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Abstract
Previously, we introduced a method to generate a multilingual Combinatory Categorial Grammar (CCG) treebank
by converting from the Universal Dependencies (UD). However, the method only produces bare CCG derivations
without any accompanying semantic representations, which makes it difficult to obtain satisfactory analyses for
constructions that involve non-local dependencies, such as control/raising or relative clauses, and limits the general
applicability of the treebank. In this work, we present an algorithm that adds semantic representations to existing
CCG derivations, in the form of predicate-argument structures. Through hand-crafted rules, we enhance each CCG
category with headedness information, with which both local and non-local dependencies can be properly projected.
This information is extracted from various sources, including UD, Enhanced UD, and proposition banks. Evaluation of
our projected dependencies on the English PropBank and the Universal PropBank 2.0 shows that they can capture
most of the semantic dependencies in the target corpora. Further error analysis measures the effectiveness of our
algorithm for each language tested, and reveals several issues with the previous method and source data.
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1. Introduction

Combinatory Categorial Grammar (Steedman,
2000) is a grammar formalism well-known for of-
fering a transparent interface between syntax and
semantics. In CCG, each word in a phrase receives
a syntactic category, which can then be combined
with other categories using predefined combinatory
rules to form a complete syntactic derivation. A se-
mantic representation of the phrase can be compo-
sitionally obtained by simply assigning a semantic
representation to each lexical category and tracing
through the syntactic derivation. This property of
CCG makes it an attractive target for those looking
to build interpretable Natural Language Processing
(NLP) systems (Curran et al., 2007; Blodgett and
Schneider, 2019; Stanojević et al., 2023).

We previously proposed a method (Tran and
Miyao, 2022) to automatically generate a multilin-
gual CCGbank by converting from the Universal
Dependencies (Nivre et al., 2020). The purpose
is to quickly and cheaply acquire a large dataset
of CCG syntactic derivations in many languages,
which could be useful for downstream NLP tasks.
However, the generated CCGbank only contains
bare syntactic derivations without accompanying
semantic representations, making its applicability
to other tasks limited. In addition, analyses for com-
plex constructions that involve non-local dependen-
cies, such as control/raising or relative clauses,
cannot be easily obtained. While manual annota-
tion of semantic representations has been done in
the past for some individual languages (Bos et al.,
2004; Martínez-Gómez et al., 2016), applying the

She is beautiful

NPy (Sx\NPy)x/(Sz\NPy)z (Sz\NPy)z
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(Sx\NPy)x

She is beautiful

nsubj
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Figure 1: UD dependencies (blue arcs) and
predicate-argument dependencies projected by our
CCG categories (black arcs) for the sentence She
is beautiful. Headedness information is marked
using indices (x, y, z). Categories that share the
same head word are marked with the same index.
By examining the indices, one can identify that She
is an argument of both is and beautiful, and beauti-
ful is an argument of is.

same approach to a large multilingual CCGbank
requires considerable expertise in multilingual se-
mantics.
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In this work, we present an algorithm that adds
semantic representations to the bare CCG cate-
gories obtained from UD conversion. Our represen-
tation of choice is predicate-argument structures.
We mark each category with headedness informa-
tion, based on which predicate-argument depen-
dencies can be projected. This headedness infor-
mation is derived from the word-word dependen-
cies in UD and other complementary resources, in-
cluding the Enhanced UD graphs, the English Prop-
Bank (Palmer et al., 2005), and the Universal Prop-
Bank 2.0 (Jindal et al., 2022). Since these com-
plementary resources also include annotations for
non-local dependencies, we are able to alleviate the
problem of our previously proposed method (which
we will henceforth refer to as the T&M method).
The end result of our work is an improved multilin-
gual CCGbank where every CCG derivation has a
corresponding semantic representation.

An overview of our new algorithm1 is illustrated
in Figure 1:

• First, we binarize the input dependency tree
and assign a bare category to each node in the
binarized tree (this step is carried over from
the T&M method).

