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Abstract
Information extraction (IE) from text documents is an important NLP task that includes entity, relation, and event
extraction. These tasks are often addressed jointly as a graph generation problem, where entities and event
triggers represent nodes and where relations and event arguments represent edges. Most existing systems use
local classifiers for nodes and edges, trained using cross-entropy loss, and employ inference strategies such as
beam search to approximate the optimal graph structure. These approaches typically suffer from exposure bias
due to the discrepancy between training and decoding. In this paper, we tackle this problem by casting graph
generation as auto-regressive sequence labeling and making its training aware of the decoding procedure by using a
differentiable version of beam search. We evaluate the effectiveness of our approach through extensive experiments
conducted on the ACE05 and ConLL04 datasets across diverse languages. Our experimental findings affirm
that our model outperforms its non-decoding-aware version for all datasets employed. Furthermore, we conduct
ablation studies that emphasize the effectiveness of aligning training and inference. Additionally, we introduce
a novel quantification of exposure bias within this context, providing valuable insights into the functioning of our model.

Keywords: Information Extraction, Differentiable Beam Search, Auto-regressive Sequence Labeling

1. Introduction

Information extraction (IE) is a crucial task in nat-
ural language processing that involves identifying
and labeling salient entities and semantic relations
between them, triggers of events and their argu-
ments which are entities that play specific roles
in the event. The output is often formalized as a
labeled graph where entities and triggers are rep-
resented by nodes, relations by edges joining two
entity nodes, and roles by edges joining a trigger
node and an entity node. See Figure (1) for an
example graph for an input text and (§2) for formal
definitions.

An important challenge is to adequately model
the dependencies between labels. Many ap-
proaches have been studied in the literature includ-
ing modeling inter-instance and inter-label depen-
dencies using a globally-normalized CRF-based
scoring function (Zheng et al., 2017). Another line
of work uses auto-regressive frameworks that take
previous decisions into account to construct repre-
sentations for next predictions. This includes the
work of (Luan et al., 2019) and (Wadden et al.,
2019) which uses graph convolution layers to it-
eratively refine node representations but still use
independent classifiers for labeling. Other auto-
regressive frameworks rely on sequence label-
ing models with RNNs (Zheng et al., 2017) or
on Seq2Seq models with Transformers (Paolini
et al., 2021; Lu et al., 2022; Fei et al., 2022;
Liu et al., 2022; Zaratiana et al., 2024) that use
specifically-designed vocabularies to encode the
labeled graph.

People  in  Pakistan  start  protesting 
PER

Entity

GPE Conflict

PHYS Place

Figure 1: Example of an IE graph. Entity nodes
are framed in red, trigger nodes in blue, relation
edges in green and argument edges in orange.

Training such auto-regressive sequence models
typically consists of maximizing the locally normal-
ized likelihood of each token in the reference (gold)
sequence given previous reference tokens. For in-
ference, the unknown previous tokens are replaced
by model predictions which create a discrepancy,
which results in exposure bias and error propaga-
tion. Existing solutions, such as schedule sam-
pling (Bengio et al., 2015), incorporate previous
decoding decisions stochastically during training.
However, the training objective becomes discon-
tinuous because it relies on greedy decisions at
each time step, hence hindering gradient-based
learning. Furthermore, when beam search is used
instead of greedy decoding the objective does not
directly reason about the behavior of the decoder
at inference time. As a result beam decoding can
sometimes yield reduced test performance when
compared with greedy decoding (Cho et al., 2014;
Koehn and Knowles, 2017). Previous work pro-
posed a training objective that takes search into
consideration by proposing continuous approxima-
tions of both greedy and beam search decoding
(Goyal et al., 2017, 2018). This makes the de-
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coding stage differentiable, hence allowing it to be
used in gradient-based learning. This approach
makes the model aware of the decoding process
during training, resulting in better performance
which has been shown to help sequential tasks
such as named-entity recognition and segmenta-
tion, but it has not been applied to more general
graph generation.

