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Abstract
Unsupervised neural machine translation (UNMT) models are trained with pseudo-parallel sentences constructed
by on-the-fly back-translation using monolingual corpora. However, the quality of pseudo-parallel sentences
cannot be guaranteed, which hinders the final performance of UNMT. This paper demonstrates that although
UNMT usually generates mistakes during pseudo-parallel data construction, some of them can be corrected by
the token-level translations that exist in the embedding table. Therefore, we propose a self-correction method
to automatically improve the quality of pseudo-parallel sentences during training, thereby enhancing translation
performance. Specifically, for a pseudo sentence pair, our self-correction method first estimates the alignment
relations between tokens by treating and solving it as an optimal transport problem. Then, we measure the translation
reliability for each token and detect the mis-translated ones. Finally, the mis-translated tokens are corrected with
real-time computed token-by-token translations based on the embedding table, yielding a better training example.
Considering that the modified examples are semantically equivalent to the original ones when UNMT converges,
we introduce second-phase training to strengthen the output consistency between them, further improving the
generalization capability and translation performance. Empirical results on widely used UNMT datasets demonstrate
the effectiveness of our method and it significantly outperforms several strong baselines.
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1. Introduction

Unsupervised neural machine translation (UNMT)
(Lample et al., 2018a; Artetxe et al., 2018b) aims
to train machine translation models using mono-
lingual corpora only. In recent years, UNMT
has achieved significant progress and attracted
plenty of attention. Generally speaking, UNMT
utilizes cross-lingual pre-trained language models
(cPLMs) (Conneau and Lample, 2019; Song et al.,
2019) for parameter initialization to ensure the ba-
sic cross-lingual processing capabilities. Subse-
quently, UNMT on-the-fly translates the sentence
from the target monolingual corpora into the source
language and then translates the synthetic source
sentence into the original target, basically enabling
the translation capability.

Therefore, the quality of training data used in
UNMT is worse than the human-labeled parallel
sentences, especially at the early training stage
when translation proficiency is not yet achieved.
The low-quality data leads to the performance dis-
parity between UNMT and supervised neural ma-
chine translation (SNMT) (Bahdanau et al., 2014).
We use the example in Table 1 to illustrate the prob-
lem. During training, UNMT first samples a sen-
tence y from monolingual corpora and translates y
to x̂. Then, it uses (x̂, y) as the pair to optimize the
parameters. We find that "acord" is inaccurately

* Corresponding author

src - y Suntem de acord cu asta .
hyp - x̂ I ’m very happy with that .
ref - x We do agree with this .

Table 1: An example of the pseudo parallel sen-
tence (En-Ro) constructed by UNMT. For clarity,
we provide the standard reference x, which is not
available during UNMT training.

translated to "happy", whose original meaning is
"agree". When using (x̂, y) as the pseudo sen-
tence pair to train UNMT, such mistakes can result
in the model learning incorrect alignments, conse-
quently impairing translation performance.

Although UNMT usually makes token-level mis-
takes when constructing pseudo-parallel sen-
tences, our investigation highlights that cPLMs
have already acquired token-level translation profi-
ciency (i.e. "acord" is already aligned with "agree"
in the embedding table) after pre-training, offering
a potential remedy for such mistakes. Therefore,
we conduct preliminary experiments and demon-
strate that carefully detecting translation mistakes
and using these exported token translations to cor-
rect them in synthetic source sentences can im-
prove the quality of constructed pseudo-parallel
sentences, thereby benefiting UNMT training.

Based on the analysis, we propose a novel self-
correction approach to automatically improve the
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data quality during UNMT training.1 Our method
consists of three main components: alignment ma-
trix estimation, translation-mistake detection and
continuous semantic modification. At each training
step, for the sentence pair (x̂, y) constructed by
UNMT, we first view the estimation of the alignment
between tokens in the two sentences as an optimal
transport problem (Levina and Bickel, 2001; Kus-
ner et al., 2015) and calculate the solution (align-
ment matrix estimation). Taking the tokens of y as
the references, we compare the aligned tokens in
x̂ and the token-by-token translations in the em-
bedding table, thus determining which token in
y has not been accurately translated (translation-
mistake detection). Finally, we measure the degree
of mis-translated tokens in x̂ and make semantic
modifications using real-time computed token-by-
token translations and the alignment matrix (con-
tinuous semantic modification), obtaining the modi-
fied training example (z, y).

During training, our self-correction method ful-
fills two distinct roles. Before the model con-
verges, self-correction improves the quality of train-
ing data. When the model achieves convergence,
self-correction produces semantically equivalent
yet distinct examples. Thus, we introduce the
second-phase training to encourage UNMT mod-
els to produce consistent outputs (Xie et al., 2020)
in line with the original and modified training ex-
amples. This phase enhances the robustness of
UNMT models in dealing with semantic-equivalent
yet diverse inputs. Notably, the second phase re-
quires only approximately a hundred training steps
to yield further improvements in translation quality.

