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Abstract
Precise understanding of free-text radiology reports through localised extraction of clinical findings can enhance
medical imaging applications like computer-aided diagnosis. We present a new task, that of segmenting radiology
reports into topically meaningful passages (segments) and a transformer-based model that both segments reports
into semantically coherent segments and classifies each segment using a set of 37 radiological abnormalities, thus
enabling fine-grained analysis. This contrasts with prior work that performs classification on full reports without local-
isation. Trained on over 2.7 million unlabelled chest X-ray reports and over 28,000 segmented and labelled reports,
our model achieves state-of-the-art performance on report segmentation (0.0442 WinDiff) and multi-label classifica-
tion (0.84 report-level macro F1) over 37 radiological labels and 8 NLP-specific labels. This work establishes new
benchmarks for fine-grained understanding of free-text radiology reports, with precise localisation of semantics un-
locking new opportunities to improve computer vision model training and clinical decision support. We open-source
our annotation tool, model code and pretrained weights to encourage future research.
Keywords: Document Classification, Named Entity Recognition, Other (Multi-Task Learning, Multi-Label Classifica-
tion, Chest X-rays, Radiological Report Segmentation)

1. Introduction

Chest radiography is one of the most commonly
performed imaging examinations, with over 50 mil-
lion chest X-rays annually in the United States
alone. The interpretation of chest X-rays is criti-
cal for screening, diagnosis, and management of
numerous pulmonary conditions as well as car-
diovascular diseases (Annarumma et al., 2019;
Ueda et al., 2023). However, manual review of
chest X-rays can be an onerous process prone
to errors due to the large volumes of images in-
terpreted daily by radiologists, with reported diag-
nostic discrepancies in up to 30% of cases (Busby
et al., 2018). This has motivated growing interest
in using machine learning, such as deep learning
with convolutional neural networks (CNNs), to au-
tomate chest X-ray interpretation and assist radiol-
ogists (Rajpurkar et al., 2017).

A major challenge in developing accurate deep
learning models for chest X-ray analysis is insuffi-
cient and low quality labeled training data (Oakden-
Rayner, 2020). While large archives of radiology
images and reports exist in hospital PACS (Picture
Archiving and Communication Systems) and pub-
lic datasets such as MIMIC-CXR (Johnson et al.,
2019), obtaining labels for the images is time-
consuming and expensive, so NLP labels derived
from free-text reports that accompany images are
often used as proxy labels for training computer
vision (CV) models. NLP labellers include earlier
rule-based models such as NegBio (Peng et al.,
2018) and CheXpert (Irvin et al., 2019), and re-
cent transformer (Vaswani et al., 2017) models like

CheXbert (Smit et al., 2020) built on top of the
BERT (Devlin et al., 2019) model. However, the
training labels for these transformer models are
still largely extracted using CheXpert, thus repli-
cating its limitations. The imperfect nature of the
available NLP tools and labels has been noted in
various works (Bressem et al., 2020a; Jain et al.,
2021) and is restricting the capabilities of subse-
quent CV models trained on NLP labels.

In particular, current NLP methods are limited
to classifying entire reports, lacking the localisa-
tion needed to link text observations precisely to
image regions. This provides only weak supervi-
sion for CV and multi-modal model training, which
is a limiting factor in applications such as the au-
tomatic image-to-text generation of chest X-ray re-
ports (Jing et al., 2018; Qin and Song, 2022). To
strengthen the localisation specificity and accu-
racy for medical imaging applications, there is a
need for techniques that can jointly identify self-
contained segments within a report and assign
classification labels to each segment.

Furthermore, an important consequence of sub-
optimal NLP report classifiers is that generative
models, such as image-to-text report generation
models, cannot be adequately evaluated for their
clinical accuracy. A recent review on chest X-ray
report generation by Liu et al. (2023) showed that
a significant portion of the proposed models were
evaluated solely using natural language genera-
tion (NLG) metrics such as BLEU (Papineni et al.,
2001). However, it is more important to evaluate
the clinical accuracy of generated reports, making
it difficult to measure progress in the field. This
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is especially problematic given the recent prolifer-
ation of Large Language Models (LLMs) that can
generate text with high fluency but are prone to hal-
lucination, necessitating the development of a re-
liable model for evaluating clinical accuracy of the
generated reports.

LLMs and multi-modal Foundational Models
have also been applied to clinical and medical
imaging data in research (Singhal et al., 2023; Wu
et al., 2023; Tu et al., 2023), but they suffer from
a few major weaknesses which we seek to ad-
dress. Firstly, medical data is sensitive and un-
suitable to be processed using proprietary APIs
in practice, where (comparatively) lightweight and
locally-hosted models may be preferred. Secondly,
it is unclear what is included in the training corpus
of such models, and they often forego the report
classification task for report summarisation. As a
result, it is unknown how they may perform on re-
port classification or the proposed joint segmenta-
tion/classification task.