In this work, we reformulate labeled IE graph
generation as a sequence labeling problem. Simi-
lar to previous work (Lin et al., 2020), we first iden-
tify entities and triggers using a linear-chain CRF
(Lafferty et al., 2001) with a BIO tagging scheme,
then autoregressively decode the output graph by
sequentially labeling identified nodes and possi-
ble edges between them. Unlike Lin et al. (2020)
which uses a combination of local classifiers with
manually designed feature-based representation
of the graph, we apply RNNs on the linearized
graph (You et al., 2018a). We use beam search for
labeling and show that the discrepancy between
training and decoding is harmful. To solve this is-
sue we propose a continuous relaxation of beam
decoding similar to Goyal et al. (2018). We conduct
experiments on the ACE05 and CoNLL04 datasets,
spanning multiple languages. Through these ex-
periments, we demonstrate the superiority of our
model over its non-decoding-aware counterpart
(§5). In addition, we perform ablations studies
confirming that the best performance is obtained
when training and inference are aligned (§6.1 and
§6.2). Finally, we propose a quantification of expo-
sure bias (§6.3), offering deeper insights into our
model.

2. Task Definition

Information extraction involves identifying and la-
beling entities, relations, triggers, and their argu-
ments in text data, mapping it to a labeled graph
G = (V,E). V is the set of nodes corresponding
to entities and triggers, and E is the set of edges
corresponding to relations between pairs of enti-
ties or between a trigger and one of its arguments.
Each graph element (a node or an edge) is as-
signed a label from a set of possible types. Figure
1 represents an example of an IE graph.

3. Model

The model we propose is composed of two sys-
tems trained in a multitask fashion. The first system
focuses on identifying nodes of the graph using a
CRF for sequence labeling (§3.1). The second
system tackles the generation of the labeled graph
using an auto-regressive network. It takes the iden-
tified nodes from the previous step, produces a
linearized graph over them (§3.2), and labels the
resulting sequence using RNNs for representation

and beam search for decoding (§3.3). In §3.4 we
describe the relaxation of the beam search which
we use for our search-aware training procedure.

3.1. Nodes Identification

Text Encoding The input sequence is passed
through a pretrained language model (PLM), such
as BERT (Devlin et al., 2019a), to generate a vector
representation for each word in the sequence. If a
word is split into multiple word pieces, we consider
its representation to be the average of all its word
piece vectors.

Identification as Sequence Labeling The se-
quence of embeddings is passed through a feed-
forward layer and then fed to a CRF (Lafferty et al.,
2001) layer. The CRF labels the sequence using
the BIO scheme to identify spans of tokens corre-
sponding to entities or triggers. We use two sep-
arate CRFs to allow overlapping between entities
and triggers. Referring to the example in Figure
1, the entity CRF yields the sequences <B, O,
B, O, O>, the trigger CRF yields <O, O, O, O,
B>.

Training and Inference During training, we use
the negative log-likelihood Lid of the reference BIO
tag sequence as the loss function. This loss func-
tion is part of the overall joint-training loss of our
model. For inference, we employ the Viterbi algo-
rithm to search for the most likely tag sequence.

3.2. Graph Linearization

The graph consists of nodes denoted by V =
{e1, . . . , en, t1, . . . , tm}, representing the previously
identified entities and triggers. Entities are ar-
ranged in the order of their appearance in the sen-
tence as e1, . . . , en, while triggers follow a similar
ordering as t1, . . . , tm. To predict the types of en-
tities, triggers, relations, and arguments, we con-
sider all possible pairwise relations and arguments
E = {(ei, ej) ∈ V 2}1≤i<j≤n∪{(ti, ej) ∈ V 2}1≤i≤m

1≤j≤n
.

These pairs are treated as an ordered sequence
using lexicographic order.

We construct the linearized graph sequence us-
ing the entity, relation, trigger, and argument se-
quences according to the following procedure: we
iterate over the entity sequence, and at each step,
we add the current entity and all relations between
it and the previously added entities. This ensures
that each relation appears after its two endpoints.
Subsequently, we iterate over the trigger sequence,
adding at each step the visited trigger and then all
possible arguments. The resulting sequence is
of length T = n + n(n−1)

2 +m + nm, where n, m,
n(n−1)

2 , and nm respectively represent the number
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Figure 2: SLBS example for Figure 1, K = 2, |Ventity| = |Vtrigger| = 5, and |Vrelation| = 4. Hidden state
h3
1 encodes the following graph path tags: PER, GPE, PHYS and h3

2 encodes: GPE, GPE, Org-Aff.

of entities, triggers, relations, and arguments. The
sequence follows the ordering: e1, e2, (e1, e2), e3,
. . . , (en−1, en), t1, (t1, e1), (t1, e2), . . . , (tm, en).

As an example, the linearization of the graph in
Figure 1 results in: “People”,“Pakistan”, (“People”,
“Pakistan” ), “Protesting”, (“Protesting”, “People” ),
(“Protesting”, “Pakistan” ).

