the average numbers of labeled entities, labeled triples in the sentence, respectively. #sen denotes the
number of sentences.

where yij is the label of the token pair (ti, tj), and
σ is the sigmoid function. Note that, our task is
not a pure binary classification task, since there
are many unlabeled token pairs in our task. Thus,
the positive and negative examples are not com-
plementary. In the implementation of the loss, we
ignore the part of unlabeled pairs (i.e. y = 0).

3.6. Candidate Pairs Evaluation

After training such an evaluation model, we
adapt the model to an existing extraction method
to obtain better extraction results. We score
each candidate extracted pairs (s, o), where s =
[tsst , tsst+1, ..., tsed ] and o = [tost , tost+1, ..., toed ]
are sub-token-sequences in the given sentence.
Recall that, our evaluation model outputs a token
pair evaluation matrix A′. Based on this matrix, we
compute the score between s and o by the mean
of the matching scores of their tokens:

F (s, o) =

∑sed
k=sst

∑oed
l=ost

A′
kl

(sed − sst + 1)(oed − ost + 1)
(5)

where sst and ost are the indexes of the first el-
ement of token lists s and o, sed and oed are the
indexes of the last element of s and o.

Finally, only (s, o) satisfying F (s, o) > 0 will be
added to the result. Note that, we only need to
predict the matrix A′ once for each sentence, no
matter how many triples of this sentence should be
evaluated, thus the evaluation process is efficient.

3.7. Parameter-Efficient Fine-Tuning for
LLMs

For multiple relational triple extractions, employ-
ing instruction-tuning or in-context learning (ICL)
to guide LLMs, as is done for general tasks, often
yields unsatisfactory results. This is because LLMs
possess strong generalization capabilities and lan-
guage comprehension, leading them to inexactly
recognize the span of entities or relations. For in-
stance, they may extract predicates not presented
in the predicate list, or consider book titles as part
of an entity, even when their extraction range is

explicitly limited through prompts. Consequently,
parameter fine-tuning is necessary to adapt the
model to the corresponding datasets and to po-
tentially non-natural language representations of
predicates (e.g. NYT10 dataset).

In this paper, we mainly adopt the LoRA tech-
nology (Hu et al., 2021). LoRA is a parameter-
efficient fine-tuning (PEFT) method. It freezes the
large-scale parameters of a pre-trained model and
simulates parameter changes through low-rank de-
composition of the matrix, thereby adapting the
model to downstream tasks with small-scale pa-
rameter adjustments. Compared to full-parameter
fine-tuning, this method is more time-efficient and
requires less computing resources and storage.

3.8. Instruction Template

To better guide LLMs in performing multiple re-
lational triple extraction tasks, we design an in-
struction template that explicitly includes the task
description, the restricted range of extracted predi-
cates, the output format, and other requirements.
We also explicitly require the model to extract as
many relation triples as possible. Additionally, for
the original large model without PEFT, a complete
input-output example can also be placed after the
instruction template for in-context learning.

After the evaluation model extracts candidate en-
tity pairs, these candidates will be provided to the
LLMs as part of the prompt, along with the afore-
mentioned instructions and the first-stage extrac-
tion results, to guide the model in completing the
extraction. See Appendix C for detailed prompts.

4. Experiments

4.1. Datasets

We evaluate our methods on several public and
downloadable complex extraction datasets, includ-
ing NYT series (Riedel et al., 2010; Takanobu
et al., 2019), Wiki-KBP (Ling and Weld, 2012),
SKE21 (Xie et al., 2021) and HacRED (Cheng
et al., 2021), which are challenging for many ex-
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SKE21 HacRED NYT10 NYT11-HRL WikiKBP

Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1

Qwen-7b (w/o peft) 17.59 26.18 21.04 5.72 6.10 5.90 8.18 6.12 7.00 8.08 16.19 10.78 6.64 19.50 9.91
+Ours 42.21 40.14 41.15 19.56 15.06 17.02 10.07 6.75 8.08 15.87 24.13 19.14 9.02 18.00 12.02
#Triples>=t 31.53 29.77 30.63 6.04 4.37 5.07 12.89 2.96 4.81 5.63 10.67 7.37 7.46 12.82 9.43
+Ours, #Triples>=t 54.62 39.10 45.57 21.43 13.98 16.93 13.13 5.20 7.45 12.50 16.67 14.29 8.47 12.82 10.20