In this paper, we present a novel task of
segmenting reports into semantically coherent
segments, and propose a transformer-based ap-
proach for fine-grained analysis of free-text radi-
ology reports which both identifies and classifies
segments. Our aim is to segment a report into
chunks that describe different radiological findings,
and associate each chunk with an extensive set of
pre-defined labels including all the most commonly
reported findings. We make the following contribu-
tions:

• We present the new task of jointly segment-
ing radiology reports into semantically coher-
ent chunks (segments) and assigning labels
to each segment, with 37 radiological labels
in our ontology.

• We present a novel transformer-based model
tailored for radiology reports that can jointly
extract segments from reports and perform
multi-class multi-label classification on each
segment.

• We perform a set of detailed experiments
involving report segmentation and classifica-
tion in single-task, pipeline and joint settings,
showing the benefits of segmenting reports
and jointly learning segmentation and classi-
fication.

• We make public our code and model weights
from pretraining and fine-tuning to encour-
age further research and development. We
hope that these resources will allow the re-
search community to build on the fine-grained
labelling of chest X-ray reports enabled by our
work.

2. Related Work

Radiology Report Classification There has
been growing interest in developing deep learn-
ing models for radiology data. For chest X-rays,
Wang et al. (2017) developed an ontology of 8
common thoracic disease labels and released the
ChestX-ray8 dataset containing 108,948 images
with holistic disease multi-labels. Johnson et al.
(2019) expanded this with the MIMIC-CXR dataset
of 227,835 reports. In terms of NLP report classifi-
cation models, early rule-based systems include
NegBio (Peng et al., 2018) and CheXpert (Irvin
et al., 2019), which identify 14 findings in radiol-
ogy reports and classify them as positive, neg-
ative, uncertain or not mentioned. Neural mod-
els include bidirectional long short-term memory
networks (BiLSTM) for report-level classification
(Cornegruta et al., 2016). More recent transformer-
based models like CheXbert (Smit et al., 2020)
and CheXpert++ (McDermott et al., 2020) fine-
tuned BERT on a combination of CheXpert and
human labels to perform multi-label classification
of chest X-ray reports. Bressem et al. (2020b) con-
ducted both pretraining and fine-tuning for a BERT
model on German language chest X-ray reports.
RadBERT-CL (Jaiswal et al., 2021) performed pre-
training using a contrastive loss objective and fine-
tuning for multi-class multi-label classification. Cid
et al. (2024) pretrained and fine-tuned a RoBERTa
(Liu et al., 2019b) model for chest X-ray report clas-
sification on 45 labels.
Document Segmentation Various previous work
have focused solely on segmenting documents
texts into sections without assigning topic labels.
For instance, Koshorek et al. (2018) utilised hier-
archical BiLSTMs to formalise segmentation as a
supervised task, Badjatiya et al. (2018) employed
CNN and attention-enhanced BiLSTMs, and Wang
et al. (2018) used restricted self-attention and con-
ditional random field (CRF) (Lafferty et al., 2001)
to perform discourse segmentation. More recently,
Lukasik et al. (2020) proposed three BERT-based
models for document and discourse segmenta-
tion.
Named Entity Recognition (NER) NER involves
identifying textual mentions of predefined multi-
token categories like people, locations and orga-
nizations. NER frequently used sequential mod-
els like LSTM-CRFs (Lample et al., 2016; Ma and
Hovy, 2016), and more recent NER systems have
adopted transformer networks like BERT, such as
those proposed by Zhang et al. (2019). While
NER focuses on identifying multi-token expres-
sions, these are often fixed or formulaic. Our
work performs segmentation of chest X-ray reports
guided by radiological findings, rather than named
entities. Our model must adapt to variable report-
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ing styles rather than relying on consistent lexical
triggers present in NER tasks.

We draw attention to both documentation and
NER as the proposed segmentation task shares
similarities to both, requiring almost complete cov-
erage of entire reports while retaining the flexibility
to exclude medically irrelevant information. Pre-
vious works in text segmentation generally mod-
elled the task as a binary classification problem,
where a positive label indicates that the current
input (word/line/sentence) is the end of a seg-
ment, necessarily covering the entire document.
In contrast, label schemes used for NER such
as Beginning/Inside/Outside (BIO) offer the abil-
ity to more precisely extract salient segments per-
taining to radiological findings. In addition, the
structure inherently built in to the more detailed
NER label schemes have been reported to im-
prove performance, especially when the decoder
is constrained to output legal transitions1 (Gu-
nawan et al., 2018; Lester et al., 2020). These
properties make the NER label schemes more suit-
able for our task.
Joint Segmentation and Classification There
have been some approaches that address jointly
segmenting and classifying documents on gen-
eral domain text. Tepper et al. (2012) outlined
a feature-based approach using the BIO label
scheme at a line level, testing both a joint (BIO-X)
and a pipeline model for identifying sections in clin-
ical records. Arnold et al. (2019) used BiLSTMs to
predict the topic of sentences, then performs post
hoc segmentation using the stepwise cosine differ-
ence of topic embeddings. Barrow et al. (2020)
proposed the segment pooling network to dynam-
ically generate segment embeddings for classifi-
cation and corresponding ground-truth labels for
training. They used scheduled teacher forcing
(Williams and Zipser, 1989) with exploration to
help the model converge, and jointly optimised the
multi-task loss.

