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Abstract
Multimodal emotion recognition (MER) aims to identify emotions by utilizing affective information from multiple
modalities. Due to the inherent disparities among these heterogeneous modalities, there is a large modality gap
in their representations, leading to the challenge of fusing multiple modalities for MER. To address this issue, this
work proposes a novel attention-based MER framework associated with audio and text by integrating representation
subspace mapping with unimodal auxiliary loss for enhancing multimodal fusion capabilities. Initially, a representation
subspace mapping module is proposed to map each modality into two distinct subspaces. One is modality-public,
enabling the acquisition of common representations and reducing the discrepancies across modalities. The other
is modality-unique, retaining the unique characteristics of each modality while eliminating redundant inter-modal
attributes. Then, a cross-modality attention is leveraged to bridge the modality gap in unique representations and
facilitate modality adaptation. Additionally, our method designs an unimodal auxiliary loss to remove the redundancy
unrelated to emotion classification, resulting in robust and meaningful representations for MER. Comprehensive
experiments are conducted on the IEMOCAP and MSP-Improv datasets, and experiment results show that our
method achieves superior performance to state-of-the-art MER methods.

Keywords: Multimodal emotion recognition, representation subspace mapping, cross-modality attention,
unimodal auxiliary loss, fusion

1. Introduction

Multimodal emotion recognition (MER) plays a cru-
cial role in various domains, including facilitating
natural human-machine interaction (Slovak et al.,
2023), enhancing intelligent educational tutoring
(Sabaritha et al., 2023), contributing to mental
health diagnoses (Wang et al., 2022a), and so on.
Human beings commonly express their emotions
through a combination of verbal and non-verbal
cues, such as audio, visual and text modalities
(Zhang et al., 2023c). Previous works primarily
focus on unimodal emotion recognition in specific
modalities, including textual contents (Zhao et al.,
2022a; Li et al., 2022; Zhao et al., 2022b), facial
expressions (Guo et al., 2023), and audio signals
(Zhang et al., 2017, 2019). However, unimodal
emotion recognition usually obtains definitely lim-
ited performance. To mitigate this problem, there
is a growing interest in adopting multimodal ap-
proaches for emotion recognition (Lin et al., 2022;
Li et al., 2022; Wu et al., 2023). Most MER methods
have concentrated on developing advanced mul-
timodal fusion techniques, such as tensor-based
fusion methods, and attention-based fusion meth-
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ods (Zhang et al., 2023c). These fusion techniques
still face challenges due to the inherent modality
gap among heterogeneous modalities. To address
this issue, this work aims to integrate complemen-
tary modalities to reduce redundancy and capture
comprehensive representations for MER. To this
end, we propose a novel attention-based MER
framework associated with audio and text, which
integrates representation subspace mapping with
unimodal auxiliary loss for enhancing multimodal
fusion capabilities.

Excuse me.

Modality-public Modality-unique

Representation Subspace Mapping

Audio Text

Figure 1: An illustration of multimodal learning of
modality-public and modality-unique representa-
tions.
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Figure 1 presents an illustration of multimodal
learning of modality-public and -unique representa-
tions from audio and text modalities. As depicted in
Figure 1, our goal is to learn two distinct represen-
tations from audio and text modalities for MER. The
first one, referred to as the ’modality-public’ sub-
space, serves as the purpose of bridging the modal-
ity gap. To achieve this, we map all modalities of
an utterance into a common subspace, thereby
capturing the shared representations and reduc-
ing the discrepancies across modalities. The sec-
ond one, known as the ’modality-unique’ subspace,
aims at retaining the unique representation of each
modality while eliminating redundant inter-modal
attributes.These unique representations often ex-
hibit little correlation with other modalities and are
sometimes considered as redundancy. However,
they present a complementarity to the shared rep-
resentations, thereby providing a more complete
and comprehensive representation when combined
with the shared representations. To further mitigate
the modality gap in these unique representations,
a cross-modality attention is employed to bridge
the gap and facilitate modality adaptation. This
is beneficial for enhancing the fusion of multiple
modalities. In addition, we introduce an unimodal
auxiliary loss in our model to enhance the repre-
sentations by applying two unimodal classification
cross-entropy constraints. This unimodal auxiliary
loss is to eliminate extraneous redundancy while
preserving the effectiveness and robustness of uni-
modal representations.

Our main contributions can be summarized as
follows:

• We present a novel attention-based frame-
work integrating audio and text modalities for
MER. Our framework incorporates representa-
tion subspace mapping and unimodal auxiliary
loss to enhance the capability of multimodal
fusion. This approach offers a holistic perspec-
tive on MER tasks, acquiring both modality-
public and modality-unique representations si-
multaneously.