• From top to bottom, as the categories are be-
ing assigned, we mark the head of each cate-
gory with a variable using hand-crafted rules.
The head variables are passed down through
the tree, a reverse process of the typical uni-
fication process in CCG (Clark et al., 2002;
Hockenmaier and Steedman, 2007).

• Once we hit the bottom of the tree, the head
word that corresponds to each variable can be
identified. By looking at the arguments of each
functor category, we are then able to project
predicate-argument dependencies based on
this headedness information.

The idea of adding headedness information to
categories is not new (Clark et al., 2002; Hocken-
maier and Steedman, 2007; Ambati et al., 2018;
Tse and Curran, 2010), but has not been done for
UD-based multilingual CCGbanks. Compared to
the T&M method, which only considers basic UD
relations, our new rules are more extensive.

To evaluate the quality of the projected predicate-
argument structures, we perform experiments on
the English PropBank and the Universal PropBank
2.0, and measure how well semantic dependencies
in the proposition banks can be recovered. On
average, we achieve 83.50% recall on 12 treebanks
of 8 languages tested. Error analysis shows that the
effectiveness of our algorithm is tied to the quality
of the source treebanks, in addition to the accuracy
of the bare categories. We point out possible areas

1Our implementation is available at https://
github.com/mynlp/ud2ccg-code.

John plays soccer

NPJohn (Splays\NPx)/NPy NPsoccer

Splays\NPx

Splays

>

<

Figure 2: A CCG derivation for the sentence John
plays soccer. Note that this is the traditional way of
displaying a CCG derivation in literature. However,
in this paper, we show the derivations in the form of
tree-shape structures (Figure 1) to better illustrate
our top-down approach.

of improvement for the original T&M algorithm and
the annotations of the dependency treebanks.

2. Background

2.1. CCG Dependencies

In CCG, syntactic information is encoded in each
category that is assigned to each constituent in
a sentence. There are two types of categories:
atomic categories and functor categories. Atomic
categories, in the context of this work, include S
(assigned to sentences) and NP (assigned to noun
phrases). Functor categories can either be X\Y or
X/Y , where X and Y are themselves categories.
For example, in Figure 2, the transitive verb plays
receives a functor category (S\NP )/NP . The
slashes indicate that plays takes an NP argument
to the left (indicated by a backslash \ before NP ),
and an NP argument to the right (indicated by a for-
ward slash / before the second NP ), and returns
a sentence S as a result.

CCG predicate-argument dependencies are pro-
jected from words with functor categories to their
arguments following the derivation process. To pro-
duce these dependencies, we first need to mark
the head word of each category with a variable (de-
noted by the indices in our figures for illustrative
purposes). NPJohn means that the head word of
this NP is John. (Splays\NPx)/NPy means that
the final sentence is headed by plays, awaiting an
NP headed by an unknown word x and another
NP headed by an unknown word y. To identify x
and y, we follow the derivation and apply head uni-
fication. For instance, when the category of plays
combines with the category of soccer in the first
step of the derivation in Figure 2, we may unify y
and soccer, and thus establish a dependency from
plays to soccer. Note that only two categories can
combine at a time; as a result, a CCG derivation
can be illustrated as a binary tree.

https://github.com/mynlp/ud2ccg-code
https://github.com/mynlp/ud2ccg-code
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John play soccerwants to

nsubj

root
xcomp

objmark

nsubj

Figure 3: A UD tree for the sentence John wants
to play soccer. Basic UD dependencies are shown
in blue. Enhanced dependencies are in red.

2.2. UD Dependencies
UD annotates word-word syntactic dependencies
following a cross-linguistically consistent guideline,
with treebanks available for over 100 languages.
Some UD trees (Figure 3) may contain extra an-
notations to denote non-local dependencies (e.g.,
through control/raising, coordination, or relative
clauses). These annotations are called Enhanced
Dependencies (EUD). Basic UD dependencies
form a tree structure; however, this is not a require-
ment for EUD dependencies.

2.3. UD to CCGbank
In this section, we give a brief overview of our pre-
viously proposed algorithm that converts a UD tree
to a CCG derivation.