We evaluate our method on widely used WMT14
En↔Fr, WMT16 En↔De, and WMT16 En↔Ro
testsets using XLM and MASS models as the
cPLMs. Experimental results demonstrate that
our self-correction method significantly improves
the translation performance compared with several
strong baselines. Further experiments show that
our method is orthogonal to other UNMT meth-
ods, allowing for their integration to yield greater
improvements. Finally, we adapt our method to
large language models (LLMs) (Brown et al., 2020;
Touvron et al., 2023) and unveil its effectiveness
with LLMs as well.

Our contributions can be summarized as follows:

• We find that UNMT models produce synthetic
source sentences with mistakes and demon-
strate that many mistakes can be alleviated by
token-by-token translations derived from the
embedding table.

• We propose a self-correction method to mod-
ify the synthetic source sentences on-the-fly,

1Our code is available in https://github.com/
JinliangLu96/Self-Correction-UNMT

reducing the semantic mistakes and thus im-
proving the quality of UNMT training data.

• Empirical results demonstrate the effective-
ness of our method, which improves the data
quality and thus enhances the translation per-
formance on ordinary UNMT models as well
as LLMs.

2. Background

2.1. Unsupervised Machine Translation

The architecture of the current state-of-the-art
UNMT is the same as the SNMT model. The train-
ing procedure comprises two main components:
the initialization of cross-lingual PLM and on-the-fly
back-translation.2

Cross-lingual PLMs are typically pre-trained
with monolingual corpora collected for specific lan-
guages, which aims to encode the source sen-
tences and target sentences into a shared space.
The parameters are used to initialize the encoder
and decoder in the UNMT model before training.

On-the-Fly Back-Translation (BT) is the essen-
tial component of UNMT, which explicitly guaran-
tees the model to have translation capability. First,
each batch of monolingual sentences is translated
into the other language by the UNMT model M.
Then, M applies the pseudo parallel sentences
(Ml1→l2(x),x) and (Ml2→l1(y),y) into training.
The objective function is:

Lbt = Ex∼Dl1
[− logPl2→l1(x|Ml1→l2(x))]

+ Ey∼Dl2
[− logPl1→l2(y|Ml2→l1(y))]

(1)

Although strong UNMT models have been pro-
posed in recent years, the uneven quality of training
data, especially at the early training stage, is still a
key factor that influences the final performance.

3. How to Improve Data Quality?

As we described above, the main difference be-
tween SNMT and UNMT lies in the quality of train-
ing data. Therefore, we first conduct some prelim-
inary analyses to explore the feasible method to
improve the data quality.

3.1. Token-Level Translation

Early studies about UNMT are built upon cross-
lingual word embeddings, which are aligned in
the same space and can form token translations

2Denoising Auto-Encoder (DAE) is another important
component in UNMT, which can improve the model learn-
ing ability through reconstructing the original sentences
from the sentences with artificial noise.

https://github.com/JinliangLu96/Self-Correction-UNMT
https://github.com/JinliangLu96/Self-Correction-UNMT


8944

(Lample et al., 2018b; Artetxe et al., 2018a). How-
ever, current UNMT models are initialized by cross-
lingual pre-trained language models, which do not
involve the cross-lingual projection like previous un-
supervised word translation studies. Therefore, we
first demonstrate whether token-level translations
still exist in the embedding table of cPLMs.

Suppose that language l1 and l2 have corre-
sponding corpora Cl1 and Cl2 . We first record the
tokens that occur in Cl and Cl2 . Then, we remove
shared tokens to avoid the impact of overlapping,
obtaining the language-specific vocabularies inde-
pendent of each other, Vl1 and Vl2 .

Next, we adopt the cross-domain similarity local
scaling (CSLS) (Lample et al., 2018b) to compute
the token similarity from Vl1 to Vl2 . For token em-
beddings x and y in two languages, the CSLS
score is computed as:

CSLS(x, y) = 2 cos(x, y)− rK(x)− rK(y) (2)

where rK(x) is the average score from x to the
K -nearest target neighbourhoods N (x).

rK(x) =
1

K

∑
ŷt∈N (x)

cos(x, ŷt) (3)

For a specific token in Vl1 , we find the most
similar token (according to CSLS scores) in Vl2 as
its translation. To measure the quality of exported
token translations, we collect golden dictionaries
from MUSE (Lample et al., 2018b) and compute
the Hit@1 accuracy3, which is shown in Table 2.
We can find that the embedding of the XLM models
has high accuracy scores of the token translation.

De-En Fr-En Ro-En
nums. of pairs 4250 8347 3976
accuracy 74.87% 73.36% 75.33%

Table 2: The Hit@1 accuracy of token translations
derived from XLM models.