During training, this sequence is constructed
using gold entities and gold triggers from the input
sentence.

3.3. Graph RNN with Beam Search

Encoding of Nodes and Edges A node’s rep-
resentation is the average of its token representa-
tions. An edge representation is a concatenation
of its two node representations. We denote the
encoded sequence as x ∈ Rdx×T , and for ease of
readability, we denote xi its i-th element in all the
following.

Labeling Given the linearized graph x, we aim
to generate a label sequence ĉ of the same length,
where each element xi is assigned a label from the
corresponding task vocabulary Vtask, where task is
one of the four IE tasks (entity, relation, trigger, and
role). For each Vtask, we add a dedicated None
label for graph elements that have to be removed
from the graph.

Sequence Labeling with Beam Search (SLBS),
with a beam size K, is a heuristic that approxi-
mates the most likely label sequence by keeping
track of and updating K candidate sequences at
each step. At each step t = {1, . . . , T}, we keep
track of K couples {(ht

i ∈ Rdh , sti ∈ R)}1≤i≤K . The
vector ht

i can be understood as an embedding of
the i-th beam element of the usual beam search
algorithm, and is updated using a Recurrent Neural
Network (RNN):

ht+1
i = RNN(xt+1, E(ĉti), ht

i) (1)

where xt+1 ∈ Rdx is the current instance embed-
ding, E(ĉti) is the embedding of ĉti implemented as
a linear projection layer, with ĉti ∈ {1, . . . , |Vtask|}
being the index of the previously selected tag, i.e.
the one that best extends the i-th element of the
beam. The term “best” is defined in this context
using the extension scores s̃ti,j ∈ R such that, for
every beam index 1 ≤ k ≤ K:

st+1
k = top-k-max

1≤i≤K
1≤j≤|Vtask|

(s̃ti,j) (2)

btk, ĉ
t
k = top-k-argmax

1≤i≤K
1≤j≤|Vtask|

(s̃ti,j) (3)

With

s̃ti,j = sti + ŷti,j (4)

The local scores ŷti,j ∈ R represent classification
logits produced by feed forward networks FFNtask

when fed the hidden states ht
i:

ŷti,· = FFNtask(h
t
i) ∈ R|Vtask| (5)

The local score ŷti,j can be seen as the negative
log-likelihood of the beam element i having j as a
tag at time step t.

In equation 3, btk ∈ {1, . . . ,K} serve as back-
pointers because they point to the beam element
whose extension produced the current state of the
beam element k.

In practice, updates are made in the following
order: 5, 4, 3, 2 / 1. Figure 2 illustrates an example
of the first 4 steps of the SLBS procedure.
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Algorithm 1 Soft SLBS training for IE
Input: x = x1, . . . , xT , the linearized graph

1 for t=1 to T do
2 for i=1 to K do
3 ht

i ← RNN(xt+1, E(ĉt·,i), ht
i)

4 for j=1 to |Vtask| do
5 ŷti,j ← FFNtask(h

t
i)j

6 s̃ti,j ← sti + ŷti,j

7 for j=1 to |Vtask|, k=1 to K do
8 wk

i,j ← (s̃ti,j − top-k-max
1≤i≤K

1≤j≤|Vtask|

(s̃ti,j))
2

9 pki,j ← σ(
−wk

·,·
α )i,j

10 for k=1 to K do
11 st+1

k ←
∑
i,j

pki,j s̃
t
i,j

12 for j=1 to |Vtask|, k=1 to K do

13 ĉtj,k ←
∑

i p
k
i,j

i

14 loss+ =
∑
k

dk((− log(
∑

i e
−wk

i,j∗t
+a

) + a) +

(log(
∑

i,j∗t
e
−wk

i,j∗t
+b

)− b)

with a = min
i

(wk
i,j∗t

) and b = min
i,j

(wk
i,j∗t

)

Training During training, K = 1. Hence, the
model is greedily trained to minimize the total cross-
entropy Lg loss at each time step between the
predicted tags and the gold ones:

Lg = −
T∑

t=1

|Vtask|∑
j=1

ytj log(σ(ŷ
t
i,j)) (6)

Where yt· ∈ R|Vtask| is the gold tag in its one-hot
form, and σ is the softmax function.

Total Loss The model is jointly trained to mini-
mize the nodes identification loss and the labeled
graph generation loss: L = Lid + Lg.