There are three main steps:
• First, the basic UD tree is binarized so that

each node has at most two children. Since
UD does not limit the number of dependents a
word may have, this step is done to match the
typical binary structure of a CCG derivation.

• Second, we assign a category to each node
in the binarized tree using hand-crafted rules.
The result of this step is similar to the binary
tree in Figure 1, but without head indices.

• Finally, we correct problematic categories
found in the second step with another set of
rules.

We mostly follow the same process for assigning
syntactic categories to create a final CCG deriva-
tion, and will not go into detail in this paper. What
we will focus on is our new rules for adding headed-
ness information to these categories. We explain
our new method in Section 3.

3. Method

The main goals of our approach are to (1) preserve
the content-head nature of UD dependencies, and
(2) preserve the non-local dependencies specified
by EUD. Compared to other dependency gram-
mars, UD prefers content words as heads instead of

(Sx\NPy)xNPy

Sx

John plays soccer

nsubj

NPz((Sx\NPy)x/NPz)x

plays soccer

obj

(Sx\NPy)x

Figure 4: Head assignment rule for head-argument
relations.

function words to maximize parallelism among an-
notations of different languages. Converting back
to function-head dependencies would risk cross-
linguistic consistency. For this reason, our headed-
ness rules may diverge from other works in CCG
in several constructions, as explained below.

The rules are applied to subtrees of a binarized
dependency tree in a top-down, recursive manner.
Assuming the head variable of a result category
is already assigned in the preceding subtree, our
rules assign head variables to the functor and ar-
gument categories. Once we reach the bottom of
the tree, the head word that corresponds to each
head variable is revealed, allowing us to project
appropriate CCG dependencies.

3.1. General cases

Rule for head-argument relations (nsubj,
csubj, obj, iobj, xcomp, ccomp, expl) We:

• set the head of the functor category to be the
same as the head of the result category,

• initialize a new head variable for the argument
category.

An example is given in Figure 4. Assuming that
the bare categories are assigned using the T&M al-
gorithm, we first set x as the head variable of S, and
y as the head variable of NP. The functor category
of plays soccer can be deduced given the result S
and the argument NP. As we reach the bottom of
the tree, we are able to identify y as John, and x as
plays (the head word of an entire lexical category
is the word assigned that category). With this rule,
we can see that plays is the head of itself, the verb
phrase plays soccer, and the whole sentence John
plays soccer. Given the functor category of plays,
we can project a dependency from plays to John
(and similarly from plays to soccer).

Rule for head-modifier relations (the rest of UD
relations, with the exception of cop, conj, cc, and
punct) We:

• initialize a new head variable for the functor
category,
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NPx(NPx/NPx)y

red apple

amod

NPx

NPx(NPx/NPx)y

on Monday

NPx

case

Figure 5: Head assignment rule for head-modifier
relations.

conj((Sx:1\NPy)x:1/NPz)x:1

buys and

conj

He drinks coffee

((Sx:2\NPy)x:2/NPz)x:2

((Sx\NPy)x/NPz)x

((Sx:2\NPy)x:2/NPz)x:2NPy NPz

Figure 6: Head assignment rule for coordination.

• set the head of the argument category to be
the same as the head of the result category.

Note that function words such as case markers
are also included in the list of head-modifier rela-
tions. This allows the content word to be the head
in cases like adpositional phrases (Figure 5), which
diverges from the common analyses in English.

Rule for coordination Both conjuncts should
share the same category, and thus share the same
head structure within the category. By doing this,
dependencies can be mirrored between the con-
juncts. To distinguish between the two conjuncts,
sub-indices are used. An advantage of this ap-
proach is that in cases such as verb coordination,
it is very clear from the derivation that both verbs
share the same subject and object (Figure 6).

Rule for punctuation marks We do not project
dependencies from punctuation marks. A punctua-
tion mark’s category is initialized with a new head
variable.