3.2. The Feasibility of Self-Correction

As we described above, UNMT usually constructs
pseudo-parallel sentences with mistakes, while ac-
curate token translations exist in the embedding
table. For example, "acord" is aligned with "agree"
in the embedding table. The direct question arises:
can we improve the data quality by correcting the
mistakes using the exported dictionary?

To achieve this, we first choose 128 sentence
pairs from WMT16 Ro→En. Then, we carefully

3Considering that exported token translations have
noise, we remove the tokens whose max CSLS score
less than 0.10. Then, we compute the translation accu-
racy of the tokens covered by MUSE dictionary.

label the alignments between tokens for each sen-
tence pair (i.e. Nu - not, acord - happy, cu with, asta
- this) and detect the translation mistakes (acord
- happy). Finally, we use the exported dictionary
to replace the wrongly translated tokens (happy →
agree), obtaining the modified synthetic sentence.

Next, we compare the quality of the original syn-
thetic source sentence and the modified one us-
ing sentence-level metrics: sentence-BLEU (Pap-
ineni et al., 2002), TER (Snover et al., 2006), ChrF
(Popović, 2015) and COMET (Rei et al., 2020). As
shown in Figure 1, we can find that at the early
stage, the modification would improve the quality
of synthetic source sentences. For example, the
improved sentences account for 89% according
to ChrF. However, for synthetic source sentences
constructed in the late stage, the number of mis-
translated tokens decreases and thus the modifica-
tion brings improvements to about 20% sentences.
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Figure 1: The number (ratio) of improved sen-
tences with different metrics during training.

The above preliminary experiments demonstrate
that the quality of pseudo-parallel sentences can
be improved by exported token translations with
careful mistake detection. However, how to design
the algorithm that automatically completes such op-
erations to construct high-quality synthetic source
sentences becomes the key issue, which will be
described in the next section.

4. Our Method - Self-Correction

Our approach entails a two-phase training proce-
dure. In the first stage, the self-correction method
effectively enhances the data quality. We employ
the modified examples to train the UNMT model.
After the model achieves convergence, the self-
correction method assumes the other role of gen-
erating semantically equivalent yet distinct sam-
ples. Consequently, we introduce a second stage
to bolster output consistency when the model en-
counters semantically equivalent yet diverse inputs,
further enhancing the capability of UNMT models.
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Suntem de acord cu asta

I ‘m very happy wit
h

that

Suntem de acord cu asta

I ‘m very happy wit
h

that

0.1 0.9

We of agree with stay

I ‘m very happy wit
h

that

r=1 r=0 r=1 r=0 r=0

0.1× + 0.9×cos ( ),cos (
acord , )

agree
> acord very happy

REPLACE VALUE r ( ) = 1.0acord

r ( ) = 0.95 ×1.0 + 0.05 × 0.0 = 0.95happy

Suntem de acord cu asta

I ‘m very happy wit
h

that

REAL TIME

token-by-token 
translation

r=0.2 r=0.95

SEMANTIC MODIFICATION
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① Alignment Matrix Estimation

② Translation-Mistake Detection ③ Continuous Semantic Modification

𝓣(𝒚 → ෝ𝒙) 𝓢(ෝ𝒙 → 𝒚)
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1.0×0.95

1.0×0.95 +0.0×0.05 × + 
0.0×0.05

0.10×0.95 +0.10×0.05 ×

0.05 × 0.95 × +
agreehappy=

Figure 2: Illustration of our self-correction method. After obtaining the alignment matrix ① S and T ,
we use them for translation-mistake detection ② and continuous semantic modification ③. Specifically,
in ②, "acord" has larger cosine scores with "agree" than weighted aligned tokens "very" and "happy",
thus should be viewed as the mis-translated token. In ③, "happy" is potentially aligned with "acord"
("agree"), we first obtain the replacement values for it using S and then interpolate the Emb(happy) with
the embeddings of token-by-token translation, Emb(agree).

4.1. STAGE 1: UNMT with Modified
Pseudo Parallel Sentences

As we discussed in §3.2, UNMT usually gener-
ates translation mistakes that can be corrected with
token-by-token translations. As shown in Figure 2,
our method consists of alignment matrix estima-
tion, translation-mistake detection, and continuous
semantic modification.

Specifically, at each training step, we sample
a sentence y from the monolingual corpora Dl2 ,
which is translated into x̂ by UNMT model M us-
ing inference mode. Then, we have a pseudo
sentence-pair (x̂, y), x̂ = M(y). The word em-
bedding sequences of x̂ and y can be denoted
as x̂ = [x̂1, x̂2, · · · , x̂n] and y = [y1,y2, · · · ,ym].
Generally, the quality of (x̂, y) is determined by x̂.

