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Abstract
A steady increase in the performance of Massively Multilingual Models (MMLMs) has contributed to their rapidly
increasing use in data collection pipelines. Interactive Neural Machine Translation (INMT) systems are one class of
tools that can utilize MMLMs to promote such data collection in several under-resourced languages. However, these
tools are often not adapted to the deployment constraints that native language speakers operate in, as bloated, online
inference-oriented MMLMs trained for data-rich languages, drive them. INMT-Lite addresses these challenges through
its support of (1) three different modes of Internet-independent deployment and (2) a suite of four assistive interfaces
suitable for (3) data-sparse languages. We perform an extensive user study for INMT-Lite with an under-resourced
language community, Gondi, to find that INMT-Lite improves the data generation experience of community members
along multiple axes, such as cognitive load, task productivity, and interface interaction time and effort, without compro-
mising on the quality of the generated translations. INMT-Lite’s code is open-sourced to further research in this domain.
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1. Introduction

The rapidly evolving quality of language technolo-
gies driven by the steady improvement of multilin-
gual models (MLMs) does not benefit all languages
equally. Several under-resourced language com-
munities are unable to effectively use these ad-
vances, as empirical performance gains do not
translate effectively to performance standards apt
for large-scale community adoption Liebling et al.
(2020); Nekoto et al. (2020). Specifically, models
in these languages still require a combined effort
across axes of more representative metrics, test
sets, and domain-diverse training data to scale their
adoption proportional to their high-resource lan-
guage counterparts Team et al. (2022); AI4Bharat
et al. (2023). In this work, we focus on tackling
the lack of data in these languages. In particular,
we argue that the limited availability of machine-
readable data for automatic sourcing Rijhwani et al.
(2023); Mehta et al. (2022); Jurgens et al. (2017)
in these languages calls for an increased effort
to assist native language speakers, who can drive
data collection in these languages. Accordingly, we
leverage the concept of interactive machine trans-
lation (INMT) to improve the yield of data collection
pipelines while enhancing the overall experience
of data providers Lam et al. (2019); Gupta et al.
(2021); Santy et al. (2019).

♡ Work done when the author was at Microsoft Re-
search India.

* Equal Contribution

Since under-resourced language communities
may not have access to high-capacity, internet-
enabled systems, which are dependencies for
data generation using INMT tools, we design and
demonstrate the efficacy of an INMT service that is
adapted to (a) the infrastructural capabilities of the
user. Additionally, since low-resource language
model development often leverages pre-trained
models, deploying the model on an edge device
whilst maintaining translation quality is non-trivial
and dependent on the user device’s edge capac-
ity. Accordingly, we further provide (b) flexible User
Interface Choices to account for the quality of the
underlying model, which may not be very high per-
forming for extremely low-resource languages.

We describe INMT-Lite, an internet-independent
INMT service driven by low-latency, compressed
MLMs specifically designed to accelerate low-
resource data collection. INMT-Lite lends its unique
design to 2 primary factors:

1. Offline, Edge-Capacity Adapted Model: To
achieve this, INMT-Lite provides three differ-
ent modes of operation: (a) Native (Internet-
Enabled, Uncompressed model), (b) Quan-
tized (Internet-Independent, Compressed
model) and (c) Distilled Models (Internet-
Independent, Compressed model) which lan-
guage technologists can choose from depend-
ing upon what amenities their users want to
expend during their participation.

2. Flexible User Interface Choices: INMT-

https://github.com/microsoft/INMT-lite
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Figure 1: An Overview of INMT-Lite’s Operations:
(a) Depending upon the community’s constraints
(b) an offline (quantized or distilled) or online mode
of model deployment is used to drive the (c) suite of
compressed models which drive (d) different assis-
tive interfaces which provide data collection support
at varying levels of granularity.

Lite has five interfaces based on naive Post-
Editing, Bag Of Words and Dropdown struc-
tures. These interfaces are meant to give
language technologists the freedom to vary
the interface according to the target language,
more specifically, the quality of the underlying
assistive model’s performance in that target
language.

Through an extensive user study with a severely
underresourced language community, Gondi, we
substantiate the use of INMT-Lite and the efficacy
of the flexibility with different modes and interface
choices. We open source the entire pipeline for
development of INMT-Lite.