Joint modelling of segmentation with additional
tasks has also been shown to improve perfor-
mance compared to segmentation-only or pipeline
approaches, suggesting that segmentation pro-
vides useful supervisory signal for other tasks. For
example, Liu et al. (2021) performed joint segmen-
tation and summarisation of news articles, and MT-
DNN (Liu et al., 2019a) has been used for NER on
biomedical data (Khan et al., 2020). Other works
focus on document segmentation and used topic
classification as an auxiliary task to improve seg-
mentation performance, such as the use of hierar-
chical transformer for text segmentation(Lo et al.,
2021) and multi-task transformer to section clinical

1For example, the start of a segment/entity must be
tagged with the ”beginning” label, so the transition OB
is legal while OI is not.

notes (Zhang et al., 2022).
Concurrently to our work, related approaches

have been proposed for SemEval 2023’s Task 3.3
on multilingual detection of persuation techniques
in online news (Piskorski et al., 2023), which is
a paragraph-level multi-label classification task.
While many methods simply used paragraph-level
inputs to bypass the segmentation task, some rele-
vant approaches include RoBERTa CRF (Pritzkau,
2023) and multi-head BERT (Baraniak and Sydow,
2023). We refer readers to Ojha et al. (2023) for a
full list of entries.

In summary, to the best of our knowledge, pre-
vious works in radiology report classification op-
erate on full reports rather than localising labels
to precise segments informed by findings. In
contrast, our work addresses extracting segments
from chest X-ray reports and assigning radiologi-
cal concepts from an expanded 37-label ontology
to each segment. Through the addition of the seg-
mentation task and subsequent classification at
the segment rather than report-level, we aim to
achieve higher classification performance and pro-
vide stronger localisation cues for medical imaging
applications compared to existing report classifica-
tion approaches.

3. Materials and Methods

3.1. Datasets and Radiological Ontology
Data Our chest X-ray report dataset contains
2,775,902 reports, of which 1,171,885 unique,
across 259,152 patients collected from six UK hos-
pitals between 2006-2019 in accordance with na-
tional governance procedures. The data covers
a diverse population distribution of gender, age,
number of images per patient, and time between
images. Additional reports were obtained from
MIMIC-CXR and Open-I (Demner-Fushman et al.,
2012) datasets for pre-training, where non-empty
sections were concatenated to create 1.53 million
unique reports in total.
Radiology labels The reports were annotated at
the segment level with a set of 45 labels, 37 of
which correspond to a taxonomy2 of findings for
frontal chest x-rays. The taxonomy was developed
in an iterative process involving discussions and
annotations by a team of five radiologists, with a
goal of identifying the smallest set of labels to cap-
ture key radiological findings. The remaining 8
labels capture report-specific information such as
metadata, technical issues, recommendations and
comparisons.
Report Annotation Three radiologists annotated
a total of 28,521 chest radiograph reports, identi-
fying non-overlapping segments and assigning la-

2https://x-raydar.info/ontology
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Segment Embedding Pooler (BiLSTM)

Segmentation Head (CRF-decoded LSTM)

Transformer Encoder

[CLS] Normal heart size . Right sided pneumo
thorax seen . [SEP]

45-Dim Binary Classification Head (Linear)

B I E O B OI I E

HCLS H1 H2 H3 H5 H6 H7 H8 H9 HSEPH4

S1 S2

Normal Pneumothorax

Figure 1: Proposed joint model architecture. A tokenised report is used as input into the transformer
encoder. The resulting token embeddings are first used to predict the segment boundaries, based on
which they are then pooled to form segment-level embeddings for classification. The losses from the
segmentation and classification heads are weighted linearly.

bel(s) to each segment. This process extracted
127,809 segments, of which 78,465 were unique,
resulting in an average of 4.48 segments per re-
port. Example data is shown in Table 6, and addi-
tionally in Table 7 of the appendix.