3.2. Special cases
Rule for copulas Even though copulas are func-
tion words in UD, we treat them in the same way
as other head-argument relations. As a result, a
copula should be the head of a CCG predicate-
argument dependency. This treatment is consistent
with that of the English CCGbank (Hockenmaier
and Steedman, 2007), as well as other PropBanks

Talk you laterto

root obl

case

ARG2

Talk you laterto

PPx

(PPx/NPx)y NPx(S\NP)/PPx

S\NP

(S\NP)\(S\NP)

Figure 7: Head assignment rule for adpositional
phrases. UD dependencies are shown in blue, and
PropBank dependencies are in green. Some head
variables are omitted for conciseness.

(Palmer et al., 2005; Jindal et al., 2022). In addition,
because a copula links a subject to a nonverbal
predicate, we co-index the NP argument of the
result category and the NP argument of the argu-
ment category (if it exists) so that they share the
same head. An example is shown in Figure 1. This
enables a dependency from the predicative adjec-
tive beautiful to its subject She to be projected.

Rule for adpositional phrases A drawback of
our previous work is that we were not able to de-
sign a category assignment rule for adpositional
phrases, due to the lack of argument-adjunct dis-
tinction in UD. We attempt to handle this problem
by relying on annotations from the Universal Prop-
Bank 2.0 (UP 2.0) and the English PropBank. UP
2.0 provides semantic role labels for treebanks of
23 languages in UD, while the English PropBank
provides annotations for the English Web Treebank
(EWT), so we are able to extract necessary se-
mantic dependencies for our rule. Specifically, we
consider an oblique modifier (obl) or a nominal
modifier (nmod) to be an argument (rather than an
adjunct) if (1) it is annotated as a core argument
(ARG0-ARG5) in the proposition banks, (2) it has a
case marker (case) dependent, and (3) the case
marker has a part-of-speech tag ADP (for adposi-
tions) in UD. Consequently, we set the category of
the modifier to be PP , and the head assignment
rule follows that of other head-modifier relations
(Figure 7).

Rule for non-local dependencies specified by
EUD EUD adds extra annotations for several
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cases of non-local dependencies. In this work, we
design head assignment rules for control/raising
and relative clauses based on these enhancements.
One type of enhancement that we do not deal with
is related to ellipsis, since ellipsis is not handled by
the original T&M algorithm, and also cannot be an-
alyzed with standard CCG rules (Steedman, 2000).

For control/raising, if there exists an NP argu-
ment in the category of the clausal complement,
and if there exists a core EUD dependency (e.g.,
nsubj, obj, iobj) from the head of the clausal
complement, we mark the head of the NP argument
to be the same as the head of the dependent of
the EUD dependency. Similarly for relative clauses,
if there exists an NP argument in the category of
the relative clause, and if there exists a core EUD
dependency from the head of the relative clause,
we also mark the head of the NP argument to be
the same as the head of the dependent of the EUD
dependency.

For example, in the case of control/raising (top
figure), the NP category of John shares the same
head variable with the NP argument of to play soc-
cer (and play soccer).

4. Experiments

4.1. Experimental setup

Data To verify the quality of the predicate-
argument dependencies extracted from our mul-
tilingual CCGbank, we compare them against the
semantic dependencies in UP 2.0. As previously
mentioned, UP is built upon the same text corpora
as UD, enabling our comparison. For conversion,
we select UD treebanks that (1) contain EUD an-
notations, and (2) have a corresponding UP 2.0
corpus. For English in particular, we compare with
the EWT section of the English PropBank, since
UP 2.0 does not provide an English corpus. The
version of UD we use is v2.9 to align with UP 2.0.

Evaluation metric Comparing CCG dependen-
cies and UP dependencies is not a straightforward
task, due to the differences in head selection. For
example, a determiner or a preposition may be the
head in a CCG dependency projected by its functor
category, but this is not usually the case in UP. For
this reason, we apply the following rules to facilitate
a better comparison:

• Reverse the direction of dependencies pro-
jected from modifiers: In CCG, a modifier usu-
ally receives a functor category X|X, which
makes it the head of the argument that it mod-
ifies. We reverse the role so that the modifier
now becomes a dependent of its argument,
resembling the design of UP.