3.4. Continuous Relaxation of Beam
Search

The SLBS procedure is used as a decoding strat-
egy with models that are trained greedily using
cross-entropy. Hence, the distribution of hidden
states reached during inference does not match
that of the hidden states reached during training.
In order to incorporate awareness of the decoding
strategy into the training stage, we train our model
using a relaxed SLBS procedure, by replacing the
discontinuous top-k-argmax operation with the
relaxed version used by Goyal et al. (2018); Mad-
dison et al. (2017); Jang et al. (2017); Goyal et al.
(2017) in the context of Seq2Seq models.

The following describes how we relax the SLBS
procedure for IE, making it fully continuous and
almost everywhere differentiable.

Continuous top-k-argmax The key ingredient
is to replace the only discontinuous operation of
the SLBS procedure, namely the top-k-argmax
operation applied to extension scores, with a con-
tinuous approximation, taking advantage of the
following asymptotic property: for any real-valued
function f defined over the vocabulary Vtask, the

expression σ(− (f(·)−mk)
2

α )j = e
−(f(j)−mk)2

α

|Vtask|∑
l=1

e
−(f(l)−mk)2

α

tends to δj(top-k-argmax
1≤l≤|Vtask|

(f(l))) as the temper-

ature parameter α tends to zero, with δj being the
Dirac distribution centered on the tag j, which can
also be seen as the one-hot operation, and:

mk = top-k-max
1≤l≤|Vtask|

(f(l)) (7)

Training with soft SLBS In the SLBS procedure,
the top-k-argmax operation is used to make tag
choices ĉtk based on the extension scores s̃ti,j . In
the relaxed setup, a tag choice is no longer a binary
decision. Therefore, using the previous asymptotic
approximation, we define pki,j as the set of prob-
ability distributions over tags j (cf. lines 8 and
9 of Algorithm 1) that can be interpreted as the
probability of beam element k being updated using
the hidden state coming from beam element i and
extended by tag j.

Such a set of probability distributions can be
first used to compute a relaxed version of st+1

k , as
the expected extension score over all origin beam
elements i and extension tags j (cf. line 11 of Algo-
rithm 1), and then to compute a relaxed version of
the one-hot representation of the previously added
tag ĉtk, denoted ĉtj,k, as the probability of j being
the last tag added to the beam element k (cf. line
13 of Algorithm 1).

Loss Computation Importantly, this set of prob-
ability distributions can be used to compute the
negative log-likelihood of each tag in the gold se-
quence, which is a problem-adapted local loss:

lt = − logP (jt∗) = − log(

K∑
k=1

dk(

K∑
i=1

pki,jt∗)) (8)

where jt∗ denotes the index of the gold tag at time
step t,

∑K
i=1 p

k
i,j∗t

represents the (marginalized)
probability of jt∗ being the predicted tag given a
beam k, that also can be interpreted as a posterior
over the set of beams 1, . . . ,K, and dk being a
prior over the set of beam elements. Overall, we
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associate the labeled graph generation with the
following global loss:

Lcl =

T∑
t=1

lt (9)

Unfortunately, empirical observations show nu-
merical instability in the computation of lt. To ad-
dress this issue, one possible approach is to tightly
bound it with a term that can be stabilized using
techniques such as the log-sum-exp trick. Note
that the earlier trick cannot be directly applied to
lt due to the sum

∑K
k=1 being inside the log. Ad-

ditionally, we must consider the trade-off between
the stable upper bound and lt (referred to as the
stabilization margin), as a larger gap between them
implies a greater misalignment between the train-
ing and inference procedures. Thus, instead of
minimizing lt, we minimize the quantity presented
in line 14 of Algorithm 1.

Total Loss The model is jointly trained to mini-
mize the nodes identification loss and the labeled
graph generation loss: L = Lid + Lcl.

4. Experimental Setup

4.1. Datasets

We evaluate our model on 2 datasets and 3 dif-
ferent languages: ACE05 (Walker and Consor-
tium, 2005) for English, Arabic, and Chinese, and
CoNLL04 (Roth and Yih, 2004). For English
ACE05, we consider two versions from the liter-
ature: ACE05-R, which involves entity and relation
extraction, and ACE05-E+, which includes entity,
relation, and event extraction. We follow the data
splits and preprocessing of Luan et al. (2019) and
Lin et al. (2020) for ACE05-R and ACE05-E+. For
Chinese data, we use the same preprocessing and
splits of Lin et al. (2020) and refer to it by ACE05-
CN. For Arabic data, we use the same preprocess-
ing and splits of El Khbir et al. (2022) and refer to
it by ACE05-AR. Thus, CoNLL04 involves 4 entity
types and 5 relation types, and ACE05 involves 7
entity types, 6 relation types, 33 event types, and
22 argument types. Table 1 provides statistics of
the datasets.