To assess inter-annotator agreement, we evalu-
ated a subset of 200 reports annotated by all three
radiologists. For each report, consensus finding
labels were derived by majority voting across the
radiologists. Comparing the labels from each ra-
diologist against the consensus yielded an aver-
age macro Matthew’s correlation coefficient (MCC)
of 0.8878. For segmentation, the mean pairwise
WinDiff is 0.0614 (lower is better). Section 4 con-
tains a further explanation of metrics used in this
work. This high level of agreement indicates a reli-
able ground truth for developing and evaluating our
model’s ability to replicate human performance on
segmenting and labeling chest X-ray reports. Addi-
tional information on the data and annotation pro-
cess are available in Cid et al. (2024).

3.2. Task Description
Given a chest X-ray report, our task is to jointly ex-
tract text segments and their corresponding find-
ings labels. Formally, for a report R consisting of
n words/tokens W = (w1, ..., wn), we predict for
each word its segmentation label Ŷ = (ŷ1, ..., ŷn)
where ŷi ∈ {I,O,B,E, S}3. Ŷ is used to deter-
mine the boundaries of segments Ŝ = (ŝ1, ..., ŝm),
where each ŝj is a contiguous subsequence of
W . For example, if a report contains five words
(w1, ..., w5) with segmentation labels (y1, ..., y5) =

3This is using the IOBES scheme, where the labels
correspond to Inside/Outside/Beginning/End/Singleton
respectively.

OBIES, then the corresponding segment bound-
aries would be (1, 4), (4, 5). Accordingly, s1 =
(w1, ..., w3) and s2 = (w4). For each predicted seg-
ment ŝj , we also predict its multilabel classification
labels ẑj ∈ {0, 1}45.

3.3. Proposed Model Architecture

Our model architecture can be seen in Fig. 1. We
use a transformer model, RoBERTa which has
been pretrained on chest X-ray report data (ap-
pendix section B), to encode entire reports word
by word. The output token embeddings are used
for both segmentation and classification tasks in
their respective task-specific heads. The segmen-
tation head consists of one LSTM and one linear
layer, with a CRF decoder enforcing the transition
rules. The segmentation head outputs labels in
the IOBES scheme, which are then converted into
segment boundaries. The token embeddings are
grouped into segments according to the obtained
segment boundaries, and they are then pooled
with a BiLSTM layer to produce the segment em-
beddings. The classification head is a single linear
layer and outputs 45-dimensional binary segment-
level finding labels.

3.4. Training Strategies

Teacher Forcing During the first epoch of train-
ing, we use teacher forcing on the segmentation
labels if the model predicts an invalid segmen-
tation. Since the classification task depends on
the segment-level embeddings generated using
the segmentation predictions, this allows the clas-
sification task to train when segmentation perfor-
mance is poor. Typically, teacher forcing is used



866

with RNNs on text generation tasks, where each
generated token is one timestep and teacher forc-
ing is switched on and off at the token level. How-
ever, for our task we opt for teacher forcing to op-
erate at the report level instead for two reasons.
Firstly, our task involves only two timesteps (seg-
mentation and classification), so the problem of
compounding conditioning on erroneous predic-
tions does not apply. Secondly, changing the seg-
mentation prediction for random tokens has the po-
tential to introduce illegal transitions which would
result in segmentation errors. This could worsen
downstream classification performance, running
counter to the purpose of using teacher forcing.
Segment Label Alignment In order to generate
the derived classification labels for incorrectly pre-
dicted segments for training and evaluation, we
use a version of the greedy maximal overlap align-
ment algorithm (Barrow et al., 2020) modified to fit
the task. Firstly, we allow predicted segments to
map onto an empty segment (containing no labels)
if it does not exist in the ground truth annotation.
Secondly, we allow one-to-many and many-to-one
alignments. This is to account for spans such as
“Normal heart size. CTR XX/YY.”, which may be
labelled as one singular segment or as separate
segments. We note that neither option is objec-
tively correct or incorrect, which adds to the com-
plexity of evaluating the segmentation task. The
alignment process (and the segmentation predic-
tions) are inherently noisy, possibly resulting in a
slight reduction in classification performance.
Training Configurations and Hyperparameters
are given in section C of the appendix.

4. Evaluation Metrics

Segmentation Task Consistent with existing liter-
ature on text segmentation, we report a sliding-
window metric in WinDiff (Pevzner and Hearst,
2002). We set the window size to the recom-
mended half of the average length of segments
in the dataset, resulting in a window size of 6
words. Due to the calculations being done at
a sliding-window-level, WinDiff assesses the seg-
mentation performance locally. We note that Win-
Diff assumes a binary label scheme where seg-
ments cover the entire report and does not take
into account “Outside” labels. This leads to an
overestimation of segmentation performance on
our dataset.