2. Related Work

Existing work supports the utility of interactive neu-
ral machine translation for high-resource languages
Xiao et al. (2022); Wang et al. (2020); Maheshwari
et al. (2023); Lee et al. (2017) by demonstrating
a gain in user productivity and translation quality.
However, transferring the efficacy of these sys-
tems for their operation in languages with lower
resources is not trivial. One reason for this impeded
transfer is the observation that assistive models in
low-resource languages do not necessarily have

very high-performance translation models, which
interfaces do not take into consideration. For ex-
ample, Lane and Bird (2022) devise an optimality
constraint-based toward interactive word comple-
tion in morphologically complex languages. Simi-
larly, additional work such as Santy et al. (2019);
Gupta et al. (2021); Lane and Bird (2021) explores
different data selection and decoding schemes to
adapt these systems to under-resourced setups.
Despite these efforts, the adaptation of these sys-
tems to the operational constraints of the commu-
nity is not yet explored. This adaptation is critical as
it encourages large-scale adoption in communities
that may not have the same set of amenities that
other high-resource language communities enjoy
Bettinson and Bird (2017); Bird (2018).

INMT-Lite attempts to reconcile these constraints
using features across two dimensions; It provides
the flexibility of choosing between multiple in-
terfaces (varying in degree of instrusion and infor-
mation density) depending upon the quality of the
underlying model. In addition, it provides adapta-
tive modes of operation through which the assistive
interface can be utilized on low-capacity edge
devices in areas of limited or no internet con-
nectivity.

3. Background

INMT-Lite’s features have three conceptual depen-
dencies: (a) Interactive Neural Machine Translation
(§3.1) (b) Post-Training Quantization (§3.2) and (c)
Knowledge Distillation (§3.2). An overview of the
general operation pipeline for INMT-Lite is provided
in 1.

3.1. Interactive Neural Machine
Translation

In a neural machine translation pipeline, a combi-
nation of encoder-decoder is used to encode the
semantic information of an input in one language,
which is reconstructed by the decoder in the target
language. At time step t, the probability of generat-
ing an output token yt corresponding to an input x,
is conditioned on all previously generated tokens
yt, yt−1....y1; It is represented as:

p(yt|y1, ....yt−1, x) = g(yt−1, et) (1)

where g is a non-linearity that models the en-
coder hidden state, et and the previous token,
yt−1. In interactive NMT, instead of conditioning
the model prediction yt on the model’s previous
inputs, yt, yt−1, ...y1, we instead model the inputs
provided by the user ut, ut−1, ..., u1 and this modi-
fies equation 1 to:

p(yt|u1, ....ut−1, x) = g(ut−1, et) (2)

https://github.com/microsoft/INMT-lite
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All of INMT-Lite’s interfaces use equation (2) to
incorporate user intent while providing translation
for a source sentence. This allows us to dynam-
ically update the suggestions we present to the
user through our interfaces, much like other INMT
services Santy et al. (2019).

3.2. Compression of MLMs:
Post-Training Quantization and
Knowledge Distillation

Since INMT-Lite is an offline service, the assistive
model has to be ported to the user’s device. This in-
troduces the unique challenge of adapting MMLMs
to edge resource constraints. To tackle this, the
backend model’s development pipeline supports
the compression of a class of MMLMs by different
degrees; depending upon the user’s edge device’s
capacity and the target language. We train our base
models on a range of languages, ranging from low-
resource languages concretely defined as LRL, i.e.,
languages that have parallel data between 25K-
1M data instances and MRL i.e., languages having
parallel data between 1M-4M data instances. Be-
ing a pre-trained model, mT5 is best adapted for
LRL, whereas the vanilla transformer is a viable
architecture for MRL.

Post-Training Quantization We use post-
training quantization to convert the weights and
activations of the model to 8-bit integers (int-8)
after training or fine-tuning the model to full
precision (fp-32). We observe varying degrees
of performance loss due to quantization, with the
MRL taking the most significant hit in performance
whilst the LRL seeing comparable performance
after quantization. Models used in this mode can
range from 75MB to 400MB, depending upon the
original architecture being quantized.

Hard Distillation We follow Hinton et al. (2015) in
distilling a deeper, accurate teacher model by first
training it for the target language pair translation.
Then, this teacher model generates a larger labeled
corpus for monolingual data that it has not seen
and this generated paired data can then be used
to train a shallower student model.In addition to
using language-specific vocabulary embeddings to
improve target-language performance, distillation
allows us to control finer details of the deployed
models, like using a language-specific tokenizer.