4.2. Evaluation Metrics

We evaluate our model using micro F1 measure.
An entity prediction or an event trigger prediction is
considered correct if its type and boundaries match
those of the gold one. For relations and event argu-
ments, we adopt the boundaries evaluation (Taillé
et al., 2020), a nonstrict and undirected evaluation,
where a relation or an argument is considered cor-
rect if its type and boundaries align with the gold

Dataset Split SENT ENT REL EVT ARG

ACE05-R Train 10,051 26,473 4,788 - -
Dev 2,424 6,338 1,131 - -
Test 2,050 5,476 1,151 - -

CoNLL04 Train 922 3,377 1,283 - -
Dev 231 893 343 - -
Test 288 422 422 - -

ACE05-E Train 19,240 47,554 7,159 4,419 6,607
Dev 901 3,423 728 468 759
Test 676 3,673 802 424 689

ACE05-CN Train 6,841 29,657 7,934 2,926 5,463
Dev 526 2,250 596 217 403
Test 547 2,388 672 190 332

ACE05-AR Train 2,936 26,031 3,712 1,830 3,176
Dev 382 3,256 498 234 401
Test 371 2,925 392 204 334

Table 1: Number of sentences (i.e., SENT), entities
(i.e., ENT), relations (i.e., REL), event triggers (i.e.,
EVT) and event arguments (i.e., ARG).

one. Additionally, we report the average F-scores
across all tasks to evaluate the model globally. We
average scores from three runs and report num-
bers for the model with the highest average F1 on
the dev set.

4.3. Settings and Hyperparameters

For the PLMs, we use bert-large-cased (Devlin
et al., 2019a) for ConLL04, ACE05-R, and ACE05-
E+, bert-large-arabertv2 (Antoun et al., 2020) for
ACE05-AR, and bert-large-chinese for ACE05-CN.
We fine-tune the hyperparameters on ACE05-E+
and use the same settings for other ACE05 data.
We search for K values in {4, 10, 16, 20, 22} and
we retain the model with K = 10. We search for
α values in {0.1, 0.5, 1, 2, 5, 10} and retain α=1.
We use for dk the uniform prior. We ran our ex-
periments on a GPU Nvidia GEForce RTX 2080
with 8 GB of RAM. We estimate the needed com-
putational budget for each training epoch to be
3, 10, 20, 6, and 5 GPU minutes respectively for
ConLL04, ACE05-R, ACE05-E+, ACE05-AR, and
ACE05-CN. The hyperparameters used include
Adam optimizer, BERT learning rate 1e-5, BERT
weight decay 1e-5, BERT dropout 0.5, gradient
clipping 5.0, learning rate 1e-4, weight decay 1e-4,
dropout 0.4, and hidden sizes of 256 for the RNN,
150 for FFNnode, and 600 for FFNedge.

5. Results and Analysis

Main Results The main results of our experi-
ments on ConLL04 and ACE05 data, along with
some literature results, are presented in Tables 2
and 3. We begin by establishing a baseline with the
Sequence Labeling Beam Search model (SLBS),
trained in a greedy way and decoded using beam
search (§3.3). We then present the results of the
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Model CoNLL04 ACE05-R ACE05-E+

ENT REL AVG ENT REL AVG ENT REL EVT ARG AVG

Wang and Lu (2020)× 90.1 73.8 81.9 89.5 67.6 78.5 - - - - -
Wadden et al. (2019)∗ + - - - 88.4 63.2 75.8 - - - - -
Zhong and Chen (2021)∗ - - - 88.7 66.7 77.7 - - - - -
Ye et al. (2022)∗ - - - 89.8 69.0 79.4 - - - - -
Zhang and Ji (2021)† - - 88.7 67.2 77.9 91.0 62.8 72.7 57.7 71.0
Nguyen et al. (2022b)† - - - - - - 91.7 64.9 74.6 61.2 73.1
Lin et al. (2020)⋄ - - - 88.8 67.5 78.1 89.6 58.6 72.8 54.8 69.0
Nguyen et al. (2021)⋄ - - - 88.9 68.9 78.9 91.1 63.6 73.3 57.5 71.4
Nguyen et al. (2022a)⋄ - - - 88.9 69.5 79.2 91.0 65.4 74.8 59.9 72.7
SLBS ⋄ 90.0 68.6 79.4 88.9 68.2 78.6 91.4 63.8 73.3 55.6 71.0
SSLBS ⋄ 90.1 71.4 80.8 88.5 69.2 78.9 91.2 64.0 75.0 56.9 71.8