To address these issues, we additionally re-
port segmentation boundary match rate (MR@B),
which we calculate as the proportion of reports
where the predicted segment boundaries exactly
match the ground truth segmentation. This is
an attempt to measure segmentation performance
over entire reports, while also accounting for both

starting and end points when evaluating segment
boundaries.
Classification Task For classification, we report
Matthew’s correlation coefficient, precision, recall,
F1 score, macro-averaged on both the segment
and report levels. Report-level labels are gener-
ated for each report using the union of labels from
its constituent segments for evaluation.
Joint Tasks: We use a multi-label variant of David
Batista’s entity-level NER evaluation4, which is it-
self based on the MUC-5 error categories (Chin-
chor and Sundheim, 1993) and SemEval 2013
evaluation schema (Segura-Bedmar et al., 2013).
The entity evaluation corresponds to the aforemen-
tioned segment-level multilabel classification eval-
uations. Notably, we define and use a version of
the strict F1 measure to assess joint segmentation
and classification performance. For strict F1, each
predicted segment is counted as a true positive if
and only if it matches the ground truth in both seg-
ment boundaries and all classification labels. A full
description of the other proposed metrics is given
in section A of the appendix.

5. Experiments

5.1. Baseline Report Classification
As a baseline, we test classification performance
when entire reports are used as inputs. We also
compare the performance of several publicly avail-
able transformer models pretrained on relevant
domains: BERT-base, RoBERTa-base, CXRBert
(Boecking et al., 2022), ClinicalBERT (Alsentzer
et al., 2019), and PubMedBERT (Gu et al., 2022).

5.2. Segmentation Experiments
We examine whether off-the-shelf approaches are
suitable for extracting segment boundaries. Split-
ting reports at full stops proved to be overly crude
from preliminary testing, so we report performance
from spaCy(Honnibal et al., 2020) Sentencizer
which is a premade sentence splitter.
Effect of Pretraining First, we test the effect of in-
domain pretraining on a baseline single-task seg-
mentation model with a linear segmentation head
and no decoder, using the BIO label scheme.
Segmentation Head and Label Scheme Further-
more, we explore the effect of the segmentation
label scheme on the segmentation performance.
For segmentation label schemes, we test BIO,
IOBE and IOBES, where I-inside, O-outside, B-
beginning, E-end, S-singleton. For segmentation
head type, we test linear, LSTM and BiLSTM. For
the decoder, we test CRF, constrained decoding

4https://github.com/davidsbatista/NER-Evaluation
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(Lester et al., 2020), or no decoder. Addition-
ally, transition legality can be enforced for the con-
strained and CRF decoders.

5.3. Segment Classification

Performance Gain over Report Classification:
Similarly to the baseline report-level classification
experiment, we test models where each input into
the transformer encoder is one individual segment.
This allows us to establish the expected perfor-
mance gain from learning classification at the seg-
ment level. The aforementioned pretrained mod-
els are tested.
Embedding Pooler Type: The transformer model
outputs an embedding for each token within the re-
port. In order to compute the predicted classifica-
tion labels at a segment level, we first use a pooling
layer to aggregate the token embeddings into seg-
ment embeddings. We explore the effect of differ-
ent pooling methods on downstream classification
performance, where ground truth segmentation la-
bels are used for each experiment. We test max,
average, attention, LSTM, and BiLSTM pooling.

5.4. Joint Experiments

Pipeline Models We assess whether training for
segmentation and classification jointly yields per-
formance benefits over training two separate task-
specific models. As a baseline, we test two
pipeline setups, where the pipelines simply con-
sist of the best performing single-task models from
Sections 5.2 and 5.3. We use the segmentation
model to produce the segmentation predictions,
which can then be used to generate the predicted
segment texts and corresponding aligned classifi-
cation labels. For the classification component we
test models trained for both single-segment input
and report-input pooled-segment classification.
Teacher Forcing For joint models, losses from
the segmentation task and classification task are
initially weighted at 0.05:0.95. We firstly explore
two teacher forcing strategies. By default, teacher
forcing is only used for reports with no valid pre-
dicted segments, which can optionally be supple-
mented with a probabilistic schedule. Concretely,
for each report in a training batch, the segment em-
beddings have probability p to be generated from
ground truth segmentation labels and 1 − p from
model predicted segmentation. The probability p
decays linearly from 1 to 0 in the first epoch.
Task Weighting Finally, we perform a lin-
ear sweep over segmentation-classification task
weightings between 0.05 and 0.95 to examine the
tradeoff between the two tasks.

Model WinDiff ↓ MR@B ↑

Spacy Sentencizer 0.0962 0.5704

roberta-base BIO linear 0.0513 0.7200
+ Pretraining 0.0490 0.7273

+ IOBES 0.0463 0.7294
+ LSTM 0.0478 0.7270
+ CRF 0.0497 0.7273

+ Enforce Transitions 0.0479 0.7453

Table 1: Single-task performance of segmentation
models. Best results are indicated in bold.