Compression through these mechanisms gives
rise to three distinct modes of operation in INMT-
Lite, described in further detail in §4.2. We use
HuggingFace1 and TFLite to train and generate of-
fline graphs for our backend models. Furthermore,

1HuggingFace MT5 model card

a more detailed language analysis of the perfor-
mance of both the distilled and quantized models
can be found in Table 1 and 2.

3.3. Compressed Models for Languages
available for INMT-Lite

In order to establish the feasibility of the compres-
sion methods we adopted, we trained and com-
pressed models for 8 languages - for Punjabi, Gu-
jarati, Marathi, Hindi, Bengali, Assamesse, and
Odia, we use the Samanantar dataset to train the
models Ramesh et al. (2022). Base models are
fine-tuned for the configuration specified in Xue
et al. (2020). Note that while Gondi is not included
in the pretraining languages of mT5, it shares fea-
tures with several languages in the pretraining cor-
pus of mT5. Hence, we expect that transfer learn-
ing, in addition to the language-specific fine-tuning
that we perform, generates a reasonable translation
model Wang et al. (2022). For Gondi fine-tuning,
we utilize a publicly available dataset that is open-
source by CGNET Swara. Tables 1 and 2 summa-
rize the performance of the approaches on seven
of the languages chosen in addition to Gondi. For
our medium resource languages, we quantized the
vanilla transformer (without a pre-trained architec-
ture), while for Gondi, we quantized and distilled
mt5.

M Q(M)
Language Data BLEU chrF BLEU chrF
Punjabi 2.4M 38.4 50.6 27.0 48.0
Gujarati 3.0M 35.9 53.4 28.4 51.4
Marathi 3.3M 27.5 52.7 11.1 40.8
Bengali 8.4M 24.9 46.8 11.4 35.1
Hindi 8.5M 37.7 59.9 27.1 44.9

Table 1: Collection of Languages available with
INMT-Lite’s Quantized Mode. Here M is the best
model trained for the language, and Q(M) is the
quantized variant of the best model, M. The source
language for all these experiments is English.

M D(M)Language Data BLEU chrF BLEU chrF
Gondi 25K 14.3 32.5 14.2 32.8
Assamesse 140K 10.4 30.4 9.6 27.4
Odia 1M 27.4 47.6 20.2 40.7

Table 2: Collection of Languages available with
INMT-Lite’s Distilled Mode: Here M is the best
model trained for the language and D(M) is the
distilled variant of the best model, M. The source
language for translation here is Hindi.

https://huggingface.co/docs/transformers/model_doc/mt5
https://web.archive.org/web/20221117021646/http://cgnetswara.org/hindi-gondi-corpus.html
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(a) PE (b) SBOW (c) DBOW (d) NWBOW (e) NWD

Figure 2: Suite of all the Interfaces available in INMT-Lite. Each interface is intended to provide a different
granularity of assistance to accommodate the underlying model’s accuracy in the interface’s interaction
with the user and can be powered by any of the chosen modes (Native, Quantized, or Distilled).

4. System Description: INMT-Lite

In this section, we describe the suite of assistive
interfaces we provide for the users (§4.1), the spec-
ifications of the pretrained architectures used to
generate the backend models (§4.2) and the avail-
able modes of operation in INMT-Lite (§4.3).

4.1. Overview of Interface Design
Previous work Li et al. (2022); Krause and Vossen
(2020); Santy et al. (2019) has motivated the no-
tion that interactive interfaces may need to adapt
the amount and structure of interaction depend-
ing upon the quality of the underlying assistance
model. With aligned motivation, we provide INMT-
Lite s five interfaces, which provide varying degrees
of intrusion, latency, and information density. Fig-
ure 2 demonstrates all these interfaces, and they
are briefly described as follows:

1. Post-Edit (PE): Users provide translations af-
ter editing the initial sentence-level recommen-
dations or gists that are provided through the
back-end model.

2. Static Bag Of Words (SBOW): Users provide
translations while being able to see the model’s
most likely translation as a Bag of Words. Here,
the BoW will be provided by the online mode
only, and suggestions shall be ported to the
device when the sentences are distributed to
the users.

3. Dynamic Bag of Words (DBOW): Users
provide translations while being able to see
sentence-level translations as a BoW. The sug-
gestions provided to the user will continue to
change depending on which suggestions the

user decides to choose. The intention here is
to model the user’s input into the suggestion
that the model is providing.