Alignment Matrix Estimation To effectively de-
tect the translation mistakes in x̂, we need to figure
out the token alignments between x̂ and y and use
y to check the quality of x̂. Specifically, we treat the
alignment matrix estimation as the optimal trans-
port problem, measuring the semantic distance,
aligning semantically similar tokens, and obtaining
the amount of flow traveling between them.

min
F≥0

∑
i,j=1

Fi,jd(i, j)

subject to :
∑
j

Fi,j = wi,∀i ∈ {1, · · · , n}

∑
i

Fi,j = w′
j ,∀j ∈ {1, · · · ,m}

(4)

where F is the transportation matrix and d(i, j) =
∥x̂i−yj∥2 is the cost function. Considering that im-
portant tokens usually have larger norms (Schakel
and Wilson, 2015; Yokoi et al., 2020), we use the
norm of corresponding tokens as the weights wi,
w′

j to represent the importance. Because the sum
of the rows and columns in F are the correspond-
ing norms instead of 1.0, we separately normalize
it by rows and columns as the alignment matrices
S ∈ Rn×m (x̂ → y) and T ∈ Rm×n (y → x̂):

Si,j =
eF

∗
i,j∑

j e
F ∗

i,j
, Tj,i =

eF
∗
j,i∑

i e
F ∗

j,i
(5)

F ∗
i,j =

{
− inf, if Fi,j = 0,
Fi,j , otherwise (6)

Translation-Mistake Detection After obtaining
the alignment matrix T , we can roughly estimate
the tokens in x̂ which are aligned to tokens in y.
For a specific token yj with embedding yj , it would
have multiple aligned tokens in x̂. Therefore, we
first compute cosine similarity from yj to each to-
ken in x̂, obtaining cosine vector m ∈ Rn. Then,
we use the j-th row in alignment matrix T to com-
pute the aligned cosine scores cj for yj :

cj = m · Tj (7)

Considering that the token embeddings are fur-
ther optimized during training, we do not directly
use the exported dictionary (§3.1) but calculate the
cosine similarity from yj to the arbitrary token in op-
posite vocabulary Vl1 to obtain the token-by-token
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translations in real-time:

c
′

j = maxx′
k∈Vl1

cos(yj ,x
′

k)

x
′

j = argmaxx′
k∈Vl1

cos(yj ,x
′

k)
(8)

We define ∆cj = c
′

j − cj as the token-level
translation reliability. For j-th token, if ∆cj > σ,
we believe that the token generated by UNMT
is not better than the token-by-token translation,
thus should be replaced and we set the replace-
ment value ryj

= 1. Otherwise, ryj
= 0. All the

replacement values form the replacement vector
ry = [ry1

, ry2
, · · · , rym

] ∈ Rm. σ is the hyper-
parameter which should be varied during training:

σ = σmin + (st/stmax)× (σmax − σmin) (9)

where st means training step. we set σmin = 0.1
and σmax = 0.5 in our experiments.

Continuous Semantic Modification After de-
tecting the mis-translated tokens, we adopt the
token-by-token translations x

′
to modify x̂.

For the k-th token embedding in x̂k, we replace
it with continuous representation zk. Considering
that k-th token can be aligned to multiple target
tokens, we use the k-th row in the alignment matrix
S to obtain the replacement vector zk:

zk = (1− Sk · ry)x̂k + (Sk ⊗ ry) · x
′

(10)

where ⊗ is the element-wise product.
Finally, we feed the modified embedding se-

quence as well as the original pseudo-parallel sen-
tences into the model. The loss function is:

Lmbt = Ey∼Dl2
[− logP (y|x̂)− logP (y|z)] (11)

4.2. STAGE 2: Consistency Training

During training, the translation performance of the
UNMT model steadily increases. When UNMT con-
verges, the other role of self-correction comes to
play - constructing semantically equivalent but dis-
tinct examples (as discussed in §6.1). In this sce-
nario, facilitating UNMT to adapt to diverse inputs
is beneficial. Therefore, we use the consistency
loss (Xie et al., 2020; Wu et al., 2021) to encourage
the UNMT model to have similar outputs. Specifi-
cally, the bi-directional Kullback-Leibler divergence
is adopted as the consistency constraint:

Lcons = Ey∼Dl2
[LKL(P (y|x̂)∥P (y|z)) +
LKL(P (y|z)∥P (y|x̂))]

(12)

The loss function in stage 2 can be written as:

Lcbt = Lmbt + λLcons (13)

where λ is the hyper-parameter during training.