John play soccerwants to

nsubj

root
xcomp

objmark

nsubj

John

to play soccer

wants

(S\NPy)/(S\NPy) S\NPyNPy

S

S\NPy

S\NPy

(S\NPy)/(S\NPy)

the boy who lived

nsubj

acl:relcl

nsubj

the boy livedwho

NPy\NPy

(NPy\NPy)/(S\NPy) S\NPyNPy

NPy

Figure 8: Head assignment rule for non-local de-
pendencies specified by EUD. UD dependencies
are shown in blue; EUD dependencies are in red.
The top figure shows an example of our handling
of subject control, while the bottom figure shows
an example of our rule applied to a relative clause.

• Remove predicates that are not in
UP/PropBank: Since CCG parses tend
to generate a lot more dependencies than
what is available in UP (e.g., dependencies
projected from nouns), and since UP’s
predicate identification is noncomprehensive
(Jindal et al., 2022), we ignore predicates that
are not relevant to the comparison.

The metric we employ is an unlabelled within-
constituent metric (Lewis et al., 2015), which con-
siders a CCG dependency to be correct if its de-
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Treebank (dev) CR

Baseline Baseline + cop Baseline + cop
+ ap

Baseline + cop
+ ap
+ eud

R P F1 R P F1 R P F1 R P F1

Czech-CAC 91.38 78.30 59.89 67.87 78.78 59.93 68.08 78.72 60.81 68.61 82.35 61.49 70.40

Czech-FicTree 88.92 82.43 58.17 68.21 82.56 58.15 68.24 82.98 59.89 69.57 85.07 60.18 70.49

Czech-PDT 87.77 77.39 59.97 67.57 77.75 59.87 67.65 78.14 60.99 68.51 81.60 61.60 70.20

Dutch-Alpino 90.53 83.08 57.61 68.04 83.24 57.55 68.06 83.78 58.44 68.85 85.84 58.76 69.77

Dutch-LassySmall 90.38 80.41 55.00 65.33 80.71 55.12 65.51 81.01 55.77 66.06 82.19 55.95 66.58

English-EWT 97.75 83.89 67.94 75.07 86.05 68.15 76.06 85.98 68.53 76.27 89.79 69.24 78.19

Finnish-TDT 93.11 82.38 54.86 65.86 82.49 54.75 65.82 82.59 54.87 65.94 83.94 55.22 66.62

Italian-ISDT 97.52 69.55 46.76 55.92 69.71 46.78 55.99 76.27 51.49 61.47 80.00 52.15 63.14

Polish-LFG 99.66 86.49 71.91 78.53 86.49 71.91 78.53 86.49 72.67 78.98 88.17 73.06 79.91

Polish-PDB 93.36 82.99 60.56 70.02 83.08 60.51 70.02 83.02 61.65 70.76 83.02 61.66 70.76

Tamil-TTB 100.00 74.29 46.98 57.56 74.29 46.98 57.56 75.00 47.32 58.02 75.00 47.32 58.02

Ukrainian-IU 91.07 79.64 64.42 71.23 79.74 64.42 71.27 80.08 65.23 71.89 85.02 65.88 74.24

Macro average 93.45 80.07 58.67 67.60 80.41 58.68 67.73 81.17 59.81 68.74 83.50 60.21 69.86

Macro average ∆ +0.34 +0.01 +0.13 +0.76 +1.13 +1.01 +2.33 +0.40 +1.12

Table 1: PAS extraction results on the development set of 11 treebanks of 7 languages in UP 2.0, as well
as the EWT section of the English PropBank. From left to right: (1) treebank name, (2) conversion rate, (3)
baseline results, (4) results after adding our copula rule, (5) results after adding copula and adpositional
phrase rules, (6) results after adding copula, adpositional phrase, and EUD-based co-indexation rules.

pendent falls within a corresponding UP argument
span. We do not consider semantic role labels be-
cause they are not defined in CCG. We evaluate
only completely converted CCG derivations.