4. Next Word Bag of Words (NWBOW): Users
provide translations while they see next-word
suggestions, i.e. the model’s top-k sampled
tokens, via a BoW panel. We use k = 5 for all
system evaluations.

5. Next Word Dropdown (NWD): Users provide
translations while seeing next-word sugges-
tions via a dropdown.

4.2. Backend Models
INMT-Lite’s current version supports two primary
architectures, which can be trained or fine-tuned
for the target language of preference. These in-
clude the vanilla seq2seq Vaswani et al. (2017)
transformer with 6 Encoder and Decoder Layers
and mT5-small Xue et al. (2020) with 8 Encoder
and Decoder Layers, vocabulary size - 250,100
and 6 attention heads. To develop our models, we
replicate the distillation mechanisms explored sys-
tematically in Diddee et al. (2022) because it fits
the context of data sparsity in which we compress
our models.

4.3. Deployment Modes
The three modes of deployment in INMT-Lite can
be chosen considering two factors, architecture of
the back-end model, and latency requirements.

1. Native Mode An uncompressed model is con-
verted to a static graph and pushed on edge.
Since the smallest pre-trained model in our
consideration is 1.2GB, pre-trained models



9101

Task Name Interface Task Description

Baseline Default Users provide translations without any assistance.

Assistive Default, Bag of Words
and Dropdown

Users provide translations by post-editing or
using the model’s assistance via each of the assistive interfaces.

Scoring DA Scoring
Users score the translations generated by users. The highest
ranked translation here will then further be marked to identify
the best mode.

Table 3: Overview of all tasks that are used for the evaluation of the system.

cannot be deployed in this mode. However,
vanilla transformer architectures (which range
from 180MB to 240MB, depending upon the
chosen vocabulary embedding) can be de-
ployed in this mode. Since the model is not
compressed at all, the edge-version of the
model has no observable loss in accuracy in
this mode.

2. Quantized Mode The backend model is quan-
tized by 4x depending and then ported to the
user’s device.

3. Distilled Mode: The back-end model is dis-
tilled to achieve a size compression between
8x and 12x. Models in this mode occupy ap-
proximately 180 - 240MB of on-disk memory
once they are ported onto the mobile device.

Decoding Currently, all models use greedy de-
coding for their inference, except when providing
suggestions using the Static Assistance formats
(where the recommendations are not computed on
edge) and hence, can utilize beam-search (depth
= 2) for the suggestion generation.

4.4. Adaptations for Low-Resource
Languages

Since INMT-Lite is intended to be predominantly
used with low-resource languages - we employed
a few features to circumvent typical constraints in
under-resourced language data collection. These
included (a) Transliteration Support in Key-
boards for supporting Native Script data: INMT-
Lite uses the Google Keyboard to transliterate non-
native script inputs into the target language script.
(b) Option for Marking Dialectally Heterogenous
Sentences: Low-resource languages can display
a wide range of dialectical heterogeneity, and mod-
els trained on such data can generate dialectally
ambiguous suggestions. To evaluate the backend
model’s tendency to do so at run-time, we offer the
option to mark sentences (Figure 2) that annotators
are not confident of annotating if they feel that the
provided suggestions might be a valid output in a
dialect that they knew of but did not speak in.

5. User-Evaluation Setup

Since the use of INMT services has not been
explored with extremely low-resource languages,
we focus on evaluating our system’s efficacy with
Gondi, a severely under-resourced language spo-
ken in the Indian subcontinent. Through a collabo-
ration with 18 native Gondi speakers who partici-
pate as annotators for our study, we organize eight
tasks, six of which require the annotators to use
all interfaces2 to translate the given sentences.
The last two tasks require the users to score the
translations generated through all interfaces. We
use Direct Assessment (DA) scores (Specia et al.,
2020) to understand the quality of the translations
generated through each interface. A brief descrip-
tion of these tasks is provided in Table 3 and de-
tailed descriptions of these tasks can be found in
Table 5 of the Appendix. We collect at least 3 an-
notations per sample to improve the consistency of
our preference and quality assessment. Additional
details about the annotation compensations §A.4
and instructions used for our annotations §A.2.2,
and the strategy and precautions used while dis-
tributing sentences can be found in the Table 6 of
the Appendix.