Qwen-7b (w/ peft) 50.34 70.16 58.62 44.51 41.47 42.94 66.30 56.27 60.88 56.48 58.01 57.24 42.54 48.50 45.33
+Ours 48.17 77.90 59.53 42.89 49.95 46.15 65.54 75.37 70.11 56.95 67.24 61.67 39.58 56.00 46.38
#Triples>=t 63.27 65.40 64.31 51.54 39.77 44.89 81.49 43.30 56.55 76.74 44.00 55.93 34.78 20.51 25.81
+Ours, #Triples>=t 61.36 73.84 67.02 50.84 47.37 49.04 78.26 66.53 71.92 60.94 52.00 56.12 35.00 35.90 35.44

Llama-13b (w/ peft) 33.65 24.05 28.05 12.89 9.28 10.79 18.05 54.90 27.17 13.85 52.93 21.95 18.84 76.00 30.19
+Ours 30.16 36.06 32.84 27.98 15.52 19.96 19.04 49.78 27.54 24.13 65.92 35.32 20.96 76.00 32.86
#Triples>=t 37.08 21.35 27.10 17.03 8.33 11.19 36.68 47.60 41.43 38.83 53.33 44.94 20.22 46.16 28.12
+Ours, #Triples>=t 44.50 29.17 35.24 31.35 13.67 19.04 51.38 56.35 53.75 59.09 52.00 55.32 32.00 61.54 42.10

Vicuna-13b (w/ peft) 69.30 51.75 59.25 34.36 33.35 33.85 71.02 62.89 66.71 32.92 56.36 41.57 17.06 18.00 17.52
+Ours 68.20 67.96 68.08 53.49 40.88 46.34 60.98 65.86 63.33 34.20 61.37 43.93 37.45 47.00 41.69
#Triples>=t 84.55 29.62 43.88 45.86 30.97 36.97 76.29 43.53 55.43 55.41 54.67 55.03 30.00 23.08 26.09
+Ours, #Triples>=t 74.59 60.90 67.05 61.98 38.68 47.63 70.40 51.76 59.66 59.49 62.67 61.04 41.38 30.77 35.29

Table 3: The main extraction results. The "w/ peft" means that parameter-efficient fine-tuning (LoRA)
of base LLMs is done before triples extracting, based on a part of the train set (about 800 sentences).
Better exact match F1 scores are marked bold. The threshold t is 2 for WikiKBP and NYT11-HRL since
the most complex sentence only contains 4 triples in these datasets, and is 5 for other datasets.

traction methods. Table 2 shows their statistics and
shows that sentences in these datasets often have
more than one triple. A brief introduction to these
datasets is provided in Appendix A.

For the NYT series, the relations in the original
data are labeled in structured formats (e.g. /loca-
tion/location/contains), which is not easily compre-
hensible to large models. Therefore, before con-
ducting experiments, we converted these relations
into natural language with similar meanings(e.g.
location contains) to enhance the model’s under-
standing.

4.2. Comparing Methods and Metrics

We apply our method to some recently popular
LLMs such as Qwen-7B, Vicuna-13B, and Llama-
13B, and compare the triple extraction performance
of our framework including evaluation-filtering with
the base large models. To better assess the ef-
fectiveness of our method in complex scenarios,
we have also specifically calculated the metrics in
cases involving multiple triples.

Additionally, we also apply our methods to
pretrained-language-model-based approaches in-
cluding CasRel (Wei et al., 2020), TPLinker (Wang
et al., 2020), and RERE (Xie et al., 2021), to exam-
ine the effectiveness of the evaluation model and
evaluate its improvement over small models.