6. Results and Discussion

Segmentation Task We show a reduced set of
segmentation results in Table 1. Each additional
row indicates a modelling decision and shows its
effect on the segmentation performance. While
WinDiff does not monotonously improve, the abil-
ity to enforce the legality of transitions with the use
of a CRF decoder (final row) significantly improves
the boundary match rate, which we believe to be
better suited to our task as explained in Section 4.
Our final segmentation setup was a CRF-decoded
LSTM with enforced transitions using the IOBES
label scheme.
Classification Task Table 2 shows the perfor-
mance of baseline single-task classification mod-
els fine-tuned from different pretrained transformer
model checkpoints. For all models tested, there is
approximately a 0.05 increase in absolute report-
level macro F1 when the model uses segment-
level inputs. This is likely due to the more granular
nature of the input texts and labels, which allow for
more precise gradient updates.

Table 3 shows the effect of the pooling layer ar-
chitecture on the final classification performance.
We also include the best performing report and
segment classification models (measured by val-
idation metrics) from the previous section for com-
parison. For segment-level F1, most of the pooled
segment classification models tested were able to
improve upon the baseline single-segment clas-
sification model. Additionally, for report-level F1,
most pooled models show better performance than
the baseline model. This may suggest that seg-
ments within the same report contain complemen-
tary information, and the report-level input of the
pooled models allow for such complementary in-
formation to be attended to across segments. It
would then seem logical that the additional report-
level context improves overall label coherence and
results in higher performance at the report level
compared to single-segment input models. At
the segment level, the improvements could be ex-
plained by the fuzzy nature of the ground truth seg-
mentation labels detailed in Section 3.4. Informa-
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Input Pretraining F1-S F1-R

report

bert-base - 0.7793
clinicalbert - 0.7723

cxrbert-general - 0.5221
pubmedbert - 0.7905
roberta-base - 0.7766
roberta + cxr - 0.7969

segment

bert-base 0.8348 0.8420
clinicalbert 0.8355 0.8437

cxrbert-general 0.8373 0.8447
pubmedbert 0.8406 0.8482
roberta-base 0.8315 0.8394
roberta + cxr 0.8343 0.8414

Table 2: Baseline single-task classification perfor-
mance of several pretrained transformer models.
Best results overall for each metric are indicated
in bold, and the best report-level F1 achieved by
a report-level classification model is indicated in
underline.

tion contained in neighbouring segments may be
especially useful when predicting segment-level
classification labels. Overall, the pooled classifi-
cation models do outperform the baseline models,
despite some variations in performance between
different pooling methods.

Examining the pipeline model results in Table 5
also shows that the pooled model (compared with
the single-segment model) yields higher classifi-
cation performance when predicted segments are
used. The ability to attend to neighbouring seg-
ments likely improves resilience to segmentation
errors. We move forward with a BiLSTM embed-
ding pooler for classification because it achieved
the best F1 and MCC at the segment level.
Joint Segmentation and Classification
Teacher Forcing Table 4 shows a reduced set
of results from the teacher forcing experiment.
Teacher forcing all samples while training (TF all),
perhaps surprisingly, yielded the best results over-
all. Under this scheme, the segments are all ex-
tracted using the ground truth segmentation during
training, but the loss from the segmentation task is
still used to perform gradient updates. The higher
report-level classification performance of TF all
can likely be attributed to the benefit of consistently
using ground-truth segmentations for the classi-
fication task. However, its lower segment-level
classification performance may indicate a lower re-
silience to segmentation errors at test time.
Task Weighting Figure 2 shows the tradeoff
between classification and segmentation perfor-
mance under different weightings for the two
losses. We test both TF invalid and TF invalid + de-
cay stragies from the previous section. Segment-

Figure 2: Tradeoff between segmentation and clas-
sification performance. The loss weighting of the
segmentation task is varied between 0.05-0.95 in
increments of 0.05.

level macro F1 appears to be fairly stable around
0.81 but decreases rapidly once the segmentation
loss is weighted above 80%. Boundary match
rate shows a similar pattern and largely stabilises
once segmentation loss weight is above 25%, with
the TF-invalid strategy showing a slight downward
trend. The non-monotonous change in these met-
rics in response to varying loss weightings, and
especially their stability across a wide range of
weightings, seems to support the idea that the two
tasks contain complementary information and ben-
efit from training jointly.
Results Overview and Comparison Finally, in
Table 5 we compare models introduced in this pa-
per with published chest X-ray report classification
results from previous works. However, other works
use different taxonomies which makes direct com-
parison of metrics difficult. The single-task models
provide very strong baselines, though the base-
line segment classification models uses ground-
truth segmentation labels at inference time, so
their performance is likely unattainable in a real-
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Modelling Segment Level Report Level
Input Pooling Prec Recall F1 MCC Prec Recall F1 MCC