6. Results

We collate our empirical and user-study evaluations
to answer the following questions: RQ1: Does
INMT-Lite lead to a reduction in human effort?
(§6.1) RQ2: How well do the translations gener-
ated by INMT-Lite compare with those generated
without assistance? (§6.2) and,RQ3: Does INMT-
Lite improve the experience of annotators during
data generation? (§6.3)

6.1. RQ1: Does INMT-Lite lead to a
reduction in Human Effort during the
Data Generation Process?

To understand whether INMT-Lite can streamline
data generation time and effort, we investigate the

2including a setup where no assistance was provided
to create as a baseline for quality evaluation
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Figure 3: Summary Statistics for INMT-Lite’s Evaluation: Comparing the time variation, keystroke load
with and without INMT-Lite’s assistance; The interannotator evaluation standard deviation and quality of
the translations generated with INMT-Lite. All metrics except DA are lower than better. The PE, BOW
interfaces for INMT-Lite show consistent gains in time and effort reduction without degrading sentence
quality significantly.

(a) keystroke load with and without assistance and
the (b) time taken to generate these translations.

Figure 4: Average Tapped Suggestions vs. To-
tal Keystroke Load for interfaces: SBOW has the
highest affinity towards suggestion acceptance:
which also reflects in the user’s significantly re-
duced keystroke load. Next-Word interfaces have
the least affinity to suggestion acceptance due to
their limited breadth-wise coverage.

Keystroke Load We consider the keystroke load
to represent the manual effort required to partici-
pate in the data generation activity. The keystrokes
made to select, edit, or add to the offered sugges-
tion are considered the keystroke load for any inter-

face. Figure 3 (b) and (c) show the average number
of keystrokes and backspaces used by users when
annotating with each interface. In both cases, the
keystroke load is the highest for baseline genera-
tion compared to all other interfaces. Among the
assistive interfaces, the Next word interfaces have
the worst keystroke load. Upon probing this quali-
tatively, we find that the limiting breadth-wise cover-
age, i.e., the number of future token suggestions, is
counterproductive for users (more details in §6.3).
We also monitor the number of suggestions tapped
or suggestion opt-ins as a proxy of the usefulness
of the suggestions. Figure 4 summarizes the aver-
age number of accepted suggestions per interface
relative to the total keystroke load. We observe
that SBOW shows high proclivity to being accepted
while the dropdown and next-word interfaces have
a much lower rate of acceptance. The annotators
mentioned that the dropdown interface’s higher de-
gree of intrusion combined with the latency of its
suggestion provision, reduced its usability to some
extent. This partially describes the low rate of sug-
gestion acceptance for the Dropdown interface as
well. We discuss further reasons for the same in
§6.3.

Time Taken to Generate Translations Figure 3
shows the difference in the time taken to generate
translations with and without assistance. We see
a clear reduction in the amount of time taken to
generate translation if users are provided INMT-
Lite’s assistive interfaces. As discussed further in
§6.2, we do not see any significant decrease in the
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(a) Pair-Wise chrF between Interfaces (b) F1-score for DA evaluations

Figure 5: F1 correlation and pair-wise chrF evaluation between translations generated through all interfaces.
We observe a moderate correlation through both estimations, indicating that the generated translations
have observable diversity while maintaining both semantic (evaluated by human evaluations) and structural
similarity (evaluated by an automatic metric)

quality of the translation with this reduction in time,
thus strongly indicating INMT-Lite’s usefulness.

Takeaway: Despite having a relatively low-
quality, noisy back-end model, INMT-Lite appears
to be more efficient for time and manual effort axes.
Seeing the relatively lower gains with Next-Word
interfaces, we recommend that language technolo-
gists prioritize interfaces with higher breadth-wise
coverage: namely PE, SBOW and DBOW when
there aren’t very strong quality guarantees on the
inferences generated by the backend model (as
with LRL).

6.2. RQ2: How well do the translations
generated with INMT-Lite compare
with those generated without
assistance ?

An important consideration of using INMT-Lite is
to balance the amount of manual effort employed
with the effort used to generate the translation with
the quality of the provided translation.

Quality of the Generated Translation We com-
pute the average DA scores of the translations
generated through each mode and interface to un-
derstand the quality of the translations generated
through each interface. From Figure 3, we observe
that the PE interface gives the most competitive
gains in sentence quality, while SBOW gives only
an insignificant reduction in sentence quality. Note
that the DA scoring system has an average range
of 20 points for an interpretation of a score. Bearing
this in mind, we can also see that generations from
all interfaces lie in this range, indicating that the se-
mantic quality of the generated translation does not

take any observable hit due to the use of assistive
translations. This, coupled with the reduced time
and keystroke load, strongly speaks for the efficacy
of the assistive interfaces.