5. Experiments

5.1. Main Experiments

5.1.1. Experimental Settings

Datasets For training, we collect monolingual cor-
pora of En (179.9M), De (50.0M), Fr (65.4M), and
Ro (2.8M) from WMT News Crawl. For evaluation,
we respectively adopt WMT newsdev2014 / new-
stest2014, newsdev2016 / newstest2016, news-
dev2016 / newstest2016 as development/test sets
for En-Fr, En-De and En-Ro.4

Model Following previous settings, we evaluate
the UNMT model fine-tuned on XLM and MASS
pre-trained model, which has a 6-layer encoder
and a 6-layer decoder with the hidden dimension
1024. Specifically, the XLM models are released by
Conneau and Lample (2019), and MASS models
are released by Song et al. (2019).

Training Settings During training, we use Adam
optimizer with an initial learning rate 1e-4, β1=0.9,
and β2=0.98. To be comparable with previous
studies that usually adopt 8 NVIDIA V100 GPUs
with 2000 tokens per GPU (16k tokens), we use 4
NVIDIA A100-40G GPUs with a batch size of 4000
tokens per GPU for UNMT training without gradient
accumulation (16k tokens). For a fair comparison
with previous studies, we report the BLEU scores
computed by multi-bleu.perl scripts.

Method Comparison We compare our method
with several existing approaches.

• XLM (Conneau and Lample, 2019), SemFace
(Ren et al., 2021), and MASS (Song et al.,
2019) are the strong baselines that adopt
vanilla on-the-fly BT to train UNMT.

• Adversarial-Training (AT) (Sun et al., 2020)
improves the robustness of UNMT models by
inserting gradient-based noise.

• Self-Training-Offline (ST-Offline) (Sun et al.,
2021) adopts offline forward translation to con-
struct pseudo-parallel sentences to alleviate
the data imbalance problem.

• Self-Training-Online (ST-Online) (He et al.,
2022) employs the online forward translation
to construct pseudo sentence pairs to relieve
the translaionese problem in UNMT.

• Quality-Filtering (QF) (Lu and Zhang, 2021)
utilizes self-paced learning to help UNMT con-
centrate on high-quality examples.

4Appendix shows more details about the datasets.
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Methods
En↔Fr En↔De En↔Ro

Avg.
En→Fr Fr→En En→De De→En En→Ro Ro→En

XLM (Conneau and Lample, 2019) 33.4 33.3 26.4 34.3 33.3 31.8 32.1

SemFace (Ren et al., 2021) 34.3 35.0 28.8 35.2 34.5 32.9 33.5

MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1 34.0

XLM (our re-impl.) 37.3/36.0 34.7/34.4 27.1/27.3 33.9/33.7 34.5/35.0 32.7/32.5 33.4/33.2

+ AT (Sun et al., 2020) 37.8 34.9 27.6 34.4 - - -

+ ST-Offline (Sun et al., 2021) 35.6 34.9 - - 36.0 33.6 -

+ QF (Lu and Zhang, 2021) 37.4/36.2 34.9/34.6 27.4/27.3 34.4/34.6 35.3/35.4 33.4/33.1 33.8/33.5

+ ST-Online (He et al., 2022) 37.4/36.4 34.8/34.3 28.1/28.3 34.6/34.5 35.5/35.7 33.5/33.1 34.0/33.7

+ Self-Correction (SC) (ours) 38.0/36.9† 35.0/34.7† 28.1/28.3† 34.9/34.8† 36.2/36.2† 34.5/34.2† 34.5/34.2
w /o Consistency Training 37.9/36.9† 34.8/34.6 27.4/27.6∗ 34.7/34.5† 35.7/35.4† 33.8/33.5† 34.1/33.8

MASS (our re-impl.) 37.1/36.1 34.7/33.5 27.4/27.3 34.9/34.8 34.9/35.0 33.2/32.4 33.7/33.2

+ QF (Lu and Zhang, 2021) 37.3/36.1 34.9/34.6 28.1/27.8 35.2/35.1 35.8/35.9 33.9/33.6 34.2/33.8

+ ST-Online (He et al., 2022) 37.7/36.6 35.1/34.9 28.4/28.4 35.4/35.3 35.8/36.0 33.6/33.6 34.3/34.1

+ Self-Correction (SC) (ours) 37.9/36.7† 35.1/34.9∗ 28.8/29.0† 36.2/35.7† 36.4/36.3† 34.2/33.8† 34.8/34.4
w /o Consistency Training 37.6/36.4∗ 34.8/34.7∗ 27.9/28.1† 35.6/35.5† 35.7/36.0† 33.8/33.3† 34.2/34.0

Table 3: Unsupervised translation performance on WMT14 En-Fr, WMT16 En-De, WMT16 En-Ro. For
previous studies with open-source code, we re-implement their method using our settings and report
BLEU/detokenzied sacreBLEU. For others, we report BLEU scores provided in their paper. * and †
separately indicate the gains are statistically significant than baselines with p<0.05 and p<0.001.