We report standard precision (Prec.), recall
(Reca.), and F1 scores for all the experiments. We
mainly focus on the exact match result, which is
also the main consideration of current extraction
methods. Note that, some triples extracted by the
model may be deemed errors when calculating
metrics due to the synonyms or the addition of cer-
tain symbols. These could also be considered as
correct results by manual evaluation. However, em-

ploying exact matching makes the evaluation and
comparison of results more rigorous and credible.

4.3. Effectiveness of Our Method

The results in Table 3 demonstrate that with the
assistance of our evaluation-filtering model, the
triple extraction results of various LLMs on different
Chinese and English datasets have been signifi-
cantly enhanced. By using the filtered candidate
pairs as prompts, compared to the basic LLMs, the
recall rate in the multiple relational triple extrac-
tions task can be stably and significantly improved
(more than 10%) in most cases, with only a risk of
slightly reduced precision. In fact, the precision of
models that include evaluation-filtering will also be
improved in many cases.

We specifically focused on relational triple extrac-
tion in more complex scenarios, setting a minimum
number of triples for each dataset (2 for WikiKBP
and NYT11-HRL, 5 for others), and only consider-
ing sentences containing more than this number
of triples to assess the model’s extraction effect on
them. The results indicate that when a sentence
contains a substantial number of triples, the di-
rect application of LLMs to extract relational triples
based on instructions often yields poor results, ir-
respective of whether fine-tuning on labeled data.
Notably, the recall in most cases is significantly
lower than the precision. In contrast, on com-
plex sentences (number of triples>=t) in various
datasets, and the most complex dataset HacRED,
our evaluation-filtering method can significantly en-
hance the recall of the extraction results, while also
improving precision in most cases.

In Figure 5, we use the NYT10 dataset, cate-
gorizing the test sentences based on the number
of triples they contain, and utilize the Qwen-7B
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NYT10 NYT10-HRL SKE21 HacRED

Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1

TPLinker 84.96 89.66 87.25 74.31 61.06 67.04 72.73 77.94 75.24 54.64 61.21 57.74
+ Ours 86.87 89.36 88.10 74.79 60.86 67.11 81.31 77.63 79.43 61.78 59.04 60.38

CasRel 83.82 87.63 85.69 70.25 65.11 67.58 84.24 67.50 74.95 62.62 34.62 44.59
+ Ours 88.23 87.40 87.81 72.35 64.88 68.41 84.89 67.42 75.15 69.48 34.18 45.82

RERE 81.28 89.16 85.04 68.66 63.77 66.12 81.01 82.15 81.58 46.42 61.37 52.86
+ Ours 87.03 88.80 87.90 71.32 63.61 67.42 83.44 81.68 82.55 69.92 59.37 64.21

Table 4: The main evaluation results of different small models. We only report the results for sentences
with at least 50 tokens. Best exact match F1 scores are marked bold.

model to extract triples from sentences of different
complexity levels. The results show that as the
number of triples within a sentence increases, our
model demonstrates a progressively noticeable im-
provement in the recall of relational triple extraction
results, compared to the base model. Moreover, it
can maintain the F1 score of the results at a rel-
atively high level. This suggests that our method
is particularly effective for extracting multiple rela-
tional triples from complex sentences, and it can
sustain a high level of precision of results.

In addition, the results of the small extraction
model in Table 4 show that our method achieves
a large precision improvement with a small recall
decline, which leads to a better F1 score. This
indicates that our evaluation model can accurately
and reliably obtain candidate pairs, which can be
applied to the traditional small extraction model
to improve the performance of multiple relational
triple extraction.

Figure 5: Recall and F1-score curve of Qwen-7B
(w/ peft) on NYT10, with and without our evaluation-
filtering method. Minimum # of triples means we
only consider sentences that contain a number
of triples greater than this value. Note that the
coordinates do not start from 0.