Diversity of the Generated Translation To com-
ment on the diversity of the translations gener-
ated through each interface, we compute the pair-
wise chrF correlation Popović (2015) and the DA
Score correlation between the translations gener-
ated through each interface. To compute the cor-
relation of the DA score, we have each transla-
tion scored by 3 annotators and then compute the
pairwise F1 score, Cohen’s Kappa (Inter Annotator
agreement) for their scores 5 and §7. We find fair
to moderate inter-annotator agreement between
the annotators. Computing these correlations also
gives us preliminary information against the follow-
ing questions: (Q1) Since the model can only give
a limited variety of suggestions, do the users get
biased against the translations they generate,
ultimately generating very similar, low quality trans-
lations? Furthermore, (Q2) if users are using the
system maliciously, are they simply accepting sug-
gestions irrespective of their correctness? Both
these questions are partially answered by check-
ing the correlation between the generated transla-
tions; that is, a very high correlation between the
translations generated by each of the interfaces
would satisfy both of the presented questions. Con-
versely, a very low correlation between the sen-
tences generated through each interface would call
for revisiting the quality of the generated transla-
tions, as the same input would not be expected to
generate extremely uncorrelated translations on av-
erage. Encouragingly, we find a moderate-fair cor-
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relation between the translations generated through
all the interfaces using both automatic and human-
evaluation metrics. This provided evidence of the
syntactic (prioritized by the automatic metric) and
semantic similarity of the generated translations.

To further investigate the impact of using the as-
sistive interfaces on token diversity, we also investi-
gated the Unique Token Coverage and Token Over-
lap for the translations generated by all interfaces.
For token overlap, we computed the intersection
between the translation token set of the target inter-
face with the token set of all other interfaces. A high
unique token count and a low overlapping token
count would suggest higher diversity (and conse-
quently, low-interface-induced bias). Figure 6 sum-
marizes this comparison: We do not see a large
variation in the number of unique tokens for all in-
terfaces. We do see a higher rate of overlap for
PE and SBOW; Toward this, annotators reported
that they found it more cumbersome to make nu-
anced edits to translations for PE, where the entire
translation would already be visible. Consequently,
their tendency to edit was slightly attenuated, which
could explain the low unique token count observed
with PE.

Figure 6: Unique Token Count and Overlapping To-
ken Count for all interfaces: The maintained count
of unique tokens and the low token overlap across
interfaces denotes that the token diversity of the
generated translations is maintained.

Takeaway: INMT-lite’s interfaces maintain sen-
tence quality and token diversity of the translations.
Additionally, interfaces that call for granular edits
to full-length translations over token-level re-edits
to partial translations are less conducive to overall
diverse generations. Hence, if generation diversity
is a priority of the task at hand, we recommend
using Next-Word interfaces, which show a higher
proclivity to diverse generations.

6.3. Qualitative Observations from the
System’s Evaluation

During and after our user study, our annotators
shared feedback on the efficacy of the interfaces
we enlist in this section.

Low Affinity to Tapping Suggestions Annota-
tors mentioned that their incidence of tapping sug-
gestions was relatively low because tapping on the
suggestion often disrupted their typing flow. In-
stead, they preferred to see the suggestion and
type the expected token. This, to some extent, ex-
plained the poor tapping suggestion ratios that we
observed in Figure 4. Annotators also reported
that their tapped suggestions were relatively low
for assistive interfaces as the provided suggestions
guided their initial generation. Specifically, they had
a higher chance of spelling the target token rightly
if they had a suggestion (even if it was spelled
wrongly), jump-starting their translation for the sen-
tence.

Breadth-Wise is Better than Depth-Wise Cover-
age Annotators reported that breadth-wise cov-
erage interfaces like SBOW, DBOW, and PE were
generally more helpful than Next-Word Interfaces.
Additionally, they mentioned that Next-Word inter-
faces took longer to parse since they had to go
through all the possible options and there were in-
stances where none of these suggestions would
actually be the correct token. Finally, they also men-
tioned that especially for the Next Word interfaces -
they often chose to type out the suggestion and not
tap on it - as the overhead of sequentially tapping
then making granular edits was less productive per
position.