Results On average, our CCG derivations can re-
cover 83.50% of the semantic dependencies in UP
2.0 (Table 1). While the annotations in UP 2.0 are
not perfect, they give us an approximation of the
quality of our obtained predicate-argument struc-
tures. We conduct an ablation study to evaluate the
effectiveness of each special rule we introduced, as
well as analyzing how well extra annotations help
the conversion. The third column of Table 1 shows
the baseline results without any co-indexation rules
or rules for adpositional phrases. The last column
shows the results after all rules are applied. Some
treebanks, such as Czech treebanks, English-EWT,
Italian-ISDT, or Ukrainian-IU, benefit more from the
added rules than others.

4.2. Discussion
In general, we observe steady improvements in
semantic dependency coverage at each step for
every language tested. Precision tends to be low
since many CCG dependencies are not considered

semantic dependencies in UP, such as those in-
volving function words as dependents (e.g., case
markers, subordinating conjunctions, adpositions),
or those where light verbs are predicates (explored
later in Section 4.3). However, recall is high for most
languages, signifying that our CCG derivations do
properly encode meaningful semantic dependen-
cies, both local and non-local.

Rule for copulas Recall on English-EWT in-
creases by 2.16% with our copula rule, while other
treebanks gain less significant improvements. The
reason could be the relative lack of predicative ad-
jectives in UP 2.0 compared to the English Prop-
Bank, possibly either a characteristic of UP 2.0 tree-
banks, or a by-product of the imperfect annotation
projection method used to create the data. Specifi-
cally, predicative adjectives account for 4.34% of all
predicates in the development set of English-EWT,
but only 0.28% in UP 2.0 (ranging from 0% in four
treebanks to 1.10% in Czech-PDT).

Rule for adpositional phrases Because of the
reversal of dependencies from modifiers, adposi-
tional phrases will always be dependents, whether
they are arguments or adjuncts, which explains the
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minimal changes after we add our rule to handle
them. Beyond the current evaluation setting, hav-
ing the correct categories for adpositional phrases
is always beneficial. The changes we see here are
mostly indirect; since the categories of the adpo-
sitional phrases change from being a functor type
to an atomic type, the categories of surrounding
elements (e.g., modifiers and arguments of the ad-
positional phrases) also change. The result for
Italian-ISDT is an outlier; in many sentences, we
find that the preposition is not part of the span that
covers the prepositional phrase. This lowers the
results of Baseline and Baseline + cop2.

Rule for non-local dependencies denoted by
EUD We see the biggest improvement in recall
after adding co-indexation rules for non-local de-
pendencies. Some treebanks such as those in
Czech, English, Italian, and Ukrainian improve no-
ticeably, while other treebanks such as Polish-PDB
and Tamil-TTB stay mostly the same. We hypothe-
size this is due to the limited quantity and quality
of the current EUD annotations (Findlay and Haug,
2021). Polish-PDB and Tamil-TTB treebanks add
few to no extra dependencies for control/raising or
relative clauses.

Core arguments vs. modifier arguments
Breaking down the recall results into two groups,
core argument (ARG*) recall and modifier argu-
ment (ARGM-*) recall, we can better see where the
improvements come from (Table 2). On average,
core arguments receive 4.97% improvement com-
pared to the baseline, with Italian-ISDT (+14.44%),
English-EWT (+8.73%), and Ukrainian-IU (+7.80%)
leading the way. These results are expected, con-
sidering the focus of our co-indexation rules on
core UD dependency relations (e.g., nsubj, obj,
iobj).

4.3. Error analysis
To better understand the sources of errors, we per-
formed manual analysis on the converted English-
EWT CCGbank. Table 3 shows the recall errors
from the first 100 sentences in the development
set. We classified the errors into three classes: (1)

2For example, in the phrase colti da improvviso ot-
timismo ("caught by sudden optimism"), the preposition
da ("by") is not annotated as part of the prepositional
phrase da improvviso ottimismo ("by sudden optimism")
in UP 2.0. With the Baseline method, the functor cat-
egory of the preposition projects a dependency to the
predicate. When this dependency gets reversed by our
pre-evaluation processing, the preposition becomes a
dependent. As a result, the dependency is not counted
as correct, because the preposition is not part of the
argument span in Italian-ISDT.

