@inproceedings{anil-etal-2024-inductive,
title = "Inductive Knowledge Graph Completion with {GNN}s and Rules: An Analysis",
author = "Anil, Akash and
Gutierrez-Basulto, Victor and
Ibanez-Garcia, Yazmin and
Schockaert, Steven",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.792",
pages = "9036--9049",
abstract = "The task of inductive knowledge graph completion requires models to learn inference patterns from a training graph, which can then be used to make predictions on a disjoint test graph. Rule-based methods seem like a natural fit for this task, but in practice they significantly underperform state-of-the-art methods based on Graph Neural Networks (GNNs), such as NBFNet. We hypothesise that the underperformance of rule-based methods is due to two factors: (i) implausible entities are not ranked at all and (ii) only the most informative path is taken into account when determining the confidence in a given link prediction answer. To analyse the impact of these factors, we study a number of variants of a rule-based approach, which are specifically aimed at addressing the aforementioned issues. We find that the resulting models can achieve a performance which is close to that of NBFNet. Crucially, the considered variants only use a small fraction of the evidence that NBFNet relies on, which means that they largely keep the interpretability advantage of rule-based methods. Moreover, we show that a further variant, which does look at the full KG, consistently outperforms NBFNet.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anil-etal-2024-inductive">
<titleInfo>
<title>Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akash</namePart>
<namePart type="family">Anil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victor</namePart>
<namePart type="family">Gutierrez-Basulto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yazmin</namePart>
<namePart type="family">Ibanez-Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The task of inductive knowledge graph completion requires models to learn inference patterns from a training graph, which can then be used to make predictions on a disjoint test graph. Rule-based methods seem like a natural fit for this task, but in practice they significantly underperform state-of-the-art methods based on Graph Neural Networks (GNNs), such as NBFNet. We hypothesise that the underperformance of rule-based methods is due to two factors: (i) implausible entities are not ranked at all and (ii) only the most informative path is taken into account when determining the confidence in a given link prediction answer. To analyse the impact of these factors, we study a number of variants of a rule-based approach, which are specifically aimed at addressing the aforementioned issues. We find that the resulting models can achieve a performance which is close to that of NBFNet. Crucially, the considered variants only use a small fraction of the evidence that NBFNet relies on, which means that they largely keep the interpretability advantage of rule-based methods. Moreover, we show that a further variant, which does look at the full KG, consistently outperforms NBFNet.</abstract>
<identifier type="citekey">anil-etal-2024-inductive</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.792</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>9036</start>
<end>9049</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis
%A Anil, Akash
%A Gutierrez-Basulto, Victor
%A Ibanez-Garcia, Yazmin
%A Schockaert, Steven
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F anil-etal-2024-inductive
%X The task of inductive knowledge graph completion requires models to learn inference patterns from a training graph, which can then be used to make predictions on a disjoint test graph. Rule-based methods seem like a natural fit for this task, but in practice they significantly underperform state-of-the-art methods based on Graph Neural Networks (GNNs), such as NBFNet. We hypothesise that the underperformance of rule-based methods is due to two factors: (i) implausible entities are not ranked at all and (ii) only the most informative path is taken into account when determining the confidence in a given link prediction answer. To analyse the impact of these factors, we study a number of variants of a rule-based approach, which are specifically aimed at addressing the aforementioned issues. We find that the resulting models can achieve a performance which is close to that of NBFNet. Crucially, the considered variants only use a small fraction of the evidence that NBFNet relies on, which means that they largely keep the interpretability advantage of rule-based methods. Moreover, we show that a further variant, which does look at the full KG, consistently outperforms NBFNet.
%U https://aclanthology.org/2024.lrec-main.792
%P 9036-9049
Markdown (Informal)
[Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis](https://aclanthology.org/2024.lrec-main.792) (Anil et al., LREC-COLING 2024)
ACL
- Akash Anil, Victor Gutierrez-Basulto, Yazmin Ibanez-Garcia, and Steven Schockaert. 2024. Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 9036–9049, Torino, Italia. ELRA and ICCL.