5.1.2. Experimental Results

Main Results The experimental results are pre-
sented in Table 3. We re-implement XLM and
MASS as the strong baselines, which achieve
comparable or better results compared with the
reported BLEU scores in their papers. By com-
parison, our method outperforms the baselines
(XLM/MASS) by a large margin, separately ob-
taining 1.1 BELU improvements. For specific lan-
guage directions, our method would obtain signifi-
cant performance. For example, our method sepa-
rately obtains 36.2/34.5 BLEU on En→Ro, Ro→En
(+1.7/+1.8 BLEU) when using XLM as the cPLM.
Furthermore, compared with other methods, such
as Quality-Filtering and Self-Training, our method
also has better translation performance.

Finally, we show the results when removing the
second stage (consistency training) in Table 3. We
can find that the improvements would decrease
without consistency training (+1.1 BLEU → + 0.7
BLEU for XLM, + 1.1 BLEU → + 0.4 BLEU for
MASS). It demonstrates that requesting UNMT
models to produce consistent outputs would bene-
fit the translation performance.

Combination with Previous Methods Finally,
we combine our method with Self-Training (ST)
and Quality Filtering (QF). The results are shown
in Table 4. We can find that combining our method
with either Self-Training or Quality Filtering would
further boost the translation performance. For the
combination method SC+ST, the improvements are
significant (28.1 → 29.3, + 1.2 BLEU), demonstrat-
ing that our method is orthogonal to Self-Training.

By contrast, the improvements of SC+QF are
smaller. Quality Filtering also focuses on the qual-
ity of pseudo-parallel sentences, which assigns
higher weights for the high-quality tokens or sen-
tences. It makes the two methods not completely
orthogonal, leading to smaller improvements.

Method En→De De→En
XLM 27.1 / 27.3 33.9 / 33.7
+ QF 27.4 / 27.3 34.4 / 34.6
+ ST-Online 28.1 / 28.3 34.6 / 34.5
+ SC (ours) 28.1 / 28.3† 34.9 / 34.8†

w/o Consistency 27.4 / 27.6† 34.7 / 34.5†

+ SC + QF 28.4 / 28.7† 35.1 / 35.0†

w/o Consistency 27.7 / 27.9† 34.9 / 34.8†

+ SC + ST-Online 29.3 / 29.4† 35.4 / 35.3†

w/o Consistency 28.8 / 29.0† 35.2 / 35.1†

Table 4: Unsupervised translation performance
(tokenized BLEU/detokenized sacreBLEU) of com-
bined methods on WMT16 En-De.

5.2. Experiments on LLMs

UNMT models usually exhibit poor performance
in distant languages while large language models
(LLMs) well perform in multiple languages due to
the massive amounts of training data. Therefore,
we evaluate the UNMT performance of LLMs on
En→Zh.5 Specifically, we first construct pseudo-

5It is worth noting that a limited amount of parallel
data may inadvertently exist in LLM training data. Nev-
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parallel sentences as training data. Subsequently,
we employ instruction tuning as the baseline and
compare it with our self-correction approach, which
harnesses modified pseudo-source sentences dur-
ing the instruction tuning process.

5.2.1. Experimental Settings

Dataset For LLMs, on-th-fly back-translation with
a great number of monolingual corpora is not prac-
tical, as the inference speed is very slow. There-
fore, we use in-context learning (ICL) (Brown et al.,
2020) to translate 50k Chinese sentences (ran-
domly sampled from 13.8M WMT News Crawl
Data) into English offline. The ICL template is:

Translate: [l2] y [l1] x

Then, we obtain the pseudo-parallel sentence
(x̂,y). After filtering noisy pairs, we keep about 40k
training examples for instruction tuning and adopt
WMT En→Zh newsdev2017/newstest2017 as the
development/test set. Considering that pseudo-
parallel sentences are constructed offline, the data
quality remains consistent throughout the training
process. Therefore, σ is consistently set as 0.30.

Model We choose XGLM (from 1.7B to 7.5B) (Lin
et al., 2022) models for experiments, which are
trained using multiple monolingual corpora without
explicitly involving cross-lingual corpora in training.
The baseline model is trained based on XLM.

Training Settings We use the mini-batch with
32k tokens to train models for 5 epochs. During
inference, we use the 8-shot ICL for vanilla and
instruction-tuned models. For evaluation, we use
the TokenizeChinese.py6 to cut the Chinese
sentences into characters and report sacreBLEU
(Post, 2018) and COMET (Rei et al., 2020) scores.

5.2.2. Experimental Results

The experimental results shown in Table 5 demon-
strate the advantages of LLMs in the translation of
distant language pairs compared to conventional
UNMT. First, LLMs outperform UNMTXLM in terms
of translation quality measured by the COMET
score, which is more relevant to human judgments
than the BLEU metric. Secondly, it is worth empha-
sizing that UNMTXLM leverages millions of mono-
lingual sentences during training, whereas LLMs
utilize just 40k pseudo-sentence pairs. These re-
sults underscore the untapped potential of LLMs
in translating distant languages.

ertheless, certain LLMs, such as GPT-3 and XGLM, do
not explicitly perform translation tasks. We roughly think
these models can be used to investigate UNMT.