Treebank (dev)

Baseline Base. + cop
+ ap
+ eud

Core
R

Modifier
R

Core
R

Modifier
R

Czech-CAC 79.18 76.10 85.22 75.26

Czech-FicTree 85.24 73.99 88.92 73.47

Czech-PDT 80.09 70.66 86.22 70.12

Dutch-Alpino 82.58 84.28 86.57 84.10

Dutch-LassySmall 80.79 79.70 83.37 79.91

English-EWT 83.34 85.05 92.07 84.91

Finnish-TDT 83.87 78.64 86.05 78.64

Italian-ISDT 72.72 60.91 87.16 60.52

Polish-LFG 88.25 82.59 91.02 81.88

Polish-PDB 84.84 78.53 85.13 77.93

Tamil-TTB 73.20 76.74 74.23 76.74

Ukrainian-IU 81.56 75.28 89.36 75.12

Macro average 81.31 76.87 86.28 76.55

Macro average ∆ +4.97 -0.32

Table 2: Recall results for core arguments and
modifier arguments in UP 2.0.

Error Count
from conversion rules (15.9%)

- adverbial clause modifier 4
- coordination 2
- subject-verb inversion 1

from input sources (47.7%)
- dubious annotation 11
- relative clause 8
- control/raising 2

from CCGbank/UP discrepancy (36.4%)
- light verb 6
- adjectival modifier 3
- modifier of predicative adjective 3
- adverbial modifier 2
- reference role 2

Table 3: Recall errors from the first 100 sentences
of the English-EWT treebank’s development set.

errors from the conversion rules, (2) errors from the
input sources (UD/EUD/UP), and (3) non-errors
that stemmed from the discrepancy between CCG
and UP on how to analyze certain constructions.
The results reveal a problematic component of the
original T&M algorithm, and indicate the importance
of having high-quality source treebanks for conver-
sion.
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Errors from conversion rules (15.9%) We iden-
tified six errors, four for adverbial clause modifiers
and two for coordination, that were caused by in-
correct binarization of dependency trees. In the
four cases of adverbial clause modifiers, the bi-
narization method put them in sentential modifier
positions, while they were actually verb phrase
modifiers. In the two cases of coordination, the
binarization method failed to identify the correct
conjuncts. For example, in he founded and he is
the spiritual leader of Hamas, the conjuncts were
incorrectly identified as he founded and he is the
spiritual leader of Hamas. Binarization is an im-
portant first step of the conversion algorithm; the
resulting binarized trees also represent the con-
stituency structures of the input sentences. The
T&M binarization method follows a rigid oblique-
ness hierarchy (Reddy et al., 2017) that may not
hold true for all dependency trees. Either a more
fine-grained obliqueness hierarchy or a more flexi-
ble approach to binarization is necessary to resolve
these cases.

Errors from input sources (47.7%) Dubious or
insufficient annotations account for the largest num-
ber of errors that we found. For instance, in one
sentence, But getting past who should get them, is
who has them, and who is really close, the depen-
dencies between the pronouns who and their verbs
were misannotated as acl:relcl, leading to in-
correct CCG categories for almost all constituents
in the sentence. Another large group of errors
came from insufficient EUD annotations for relative
clauses and control/raising (e.g., a missing arc be-
tween freedom and believe in freedom Westerners
believe in). Since we rely on EUD annotations for
co-indexation and identification of extracted argu-
ments, we are unable to produce correct semantic
dependencies for these cases. In general, we find
that UD tends to be conservative with their EUD
annotations; however, we expect further improve-
ments in future revisions as it continues to develop.