4.4. Further Analysis

In Table 5, we try three ablation settings. First, we
remove the second stage of the framework, that
is, the LLMs extraction part after receiving the can-
didate pairs prompt. Instead, we incorporated an
additional relation classification model prior to the
evaluation model. In other words, we use a small
extraction model (RERE (Xie et al., 2021)) to ex-
tract triples, which are then filtered according to

the evaluation model. The filtered triples are com-
bined with the first-stage LLMs’ extraction results
as the final results. The results indicate that the
omission of the LLMs in the second stage leads to
a decrease in the precision and F1 score of triple
extraction results. Therefore, a large model in the
second stage is still necessary for judgment and
relation identification.

Second, we remove the first stage of the frame-
work, that is, when inputting instructions and
original sentences, we also provide the LLMs
evaluation-filtering prompt, which will strictly limit
the scope of triple extraction to the candidates pro-
vided by the evaluation model. The results show
that our model can still enhance the recall rate of
multiple triple extraction, but less effectively com-
pared to the complete framework. This could be at-
tributed to the presence of positive entity pairs that
the evaluation model fails to recognize. However,
without stringent restrictions, LLMs are capable of
identifying and retaining these results.

Third, we remove the filtering step in the frame-
work, that is, directly provide all entity pairs rec-
ognized by the entity-extraction model as prompts
to the LLMs. The results show that the precision
and F1 score of extraction results significantly de-
crease. This suggests that our evaluation-filtering
method is indispensable.

Models (w/ peft) SKE21 (t=7) NYT11-HRL (t=3)

Prec. Reca. F1 Prec. Reca. F1

Qwen-7b + Ours 68.32 74.46 71.26 60.76 60.95 60.86
w/o stage 2 64.69 75.01 69.47 53.85 62.23 57.73
w/o stage 1 72.77 68.86 70.76 63.33 50.67 56.30
w/o pairs filtering 65.12 66.04 65.57 58.86 59.05 58.95

Llama-13b + Ours 53.79 28.06 36.88 52.37 60.00 55.92
w/o stage 2 40.23 41.19 40.70 36.38 62.20 45.91
w/o stage 1 63.11 25.06 35.87 68.11 52.00 58.97
w/o pairs filtering 44.75 27.25 33.87 37.76 49.33 42.77

Vicuna-13b + Ours 71.49 56.83 63.33 58.82 57.14 57.97
w/o stage 2 65.26 59.90 62.92 44.00 61.33 51.24
w/o stage 1 92.76 36.06 51.93 70.91 41.67 52.49
w/o pairs filtering 63.97 57.67 60.66 32.38 55.18 40.82

Table 5: The ablation experiments results of differ-
ent LLMs. We only report the results for sentences
containing at least t triples. Best exact match F1
scores are marked bold.
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5. Conclusion

In this paper, we propose an evaluation model that
can act as a filter to assess and identify entity
pairs that have relations, thereby providing high-
precision candidates for the subsequent extraction
process.

We incorporate this evaluation model into our
proposed evaluation-filtering framework for LLMs
multiple relation triple extraction. The candidates
filtered by the evaluation model are integrated
into the extraction process of LLMs in the form
of prompts. This effectively addresses the issue of
low recall rate in triple extraction tasks performed
by LLMs, without diminishing precision.

The experimental results that derived from multi-
ple LLMs and datasets validate the effectiveness
and completeness of our framework. Additionally,
we confirm that our evaluation model can also be
implemented in traditional small extraction models
to enhance their precision and F1 score.
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Limitations

Extraction Performance Despite the effective-
ness of our model, the overall extraction results
may still miss some correct triples and contain er-
rors. On the one hand, a small amount of related
entity pairs are not correctly evaluated by the eval-
uation model. On the other hand, it is difficult for
LLMs to completely avoid errors or omissions in
the second stage, although we prompt them to pick
the correct candidate pairs and recheck the orig-
inal results. Subsequent research could explore
the optimization of the evaluation model, as well
as further improvements in the extraction precision
and recall of the model collaboration approach.