6https://www.statmt.org/wmt17/
tokenizeChinese.py

Furthermore, LLMs after instruction tuning ex-
hibit higher translation performance when using
the same ICL templates for inference. Our pro-
posed self-correction methodology proves effective
for both UNMTXLM and LLMs, resulting in enhance-
ments across different model sizes. To be specific,
our self-correction increases the COMET score
from 82.68 to 83.28 for XGLM7.5B.

6. Analysis

6.1. Effectiveness of Self-Correction

We first evaluate the effectiveness of our method.
During training, our self-correction method serves
a dual purpose. As illustrated in Figure 3, we track
the curve of training loss and back-translated met-
rics (i.e ∆ BLEU = BLEU(y, z → y) - BLEU(y, x̂ →
y)) as indirect indicators of the quality of the mod-
ified examples.7 We observe that in the early
stage of training, the loss and back-translated
BLEU/ChrF/COMET scores of modified examples
significantly surpass those of the original data, af-
firming that self-correction indeed enhances data
quality. As the model approaches convergence,
∆BLEU/∆ChrF/∆COMET and the loss gap gradu-
ally narrow, signifying that self-correction automati-
cally adjusts the extent of modification. It then as-
sumes a new role, generating semantically equiva-
lent yet diverse examples when UNMT becomes
proficient at constructing good training examples.
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Figure 3: Comparison between original examples
and modified ones: (a) training loss; (b) validation
back-translated metric scores.

On the other hand, our self-correction method
feeds the modified pseudo-sentence pair as well as
the original example into the UNMT model, which
necessitates double-forward computation at each
training step. Therefore, we conducted the experi-
ment wherein the original training example under-
went forward computation twice. As shown in Table
6, 2× Forward also obtains slight improvements
but cannot surpass Self-Correction, demonstrating
the effectiveness of modified training examples.

7This indirect assessment is necessary due to the
continuous nature of our modifications, which compli-
cates direct quality measurement.

https://www.statmt.org/wmt17/tokenizeChinese.py
https://www.statmt.org/wmt17/tokenizeChinese.py
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Model Num. Params Vanilla ICL Instruction SFT + Self-Correction
UNMTXLM 336M - 18.41 / 67.46 21.07† / 70.35†

XGLM1.7B 1.7B 14.19 / 73.90 15.84 / 76.15 17.16† / 77.14∗

XGLM2.9B 2.9B 18.31 / 78.61 19.97 / 80.60 21.08† / 80.97
XGLM7.5B 7.5B 22.27 / 81.86 23.47 / 82.68 24.00∗ / 83.28∗

Table 5: UNMT performance (sacreBLEU/COMET) on WMT17 En→Zh. For UNMTXLM, we report the
baseline result in Instruction SFT. The statistical significance is measured with results of Instruction SFT.

De→En En→Ro
XLM 33.9 34.6
2× Forward 34.2 35.2
Self-Correction 34.7 35.7

Table 6: The comparison of translation perfor-
mance when using double forward computation
or our proposed self-correction without stage 2.

6.2. Training Efficiency

We also conducted an efficiency comparison of
various methods. As shown in Table 7, almost all
the methods enhance the performance while simul-
taneously impacting training speed. Specifically,
MASS+ST needs double time forward computa-
tion, resulting in a 0.63x fraction, which is slower
than MASS+QF. CBD (Nguyen et al., 2021) is a
data augmentation method that employs two addi-
tional models to generate diverse pseudo-parallel
sentences. While CBD achieves significant im-
provements, it exhibits the slowest training speed
(0.35x). Compared with the aforementioned meth-
ods, our Self-Correction (SC) strikes a balance
between the performance and the training speed.

De→En Ro→En Training Speed
MASS 34.9 33.2 4636 (1.00x)
+ QF 35.2 33.9 4480 (0.97x)
+ ST 35.4 33.6 2924 (0.63x)
+ CBD 36.3 33.8 1033 (0.35x)
+ SC (ours) 36.2 34.2 2976 (0.64x)

Table 7: The comparison of different methods on
training efficiency. Average speed (tokens/s) is
measured on NVIDIA A100-40G and numbers in
brackets are the fractions compared with MASS.

We further compare the training cost of stage 1
and stage 2 in our method. As shown in Table 8,
stage 1 typically requires approximately 40∼50k
training steps to achieve convergence, whereas
stage 2 exhibits convergence with just a few hun-
dred steps. The results demonstrate the efficiency
of consistency training, leading to a noteworthy
enhancement in translation performance while in-
curring only 0.2∼0.3% of the training cost.