Errors from CCGbank/UP discrepancy (36.4%)
The most common case in this class was light verb
constructions. For example, in The case against
Iran has a feeling of Déjà vu, dependencies headed
by the light verb has were shifted to the noun feeling
in the English PropBank, but our CCG analysis did
not make this movement and kept has as the main
predicate. Another case involved adjectival modi-
fiers such as text-based in text-based ads, where
we simply treated them as normal modifiers, but
the PropBank marked the base verbs (e.g., based)
as predicates. Overall, there exist several similar
cases that we do not consider to be errors, but
rather discrepancies in semantic analyses between
the two formalisms.

5. Related Work

Marking CCG categories with headedness infor-
mation has been done in the past for several in-
dividual languages, such as English (Clark et al.,
2002; Hockenmaier and Steedman, 2007), Hindi
(Ambati et al., 2018), and Chinese (Tse and Cur-
ran, 2010). The process is performed manually,
under the assumption that all lexical categories of
the same type are indexed in the same manner.
In contrast, the same lexical category in our work
may be indexed differently in different situations,
depending on the input dependency trees. The
advantage of our approach is apparent in cases
where words with different semantic roles receive
the same category, such as control. Our method
would be able to produce differently indexed cate-
gories for subject control verbs and object control
verbs, given correct EUD annotations. However, in
the English CCGbank for example, these two types
of verbs receive the same indexed category.

Outside of predicate-argument structures, some
works also provide semantic representations for
CCG categories in the form of first-order or higher-
order logic representations (Bos et al., 2004; Mi-
neshima et al., 2015), and Discourse Represen-
tation Structures (Bos, 2009) for English. Again,
these works cannot be easily replicated due to the
large scale of the generated multilingual CCGbank.
Evang and Bos (2016) propose a method that cre-
ates multilingual CCG parses with semantic inter-
pretations through annotation projection, but their
method requires a parallel corpus. Abzianidze et al.
(2017) build upon the work of Evang and Bos to
later create the Parallel Meaning Bank.

In the context of providing semantic interpreta-
tion for UD, Reddy et al. (2017) introduce a method
to convert UD trees to logical forms, and Y. Findlay
et al. (2023) convert UD trees to Discourse Rep-
resentation Structures (Kamp et al., 2010). We
favor CCG since syntactic information in UD can
be preserved.

Last but not least, Evang (2020) presents an
algorithm to extract dependency trees from CCG
derivations, which is related to our PAS extraction
step. However, the algorithm cannot correctly han-
dle non-local dependencies.

6. Conclusion

In this work, we proposed a method to enhance
bare CCG categories generated from UD with head-
edness information, allowing local and non-local
predicate-argument dependencies to be projected.
Consequently, each CCG derivation has a corre-
sponding semantic representation in the form of a
predicate-argument structure, improving the use-
fulness of the current multilingual CCGbank. Our
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method takes advantage of the word-word depen-
dencies in UD, EUD, and the proposition banks to
extract this headedness information. Error analysis
shows that the effectiveness of our algorithm de-
pends on the quality of the source treebanks and
the bare CCG derivations. Fine-tuning the hand-
crafted rules of the T&M algorithm, or increasing
the quantity and accuracy of existing dependency
annotations would greatly benefit our produced se-
mantic representations.

7. Limitations

We have not solved some existing problems with
the original conversion algorithm, such as the in-
ability to convert trees with crossing dependencies,
trees with orphan dependencies, or trees involving
argument extraction without explicit traces.

Relying on EUD and UP for conversion rules also
limits the number of treebanks we can work on,
as well as the number of linguistic constructions
we can design rules for. In addition, the quality
of our converted CCGbank is basically tied to the
quality of the source corpora. As shown earlier,
the quality of EUD and UP annotations can be in-
consistent, since many of them are automatically
generated, leading to unprojected semantic depen-
dencies. Nonetheless, as these resources are still
being actively developed, we hope to see better
results in the future.

Finally, manual error analysis was done only on
the English-EWT treebank due to our limited lan-
guage expertise. At the same time, since the En-
glish PropBank was manually annotated rather than
automatically converted from UD like other UP cor-
pora, it may give us more accurate insights and
minimize possible errors when used as a target for
comparison.
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