7. Conclusion

Acknowledging that representative data collection
in under-resourced languages requires tools cu-
rated towards the community and languages needs,
we present INMT-Lite: An internet-independent,
edge-oriented interactive neural machine transla-
tion service. Through an extensive user study with
native speakers of a severely under-resourced lan-
guage, Gondi, we show that INMT-Lite boosts trans-
lation productivity whilst maintaining sentence qual-
ity and diversity. Additionally, using a combination
of qualitative analysis of user experience and quan-
titative investigation of operational feasibility, we
offer recommendations for language technologists
when developing assistive technologies for data
generation under similar constraints.
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8. Future Work

INMT-Lite’s interface has a vast set of parameters
that need deeper investigation: Attributes such as
a) the depth of decoding, b) the number of sug-
gestions shown across each structure, and c) the
trigger of invocation (when should suggestions be
generated per interface if not at a token-level) are
expected to affect the efficacy and consequently
preference of the users.
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A. Appendix

A.1. Compatibility of Interfaces with
Different Language Classes

Despite offering various interface and model-
operation options, INMT-Lite was found to be un-
suitable for certain combinations in terms of ease
and efficiency of interactions. The reason for this
was primarily the latency of inference associated
with all interfaces when used with a backend model
in a specific mode. Real-time interaction was not
always feasible due to latency. For example, in
the Quantized Mode, generating a single sugges-
tion with a 400MB model (used for languages with
the lowest resource) resulted in a latency of 0.6
seconds for a single inference. This latency could
have a negative impact on the user experience in
terms of suggestion generation. Consequently, we
provide Table 4 to summarize our recommenda-
tions regarding the adoption of such combinations,
taking into account the choice of the backend ar-
chitecture. Note that we define compatibility as a
measure of the latency of operating the interface
(latency < 500 milliseconds per inference is consid-
ered acceptable for interaction).

A.2. User Study Specifications
In this section we present the following details: (a)
the task setup, (b) the metrics and instructions em-
ployed for our annotations, and (c) the strategy
utilized for distributing sentences, along with infor-
mation about our interannotator evaluation.

A.2.1. Task Setup

The user study conducted for INMT-Lite involved
working with native language speakers who par-
ticipated in a collection of 8 tasks. Detailed de-
scriptions of these tasks can be found in Table 5.
The choice of these tasks was motivated by a pi-
lot study presented in (Mehta et al., 2022). The
pilot study involved three native members of the
Gondi community and aimed to assess the quality
of the Hindi-Gondi translation model, the usabil-
ity of the Bag Of Words (BoW) interface, and the
Quantized Mode of INMT’s operation. The conclu-
sions drawn from the pilot study were as follows:
(a) The model’s performance was tolerable, but not
excellent, with errors in spellings and difficulties
with longer sentences. (b) The efficacy of the BoW
interface was evident, indicating its viability for fur-
ther investigation across all modes. Taking these
findings into consideration, the decision was made
to test four interfaces in addition to the baseline and
post-edited modes of interaction. Furthermore, the
use of distilled models was fixed in this system, as
distilled models could leverage a language-specific
tokenizer.

A.2.2. Metrics and Instructions for Annotation

For the scoring tasks in our study (refer to Table
5), we employ the Direct Assessment method de-
scribed in (Specia et al., 2020) to evaluate the sen-
tences. We make the evaluation guidelines for this
metric easily accessible through our interface. An
example of these guidelines can be seen in Fig-
ure 7. In the scoring interface, we use a slider-like
scale, as shown in Figure 7b.

A.2.3. Distribution Strategy

To prevent cognitive bias and ensure unbiased eval-
uations, we implemented several safeguards to
avoid having the same sentence evaluated by an
annotator through different interfaces. This was
done to prevent any potential impact on their inter-
action with other interfaces and their perception of
the translations.

Let si represent the ith set of sentences, where
each set si contains 36 sentences. The annotator
assigned to annotate a particular set is denoted
ai. The notation (sk, ik) represents a pair of sen-
tences sk annotated through the kth interface. The
distribution strategy for all data collection tasks is

https://doi.org/10.18653/v1/2020.findings-emnlp.197
https://doi.org/10.18653/v1/2020.findings-emnlp.197
https://doi.org/10.18653/v1/2020.findings-emnlp.197
https://doi.org/10.18653/v1/2022.acl-long.138
https://doi.org/10.18653/v1/2022.acl-long.138
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InterfacesMode × Interface
Overview PE SBOW DBOW NWBOW NWD

Modes
Native ↗ ↗ ↗ ↗ ↗
Quantized ↗ ↗ ↗ ↗ ↗ ↗ ↗
Distilled ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

Table 4: Overview of Inference Feasibility evaluated as a function of mode and its operation in an interface.
A single arrow denotes whether the mode supports offline inference, while a double arrows denotes if the
mode supports dynamic and offline inference.