Report - - - - - 0.8178 0.7877 0.7969 0.7815
Segment - 0.8565 0.8308 0.8406 0.8385 0.8599 0.8421 0.8482 0.8341

Report

Mean 0.8353 0.8137 0.8202 0.8184 0.8626 0.8235 0.8387 0.8255
Mean Sqrt 0.8416 0.8336 0.8331 0.8314 0.8601 0.8427 0.8472 0.8336

Max 0.8429 0.8427 0.8406 0.8378 0.8606 0.8522 0.8544 0.8396
LSTM 0.8473 0.8354 0.8396 0.8366 0.8564 0.8444 0.8486 0.8336

BiLSTM 0.8481 0.8392 0.8412 0.8386 0.8582 0.8484 0.8509 0.8364
Attention 0.8423 0.8414 0.8382 0.8360 0.8636 0.8513 0.8540 0.8399

Table 3: Performance of single-task classification models with different token embedding to segment
embedding pooling methods. Ground truth segmentation is used. We also report expanded baseline
performance of the best models from table 2 for comparison. Best results are indicated in bold.

Strategy F1-S F1-R MR@B F1-Str

TF all 0.8119 0.8412 0.7467 0.7163

TF invalid 0.8114 0.8383 0.7386 0.7092
+ decay 0.8132 0.8395 0.7442 0.7125

Table 4: Reduced teacher forcing results from
three notable strategies. F1-Str is the joint strict
F1 metric. Best results are indicated in bold.

world setting. Nevertheless, the pipeline seg-
ment classification models, which use predicted
segmentations as input, are already able to im-
prove report-level F1 by 2-4% absolute compared
to performing classification at the report level. Fi-
nally, our jointly trained model was able to im-
prove upon the single-task and pipeline models
in terms of both segmentation and classification
performance, and approaches the theoretical max-
imum report-level performance set by the segment
classification model. The gain from jointly train-
ing for segmentation and classification likely sug-
gests that the tasks contain complementary infor-
mation, which is in line with findings from previous
works. In this work, the segmentation and sub-
sequent pooling focuses the classification signal,
allowing for more precise weight updates. Con-
versely, learning to classify each segment makes
the model more sensitive towards topic changes
between contiguous segments, improving the seg-
mentation performance.
Error Analysis For the segmentation task, a com-
mon error is when a sentence is predicted as two
segments while being labelled as a single segment
in the ground truth and vice versa (subset and
superset error types, respectively), such as sen-
tences in the form of ”X and Y” where X and Y are
radiological findings. An example of this can be
seen in Table 6. Neither interpretation is necessar-
ily objectively incorrect in these cases, though ex-

tracting these as two individual segments is more
in line with our objectives and downstream appli-
cations. We observe an inverse correlation be-
tween these two error types as expected, record-
ing 482 subset and 544 superset errors out of
13,082 ground truth segments in the test set.

Similarly for classification, we generally observe
lower performance in labels which are not pre-
cisely grounded in imaging features, and may
therefore be prone to the annotators’ differing in-
terpretations, commonly the NLP-specific labels.
An example of this is the “abnormal non clinically
important” label, attaining 0.755 report-level F1
which is lower than the 0.840 macro average.

Computing the confusion matrix for 45-label
multi-label multi-class classification is challenging
as it would result in 245 possible combinations.
However, we can isolate smaller groups of similar
labels which are often confused with each other,
defined as segments where label X is a false pos-
itive and label Y is a false negative. For example,
volume loss and atelectasis, where 28/375 cases
(7.5%) and 24/317 cases (7.6%) are confused for
the other label. These may arise from from differ-
ences in labelling due to difference in age, train-
ing, or hospital convention between the radiolo-
gists. We also observe low performance for some
extremely rare labels. In the test set with 2,846
reports, paraspinal mass was positive in 5 reports
(0.18%) with a segment-level F1 of 0.44, and car-
diac calcification was present in 13 reports (0.46%)
with a segment-level F1 of 0.47.

7. Conclusion & Future work

In this work, we set out to improve the granular-
ity and performance of chest X-ray report classifi-
cation models due to the importance of their out-
puts on research in this field. For this purpose
we have defined the task of joint segmentation
and classification of chest X-ray reports, and have
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Model Segmentation Classification Joint
Category Name WinDiff MR@B F1-S F1-R MCC-R F1-Strict

Previous Works

CheXbert (A) - - - 0.798 - -
GER-BERT (A) - - - 0.92 0.89 -

RadBERT-CL (A) - - - 0.804 - -
X-Raydar-NLP (B) - - - 0.845 0.841 -

Annotator Baseline Mean agreement 0.0614 0.658 - - 0.888 0.643

Single Task Best

Segment Classification (S) - - 0.841 0.848 0.834 -
Segment Classification (P) - - 0.841 0.851 0.836 -

Report Classification - - - 0.797 0.782 -
Segmentation 0.0479 0.745 - - - -

Pipeline Single Segment 0.0479 0.745 0.797 0.821 0.805 0.724
Pooled Segment 0.0479 0.745 0.810 0.835 0.819 0.717

Proposed Joint 0.0442 0.755 0.810 0.840 0.824 0.722

Table 5: Overview of performance of models introduced in this paper, compared with some baseline
results. A: different taxonomy. B: different test set. S (single-segment input) and P (pooled report input):
use ground truth segmentation for inference, so performance is likely unattainable in a real setting. Best
results from comparable are indicated in bold.