Table 2: Performance on English. Models grouped in the same group of rows use the same encoder for
word representations; ×: albert-xxlarge, ∗: bert-base, †: roberta-large, ⋄: bert-large. Models marked with

a + sign use extra training data.

ACE05-CN

Model ENT REL EVT ARG AVG

Lin et al. (2020)⋄ 88.5 62.4 65.6 52.0 67.1
Nguyen et al. (2021)⋄ 88.7 65.1 66.5 54.9 68.8

Nguyen et al. (2022b)∗ 89.2 68.3 74.3 60.0 72.9

SLBS† 88.6 64.8 65.9 49.6 67.3
SSLBS† 89.2 67.1 68.3 52.4 69.3

ACE05-AR

Model ENT REL EVT ARG AVG

El Khbir et al. (2022)× 85.1 62.9 63.6 51.8 66.0
SLBS× 85.3 63.1 62.0 51.6 65.5
SSLBS× 84.6 63.1 63.9 55.0 66.6

Table 3: Performance on Chinese and Ara-
bic. ⋄:bert-multilingual-cased, ∗:xlm-roberta-large,
†:bert-large-chinese, ×:bert-large-arabertv2

Soft SLBS (SSLBS) model trained with relaxed
beam search and decoded using beam search
(§3.4).

The results show that the SSLBS model im-
proves the baseline average F-score across all
used datasets. Specifically, the SSLBS model
demonstrates improvements of 1.4, 0.3, 0.8, 2.0,
and 1.1 F-score points on ConLL04, ACE05-R,
ACE05-E+, ACE05-CN, and ACE05-AR, respec-
tively. This suggests that the decoding-aware train-
ing strategy is indeed more effective than greedy
training.

Comparison to Other Works For English, we
compare our model to Lin et al. (2020), Nguyen
et al. (2021), and Nguyen et al. (2022a) since we
use the same PLM as an encoder. Among these
works, SSLBS has the second-best relation and
average F-scores on ACE05-R, the best trigger
F-score, and the second-best entity, relation, and
average F-score on ACE05-E+. In addition, we
consider other joint IE models such as Wadden

et al. (2019); Zhang and Ji (2021); Nguyen et al.
(2022b), as well as models that focus solely on joint
ERE (Wang and Lu, 2020; Zhong and Chen, 2021;
Ye et al., 2022). While these models employ vari-
ous techniques such as span graph propagation
(Wadden et al., 2019), manually-designed global
features (Lin et al., 2020; Zhang and Ji, 2021),
global type dependency regularization (Nguyen
et al., 2021), and dependency-induced graphs with
simulated annealing (Nguyen et al., 2022a), the
SSLBS model implicitly learns graph representa-
tions through the hidden states of the network.

For Arabic and Chinese, SSLBS exhibits com-
parable performance to other existing approaches,
with the trigger and argument tasks showcasing
substantial performance gains.

Overall, while SSLBS does not surpass all SOTA
models, it still achieves competitive scores. To
ensure fairness in comparisons, evaluating with
the same PLM is preferable (Taillé et al., 2020).
However, the focus of our work is on integrating
the decoding procedure into training, rather than
exploring different PLM parameters. We make our
code publicly available for further investigations.

6. Ablation Studies

6.1. Effect of Forward/ Prediction Beam
Sizes

To ensure alignment between training and infer-
ence objectives, we investigate the impact of differ-
ent beam sizes on our model’s performance. We
denote here fbs, the forward beam size used dur-
ing training, and pbs the prediction beam size used
during inference. Figure 3 shows the obtained av-
erage F-scores, with a fixed temperature α=1, for
ACE05-E+ dataset.
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Figure 3: Effect of fbs and pbs on performance -
ACE05-E+ data.

We notice that the diagonal of the matrix, corre-
sponding to fbs=pbs, is prevailing. This indicates
that the model achieves its best results when the
training closely aligns with the inference process.