Task Name Interface Task Description

Baseline Default Users provide translations without any assistance.

Post-Edited Default Users provide translations after editing an initial sentence
level recommendation (gist).

Static-BoW Bag of Words
Users provide translations while they are shown the model’s
single, top-most sentence-level recommendation as a bag of
words.

Dynamic-BoW Bag of Words

Users provide translations while they are shown sentence-level
translations as a BoW. The suggestions provided to the user are
updated depending on the user’s latest edits and the current state
of the translation.

Next-Word-BoW Dropdown Users provide translations while they are given next-word suggestions
via a BoW panel

Next-Word-Dropdown Dropdown Users provide translations while they are given next-word suggestions
via a dropdown

Scoring for the Best Interface DA Scoring
This task will have users score the translations generated by users in
Task 3, 4, 5, 6. The highest ranked translation here will be further
used in Task 9.

Scoring for the Best Mode DA Scoring This task will have users score the translations from Task 1, 2 and 7.

Table 5: Description of all tasks that are used for the evaluation of the system.

Annotator
×

Task
a1 a2 a3 a4 a5 a6

t1 (s1, i1) (s1, i2) (s1, i3) (s1, i4) (s1, i5) (s1, i6)

t2 (s2, i2) (s2, i3) (s2, i4) (s2, i5) (s2, i6) (s2, i1)

t3 (s3, i3) (s3, i4) (s3, i5) (s3, i6) (s3, i1) (s3, i2)

t4 (s4, i4) (s4, i5) (s4, i6) (s4, i1) (s4, i2) (s4, i3)

t5 (s5, i5) (s5, i6) (s5, i1) (s5, i2) (s5, i3) (s5, i4)

t6 (s6, i6) (s6, i1) (s6, i2) (s6, i3) (s6, i4) (s6, i5)

Table 6: Distribution Strategy for INMT-Lite’s study: We ensure that no user annotator uses two interfaces
to annotate the same sentence to avoid any cognitive bias from confounding their interaction with the
interface that they use.

described in Table 6. To ensure that the same an-
notator does not score a sentence they provided,
the system flagged each provided sample with the
user who provided it. During the redistribution of
samples for scoring, any flagged user was excluded
from the pool of available annotators.

A.3. Inter Annotator Evaluation
Table 7 presents the results of the pairwise evalua-
tion of the interannotator for our annotations. We
consistently observe a fair to moderate correlation

in all of our evaluations. However, we do observe a
degradation in correlation (random-low correlation)
between one pair of annotators for the Baseline
and PE interfaces. Annotators have mentioned
that such divergences could be attributed to the
dialectal heterogeneity among the annotators them-
selves. This heterogeneity may particularly affect
the baseline translation scores, as the initial trans-
lations may have been generated by an annotator
with a different dialectal preference.
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(a) Annotation Instruc-
tions

(b) Scoring Interface

Figure 7: Annotation and Scoring interfaces pro-
vided while users participated in the scoring activity.
The instructions are translated by native speakers
and can be accessed at any point during the col-
lection.

Interface IAA Metric Pair-Wise Evaluations

B κ 0.422 0.324 0.06
F1 0.72 0.58 0.42

PE κ 0.421 0.394 0.134
F1 0.72 0.64 0.49

SBOW κ 0.431 0.435 0.157
F1 0.70 0.61 0.49

DBOW κ 0.325 0.380 0.122
F1 0.59 0.51 0.40

NWBOW κ 0.347 0.318 0.074
F1 0.60 0.47 0.33

NWD κ 0.421 0.392 0.167
F1 0.60 0.47 0.32

Table 7: Inter-Annotator Evaluation

A.4. Cost of Annotation
In accordance with the expected median wage for
high-skill tasks, we paid our annotators INR 10
for each translation task (all interfaces including
the baseline) and INR 15 for each scoring task.
We defined our payment scheme keeping in mind
the professional rates of compensation provided to
skilled translators: Rs 1.25 per word, that is, Rs 15
for a sentence with 9-12 words.