• The unimodal auxiliary loss is designed to
eliminate the redundancy unrelated to emo-
tion classification while preserving efficient uni-
modal representations. Integrating represen-
tation subspace mapping with the designed
unimodal auxiliary loss, results in robust and
meaningful representations for promoting the
overall performance on MER tasks.

• Extensive experiments were conducted on two
audio-text emotional datasets, such as IEMO-
CAP and MSP-Improv, and the results demon-
strate that our proposed method outperforms
state-of-the-art MER methods.

2. Related Work

Multimodal emotion recognition (MER) aims to dis-
tinguish human emotions by integrating multiple
modalities like audio, text, visual data, and so on.
The diversity among these heterogeneous modal-
ities provides varying levels of affective informa-
tion for MER. To integrate these diverse modalities,
numerous studies have focused on devising vari-
ous multimodal fusion strategies, such as attention-
based methods (Tsai et al., 2019; Lv et al., 2021)
and tensor fusion-based methods (Zadeh et al.,
2017; Sahay et al., 2018; Wang et al., 2022b).
More specially, extensive interests have been at-
tracted to crossmodal attention-based methods
(Zhang et al., 2023b), which enable the acquisi-
tion of strengthened modality representations by
learning cross-modal correlations. The representa-
tive MER method is multimodal Transformer (MulT)
(Tsai et al., 2019) incorporating a cross-modal at-
tention mechanism. Lv et al. (Lv et al., 2021) devel-
oped a Progressive Modality Reinforcement (PMR)
technique based on the crossmodal Transformer
for MER. PMR provides a message hub to perform
information exchanging with each modality.

In contrast, tensor fusion-based methods focus
on modeling inter-modality dynamics representa-
tions with a tensor fusion strategy. Zadeh et al.,
(Zadeh et al., 2017) proposed a Tensor Fusion Net-
work (TFN) to capture both the intra-modality and
inter-modality dynamics in an end-to-end manner.
Wang et al., (Wang et al., 2022b) provided a Deep
Tensor Evidence Fusion (DTEF) network, in which a
common view evaluation network combining a long
short-term memory (LSTM) network and a tensor-
based neural network was designed to capture rich
intermodal and intramodal features for MER. How-
ever, the inherent heterogeneity and redundancy of
multimodal representations make these methods
face challenges for multimdoal fusion.

To alleviate the above problem, some endeav-
ors are dedicated to investigating the effect of the
specific and shared aspects of multimodal repre-
sentations on multimodal fusion tasks through fea-
ture decoupling (Zheng et al., 2021; Zhang et al.,
2022b; Li et al., 2023). Li et al., (Li et al., 2023) pre-
sented a decoupled multimodal distillation method
for MER, in which they employed a flexible and
adaptive crossmodal knowledge distillation scheme
to enhance the discriminating power of each modal-
ity representation. Nevertheless, these methods
overlook the potential redundancy hidden in the
modality representation that is unrelated to emo-
tion classification.

To address the above issue, this work introduces
a unimodal auxiliary loss to eliminate the irrele-
vant redundancy hidden in the modality represen-
tation, thereby enhancing the effectiveness of fea-
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ture decoupling. Then, a representation subspace
mapping strategy is designed to decouple origi-
nal modality representations into two distinct sub-
spaces for the corresponding multimodal learning
of modality-public and modality-unique represen-
tations. This gives rise to our proposed attention-
based MER framework associated with audio and
text to enhance multimodal fusion capabilities.

3. Method

3.1. Problem Definition
A set of dialogues associated with audio (a) and text
(t) modalities, denoted as S = {D1, D2, . . . , DN},
comprises N dialogues. Each dialogue D =
{U1, E1,U2, E2, · · · ,UM , EM} consists of M utter-
ances, where Ui represents the ith utterance, and
Ei represents the corresponding emotion label
Ei∈{Happy, Sad,Neutral, Angry}. The main ob-
jective of MER is to develop a model that can ac-
curately detect and identify emotion categories in
a multi-sensory context from labeled dialogues S.

3.2. Proposed Method
The overall architecture of our proposed method
is illustrated in Figure 2. Our method consists of
four key components: (1) unimodal feature ex-
traction (Sec.3.3), (2) unimodal auxiliary loss
for removing redundancy(Sec.3.4), (3) repre-
sentation subspace mapping (Sec.3.5) and (4)
modality adaptation with cross-modality atten-
tion (Sec.3.6). In the followings, these four compo-
nents are described in detail.

3.3. Unimodal Feature Extraction
Utterance-level features are extracted from raw au-
dio and text samples in terms of the used emotional
datasets, as described below.