In addition, we notice that the scores of the
over-diagonal, corresponding to fbs > pbs, con-
sistently outperform those of the under-diagonal,
corresponding to fbs < pbs. This suggests that
a model trained with a larger beam size has a
broader exposure to potential options during train-
ing, enabling it to better handle search errors that
occur when decoding with a smaller beam size.
Conversely, the lowest score is obtained for the
{fbs = 10,pbs = 22} combination, which high-
lights a performance decline when the beam size
used during decoding is larger than that during
training. These insights emphasize the importance
of aligning beam sizes to enhance model perfor-
mance and generalization.

6.2. Effect of Sequence Ordering

We perform experiments to explore the impact of
varying sequence orders during both the training
and testing phases. For all previous experiments,
we have adhered to the sequence order outlined in
§3.2, denoted here as the left-to-right (LTR) or-
der. However, to comprehensively assess our
model’s performance, we introduce two alterna-
tive sequence orders: the right-to-left (RTL) order
and a random (Random) order. In the RTL order,
we maintain fixed node positions while rearrang-
ing the edges in a right-to-left fashion. Conversely,
the Random order involves a random reordering of
edges while keeping node positions constant. We
conduct these experiments on ConLL04, and the
results are depicted in Figure 4.

We observe a dominant trend along the diagonal
in Figure 4, which indicates that the model consis-
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AVG: 77.8
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REL: 63.6
AVG: 76.5

ENT: 90.1
REL: 68.4
AVG: 79.2

Figure 4: Effect of sequence ordering on perfor-
mance - CoNLL04 data.

tently excels when tested on the same order it was
trained on, thus when training and inference are
aligned. Notably, training and testing with the LTR
ordering consistently yield the best performance,
possibly because the LTR order aligns well with the
natural sequential dependencies of the data.

Additionally, training the model with the Ran-
dom order and testing it with different orders (last
column) demonstrates superior adaptability and
robustness compared to training with either LTR
or RTL. The model’s ability to adapt to novel se-
quence arrangements stands out in this scenario.

6.3. Exposure Bias Quantification

We assess exposure bias in two settings: SLBS
and SSLBS (with various temperature α values).
We also explore the use of Teacher Forcing (TF)
and model predictions (no TF) in both settings. We
conduct these experiments on ConLL04, training
the model for 150 epochs and reporting results of
the last epoch in Table 4.

Exposure Bias Definition Exposure bias (EB)
refers to the gap between training and testing con-
ditions for a model. We quantify EB by comput-
ing the Kullback-Leibler divergence between the
distributions of training hidden states Phtrain and de-
coding hidden states Phtest . We practically compute
this divergence using an N -samples Monte-Carlo
scheme:

DKL(Phtrain ||Phtest) ≈
hi∼Phtrain

1

N

N∑
i=1

log

(
Phtrain(hi)

Phtest(hi)

)
(10)
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MODEL TF no TF

SLBS SSLBS SSLBS SSLBS SSLBS SLBS SSLBS SSLBS SSLBS SSLBS
α = 0.01 α = 0.1 α = 1 α = 10 α = 0.01 α = 0.1 α = 1 α = 10

EB 258.7 146.2 142.4 25.7 82.3 163.3 544.6 39.6 3.7 112.0

FVC 192 8 15 21 30 35 15 13 15 22

ENT
REL
AVG

89.4
69.5
79.4

90.2
66.7
78.4

90.1
68.3
79.2

90.3
71.3
80.8

89.9
70.3
80.1

90.1
69.2
79.6

90.0
67.3
78.6

90.4
68.3
79.3

90.3
71.3
80.8

89.5
67.6
78.6

Table 4: Exposure Bias Quantification. TF: Teacher Forcing, EB: Exposure Bias Values. FVC: Features
Vectorial Complexity.

Besides, we approximate these hidden state dis-
tributions Phtrain and Phtest as Gaussian Mixtures
(Reynolds, 2009), using 5 components.

Dimensionality Reduction and Feature Vecto-
rial Complexity Empirical observations suggest
that trained models often make little to no use of
certain hidden state dimensions. To streamline
calculations and reduce noise in hidden states,
we employ Principal Component Analysis (PCA)
(F.R.S., 1901) to retain the principal components
explaining 95% of the variance in training hid-
den states. These dimensionally reduced hidden
states are then used to fit GMMs approximating
Phtrain and Phtest . Note that the number of princi-
pal components required to explain 95% of the
variance in training hidden states serves as a mea-
sure of the vectorial complexity of a model’s hid-
den states. In this context, these states inhabit
a lower-dimensional hyperplane than that of the
latent space. This measure, which we call Feature
Vectorial Complexity (FVC), is reported in Table 4.