Complexity of Our Method Our framework in-
volves multiple components and requires the LLMs
to perform extraction twice. Our method is more
complicated and more time-consuming with the
direct application of LLMs, and its inference time
roughly doubled. To obtain stable effect improve-
ment when dealing with complex sentences, our
method is more suitable, while for simple extraction
tasks, we suggest single-stage direct extraction.
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A. Dataset Introduction

NYT series NYT is based on the articles in New
York Times. There are many derived datasets
with better labeling. NYT10 (Riedel et al., 2010)
and NYT11 (Hoffmann et al., 2011) label the com-
plete entities. Moreover, NYT10-HRL and NYT11-
HRL (Takanobu et al., 2019) are better versions
that are processed by optimizing the relation labels.

HacRED HacRED (Cheng et al., 2021)2 is a
novel challenging extraction dataset. It analyzes
the performance gap between popular datasets
and practical applications, and carefully selects
and designs more hard cases. HacRED consists
of 65,225 relational facts annotated from 9,231 wiki
documents with sufficient and diverse hard cases,
which poses a very high challenge to many current
complex extraction methods.

SKE21 SKE193 is published by Baidu, and is
currently the largest dataset available for complex
relational triple extraction. Since its testing set
is unpublished, and there are some errors in the
validation set, a version named SKE21 is published
by Xie et al. (2021). The testing set of SKE21 is
carefully manually relabeled and contains 1,150
sentences and 2,765 annotated triples.

Wiki-KBP Wiki-KBP (Ling and Weld, 2012) is
based on the articles in Wikipedia. There’re 1.5M
sentences in training set which are automatically
labeled using distant supervision and handcrafted
patterns by (Liu et al., 2017), and the test set con-
tains 289 sentences selected by the author of (Ren
et al., 2017) from the manual annotations in 2013
KBP slot filling results (Ellis et al., 2012).

B. Experiment Details

Our experiments are conducted on two A800
GPUs. All deep models, including the LLMs and
the evaluation model, are fine-tuned or imple-
mented using the PyTorch framework. We em-
ployed AdamW optimizer as the optimizer. For
the evaluation model, we first initialize the model
with bert-base-cased and chinese-roberta-wwm-
ext respectively, then train 20 epochs in English
corpus task, and 40 epochs in Chinese. For the
fine-tuning of LLMs, we randomly select 1500 items
from the train set for each dataset and train 30
epochs. Our codes and hyper-parameters can be
found at https://github.com/Ding-Papa/
Evaluating-filtering-coling24.

2https://github.com/qiaojiim/hacred
3http://ai.baidu.com/broad/download?

dataset=sked

C. Instruction Template

Here we provide the instruction templates that
guide the LLMs for relational triple extraction. First
is the template for directly using the LLMs to per-
form extraction, i.e., the first stage of our method.
Template for the first stage:
Pre-define the following relation
list r, please extract all triples
containing the above relations from
the given sentence S.
Note that the relation name of the
triple must be selected from the
above list, and other relations
not listed are not considered.
Please output according to the
specified format: [{"s": subject1,
"o": object1, "p": relation1},
{"s": subject2, "o": object2, "p":
relation2},...]
(Optional) Here are some examples:
...
Now given the following input,
please complete the extracting task.
Please output as many triples as
possible that meet the requirements.
Input: Si, ri

In the second stage, the input of the LLMs con-
sists of the first-stage extraction results and candi-
date pairs extracted by the evaluation model. The
LLMs are prompted to recheck the original results,
assign relations to the appropriate candidate en-
tity pairs, and output the final extracted triples to
complete the extraction.
Template for the second stage:
Pre-define the following relation
list r. We want to extract all
triples containing the above
relations from the given sentence
S. Here are the original extraction
results A.
Now we claim that the entity pairs
that may be related in the above
sentence are (s1, o1), (s2, o2), ...
Please check the original results
and fill in the missing triples,
remove the wrong triples and output
the final results.
Constraints and output format are
the same as stage 1.
Please output according to the
specified format.

https://github.com/Ding-Papa/Evaluating-filtering-coling24
https://github.com/Ding-Papa/Evaluating-filtering-coling24
https://github.com/qiaojiim/hacred
http://ai.baidu.com/broad/download?dataset=sked
http://ai.baidu.com/broad/download?dataset=sked
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