Labelled Bilateral widespread reticular shadowing and small volume lungs in keeping with ILD.
(interstitial shadowing, possible diagnosis, volume loss)

Dilated tortuous oesophagus as seen previously (abnormal non clinically important)

Predicted Bilateral widespread reticular shadowing (interstitial shadowing)
and small volume lungs (volume loss)
in keeping with ILD. (possible diagnosis)
Dilated tortuous oesophagus as seen previously (widened mediastinum)

Table 6: Example of annotations and predicted outputs for a single report. The first sentence was an-
notated as one segment with three labels, whereas the model predicts it as three contiguous segments
each with their own label. The second sentence/segment was labelled “abnormal non clinically impor-
tant” as the abnormality is unchanged, whereas the model predicts its original label instead.

proposed a multi-task transformer-based model to
perform this task. We conducted extensive exper-
iments to justify architectural decisions, and com-
pared our proposed model with single-task base-
lines and state-of-the-art models. We demonstrate
the benefit from the addition of the segmentation
task, i.e. that it allows the classification task to
be conducted with higher granularity, resulting in
higher performance. We believe the benefit of the
segmentation task to be generalisable to other tax-
onomies and datasets.

For future work, we suggest an exploration of
additional auxiliary tasks such as token and report
classification, for which the labels can be gener-
ated trivially. Furthermore, a more sophisticated
multi-task learning loss weighting mechanism may
help steer the gradient in a direction which is bene-
ficial to both/all tasks. For segmentation, a robust
aggregation technique and a method to determine
consensus may help improve data quality.

More broadly, the segmented and labelled re-
ports can enable mapping of individual text men-

tions to precise image regions annotated with clin-
ical concepts like anatomical locations and patho-
logical findings, facilitating precise multi-modal
alignment. Our model can also be used to eval-
uate the clinical accuracy of chest X-ray report
generation/summarisation models, with improved
granularity and label coverage compared to pre-
vious works. In clinical settings, a reliable gran-
ular classification model can be used for sec-
ond/double reading of reports, which can provide
real-time feedback for the reporting radiologist as
to how the report may be interpreted. This is partic-
ularly helpful in a learning situation, where resident
radiologists’ reports and findings are checked by a
more experienced colleague.

Code Availability

The code and model weights will be made avail-
able on GitHub5. By releasing open-source code

5https://github.com/yznlp/RoBERTaX
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with pretrained and fine-tuned weights for our mod-
els, we aim to facilitate further research and devel-
opment in this field, allowing researchers and de-
velopers to build upon our work and create more
advanced solutions for processing radiological re-
ports. Unfortunately, we are unable to make the
dataset publically available at this point due to the
agreement with our data providers.

Ethics and Limitations

This study is based on non-identifiable data from
three NHS Trusts (Hospital Networks) in the UK
(6 hospitals) and the publicly available datasets
MIMIC-CXR and Open-I. Data obtained from
the three NHS Trusts followed national gover-
nance (GAfREC) and NHS data opt out proce-
dures; these data were previously collected, non-
identifiable information from patients as part of
their care and support. The need for ethical ap-
proval and participant consent was waived since
all of the data were anonymised. University Hos-
pitals Coventry and Warwickshire NHS Trust was
the primary NHS sponsor for this study (GAfREC
ID: GF0274). The MIMIC-CXR public dataset
was originally approved by the Institutional Review
Board of the Beth Israel Deaconess Medical Cen-
ter (BIDMC) in Boston, MA and used here under
the PhysioNet Credentialed Health Data Use data
use agreement.

The main limitation of this work is the challenge
in choosing a suitable joint segmentation and clas-
sification metrics. While the proposed strict F1
measure was able to capture the performance of
both tasks simultaneously and did behave as ex-
pected as shown in Figure 2, its robustness re-
mains to be seen. In particular, requiring exact
match on the segment boundaries and the full set
of classification labels may encourage overfitting.
This is especially important considering the tem-
plated nature of chest X-ray report data, particu-
larly when modelled at the segment level. We are
able to see the effect of this in Table 5, where the
final model achieves a lower strict F1 despite out-
performing the pipeline models in the segmenta-
tion and classification tasks individually. As a re-
sult, it was difficult to select a final model.
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