Observations and Analysis In Table 4, we ob-
serve that an increase in exposure bias is asso-
ciated with lower F1 scores. To further investi-
gate this trend, we compute the Spearman corre-
lation coefficient between performance (AVG) and
the corresponding EB values. This analysis was
performed for all models and specifically for the
SSLBS models. The resulting correlation coeffi-
cients are -0.59% (all models) and -89% (SSLBS
models), indicating a robust negative association
between these two variables, which validates our
initial observation, highlighting the adverse effect
of exposure bias on performance.

6.4. Effect of the Temperature parameter

We conducted experiments on ACE05-E+ varying
the temperature parameter α in the range {0.1, 0.5,
1, 2, 5, 10} to study its impact on performance.
As shown in Figure 5, the model with an interme-
diate temperature (α = 1) achieved the highest
performance, indicating better training stability and
model confidence calibration.

90.8
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91.2 Entity

63.2

63.5

63.8

64.0

Relation

0 5 10

73.5

74.0

74.5

75.0 Event

0 5 10

56.0

57.0 Argument

Figure 5: Effect of the temperature on performance
- SSLBS - ACE05-E+ dataset.

We also experimented with annealed tempera-
tures, starting from α = 1 or α = 10 and either de-
creasing linearly or exponentially towards α = 0.1,
but it did not yield any performance improvement.

7. Related Work

Many works addressed the entity recognition
(ER) task separately (Zhou and Su, 2002; Tjong
Kim Sang and De Meulder, 2003), others ad-
dressed the relation extraction (RE) task separately
(Zelenko et al., 2002; Kambhatla, 2004), and oth-
ers addressed both entity and relation extraction
(ERE) tasks jointly (Chan and Roth, 2011; Zheng
et al., 2017). Recent works address the four tasks;
entity, relation, trigger, and argument extraction
jointly (Luan et al., 2019; Wadden et al., 2019; Lin
et al., 2020; Zhang and Ji, 2021; Nguyen et al.,
2022b).

Seq2Seq Models Some works proposed
Sequence-to-Sequence architectures for ERE.
While Miwa and Bansal (2016) used an encoder-
decoder architecture with attention, they relied on
expensive trees. In contrast, Zheng et al. (2017)
reformulated ERE as a single sequence labeling
task but did not handle overlapping relations
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effectively. To our knowledge, we are the first
to recast the four tasks as a sequence labeling
problem trained jointly.

Exposure Bias Solutions Several works ad-
dressed the issue of exposure bias in Seq2Seq
models for various NLP applications, including ER,
summarization, translation, and parsing. Solu-
tions include reinforcement learning models (Ran-
zato et al., 2016), beam search training schemes
with sequence-level cost functions (Wiseman and
Rush, 2016), and differentiable relaxations of beam
search procedures (Goyal et al., 2018). These
methods have been applied to tasks such as NER

Our work Both our work and that of You et al.
(2018a) use linearization to transform the structure
of a graph into a sequential representation, en-
abling processing by autoregressive models. How-
ever, while You et al. (2018a) explicitly models the
generative process of graph generation, our focus
lies on predicting graph-related tasks.

Our continuous beam search procedure is sim-
ilar to that of Goyal et al. (2018). Differently from
them, we integrate four tasks into the procedure,
we optimize an adapted loss to our task, and we
use a straightforward RNN recurrence that implic-
itly integrates contributions from other beam ele-
ments to compute the next ones.

8. Conclusion

In this work, we present a novel joint information
extraction model with a differentiable beam search.
Our model optimizes two systems together: one
for identifying entities and event triggers and the
other for generating the labeled graph, which is re-
cast as a sequence labeling problem. We conduct
experiments that demonstrate the effectiveness of
aligning the training and inference procedures.

9. Limitations

Our work has two main limitations. The first one
is the order we chose for the graph linearization,
specifically the lexicographic order. In fact, such
an order is arbitrary and does not account for any
language-related pattern. Forcing such an order
makes it difficult for the model to infer the correct
instance type patterns. In future work, we aim to
make the model learn such an order itself.

The second limitation is related to vanishing
gradients when the temperature parameter α de-
creases. This parameter is used to control the
level of confidence in the model’s predictions. This
creates a trade-off between the stability and the
accuracy of the predictions.
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