STAGE 1 STAGE 2 Fraction
En-Fr 49625 80 0.16%
En-De 47770 120 0.25%
En-Ro 41445 80 0.19%

Table 8: The comparison of training steps of Stage
1 and Stage 2. Fraction = STEPstage-1 / STEPstage-2.

6.3. Ablation Study on Hyper-Parameters

In stage 2, we use two hyper-parameters: σ, which
governs the extent of modification, and λ, which
balances the influence of the consistency loss. To
investigate their impact on the translation perfor-
mance, we set σ in {0.1, 0.3, 0.5, 0.7, 0.9}, λ in {5.0,
7.5, 10.0, 12.5, 15.0} and conduct experiments on
WMT16 En→Ro. The results are shown in Figure
4. We find that setting σ = 0.50 and λ = 10.0
obtains the best translation quality. Notably, set-
ting σ = 0.10 results in poor performance. This
may be attributed to the fact that a smaller σ leads
to substantial modifications of the pseudo-parallel
sentences, thereby perturbing the original seman-
tics. In contrast, larger σ only results in tiny alter-
ations to the original sample, thereby diminishing
the extent of improvement as well.

7. Related Work

UNMT Unsupervised neural machine translation
is proposed in (Lample et al., 2018a) and (Artetxe
et al., 2018b), which aims to build translation mod-
els using monolingual corpora only. Early stud-
ies train UNMT based on the cross-lingual word
embedding (Artetxe et al., 2018a; Lample et al.,
2018b), while advanced UNMT models are fine-
tuned on cross-lingual pre-trained models (cPLMs).
(Conneau and Lample, 2019; Song et al., 2019).

Recently, various methods have been proposed
to enhance UNMT, which can be categorized into
pre-training-based (PT) and fine-tuning-based (FT)
methods. Typically, PT and FT are orthogonal to
each other. PT mainly improves the cross-lingual
capability of cPLMs to provide better parameters
for the UNMT initialization (Ren et al., 2019, 2021;
Ai and Fang, 2022, 2023; Lu et al., 2023). FT
focuses on the training strategy of UNMT. Specif-
ically, Sun et al. (2020) improves the robustness
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Figure 4: Ablation study of hyper-parameters - σ
and λ in training stage-2.

of UNMT models with adversarial denoising train-
ing. Keung et al. (2020); Tran et al. (2020) propose
unsupervised bi-text mining methods from mono-
lingual corpora to improve UNMT. Lu and Zhang
(2021) adopt curriculum learning to help the UNMT
model concentrate on high-quality training exam-
ples. Nguyen et al. (2021) adopt additional UNMT
models to construct diverse training examples for
the current one. Sun et al. (2021) and He et al.
(2022) utilize forward translation (Zhang and Zong,
2016) to construct pseudo parallel sentences to
relieve the data imbalance and translationese is-
sues.

BT Data Filtering in NMT Back-translation (Sen-
nrich et al., 2016) is an important technique in NMT.
Previous studies (Hoang et al., 2018; Burlot and
Yvon, 2018) demonstrate that the quality of BT data
matters for translation performance. Imankulova
et al. (2017); Junczys-Dowmunt (2018); Khatri
and Bhattacharyya (2020); Xu et al. (2022) utilize
sentence-level metrics as the weight to filter noisy
synthetic sentence pairs. Ramnath et al. (2021)
provide hints about the quality of BT data, enabling
the NMT model to learn from noisy examples.

Our work belongs to the FT-based method. In
contrast to most previous studies, we highlight the
potential of utilizing token translations from the em-
bedding table to improve the quality of BT data for
UNMT, thereby enhancing translation performance.

8. Conclusion

In this work, we investigate the data quality of
UNMT and find that token-by-token translations
that exist in the embedding table would alleviate
many mistakes in the constructed pseudo-parallel
sentences. Based on the observation, we propose
a self-correction method to improve the data qual-
ity during UNMT training. Experimental results
demonstrate that our method significantly outper-
forms the strong baselines. Further experiments
on the method combination and large language
models also show the effectiveness of our method,
obtaining better translation performance.
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Appendix

Experiments Details

Datasets For a fair comparison with previous
studies, we use the data (En, De, Fr, Ro) provided
in (Song et al., 2019), as shown in Table 9. The Chi-
nese monolingual sentences are downloaded from
WMT News Crawl and we use all the sentences
for XLM En-Zh experiments. For LLM experiments,
we sample 50k monolingual sentences for training
efficiency.

Data Lan. # Sent. Source

En-De
En 50.0M

(Song et al., 2019)
De 50.0M

En-Fr/Ro/Zh

En 179.9M News Crawl 07-17

Fr 65.4M News Crawl 07-17

Ro 2.8M News Crawl 07-17 + WMT16

Zh 13.8M News Crawl 07-21

Table 9: Data statistics for unsupervised machine
translation training.
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