Audio Features: For the IEMOCAP dataset, fol-
lowing in (Wu et al., 2023) we extract the typical
’ComParE’ set consisting of 6,373 features for each
utterance. Then, we employ a fully connected (FC)
layer to reduce the audio features to 100. For
the MSP-Improv dataset, following in (Ye et al.,
2023), we derive Mel-Frequency Cepstral Coef-
ficients (MFCCs) for each utterance. We set the
mean signal length to 96,000 and the embedding
length as 100, resulting in 100-dimensional audio
features.

Text Features: For text modality, we extract con-
textual word embeddings by using a pretrained
BERT-base model (Kenton and Toutanova, 2019)
including 12 transformer layers and 110 million pa-
rameters. Then, we employ a mean pooling of all
token representations to obtain a 768-dimensional

text vector. Finally, we reduce the text vector to 100
through a FC layer.

To further learn rich contextual and high-level
information within dialogues, we apply a Bi-
directional Gated Recurrent Unit (Bi-GRU) to en-
code all utterances. Then, a self-attention mecha-
nism (Poria et al., 2017b; Zhang et al., 2023a) is
utilized to capture relationships and dependencies
between elements in the extracted feature vectors.
The output from the used self-attention module for
each modality is divided into two branches. One
branch is dedicated to emotion recognition tasks,
while the other serves as an input for representation
subspace mapping.

3.4. Unimodal Auxiliary Loss for
Removing Redundancy

The obtained representations of text and audio usu-
ally contain redundancy that is irrelevant to emotion
classification. To remove redundancy hidden in
the obtained representations, we introduce the uni-
modal auxiliary loss to retain robust unimodal repre-
sentations as the input of representation subspace
mapping. Specifically, we utilize the unimodal rep-
resentations learned from the self-attention module
to calculate the cross-entropy losses, denoted by
La and Lt respectively. Then, we combine these
constraints to constitute the unimodal auxiliary loss
(Lua). Formally, the unimodal auxiliary loss can be
formulated as:

La =

N∑
D∈S

M∑
i=1

− logP (ŷai = yi) (1)

Lt =

N∑
D∈S

M∑
i=1

− logP (ŷti = yi) (2)

Lua = La + Lt (3)
For each modality the used cross-entropy loss

enables the model to retain helpful unimodal repre-
sentations for emotion classification while eliminat-
ing redundant representations unrelated to emotion
classification. In this sense, our model is able to
preserve the key and discriminating unimodal char-
acteristics of specific emotions in the subsequent
representation subspace mapping.

3.5. Representation Subspace Mapping
To map the multimodal representations into two
parts, namely the modality-public representation
Upub
m and the modality-unique representation Uuni

m ,
where m∈ {a, t} indicates a modality, we employ
a public multimodal encoder Epub and two unique
multimodal encoders Euni

m to learn the mapped rep-
resentations, as defined below:

Upub
m = Epub(Um), Uuni

m = Euni
m (Um) (4)
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Figure 2: Overview of our proposed method integrating representation subspace mapping with unimodal
auxiliary loss for MER.

To bridge the gap between text public represen-
tation Upub

t and audio public representation Upub
a ,

we employ the Central Moment Discrepancy (CMD)
metric (Zellinger et al., 2017) to measure the differ-
ence Lsim between the distributions of these two
representations. This is because CMD explicitly
matches higher-order moments without the need
for computationally expensive distance and kernel
matrix computations. To this end, in modality-public
representation subspace we aim to minimize the
following function:

Lsim = ∥E(Upub
t )− E(Upub

a )∥2

+

K∑
k=2

∥Ck(Upub
t )− Ck(Upub

a )∥2
(5)

where E(Upub
m ) is the empirical expectation vec-

tor of input sample Upub
m , and Ck(Upub

m ) =

E((Upub
m − E(Upub

m ))
k
) is the vector of all kth order

sample central moments of the coordinates of Upub
m .

∥ · ∥2 is the squared Frobenius norm.
In modality-unique representation subspace, we

leverage difference constraint Ldif to constrain
unique representations Uuni

m , retaining specific rep-
resentations and removing redundant representa-
tions, as defined below:

Ldif = ∥Uuni
t

TUuni
a ∥2 + ∥Uuni

a

TUpub
a ∥2

+ ∥Uuni
t

TUpub
t ∥2

(6)

where T represents the transpose operation of a
matrix.

By enforcing Ldif , there remains a risk of learn-
ing trivial representations by the modality-specific

encoders. Trivial cases can arise if the encoder
function approximates an orthogonal but unrepre-
sentative vector of the modality. To mitigate this
issue, we introduce a modality reconstruction loss
to ensure that the hidden representations capture
the details of their respective modalities. In par-
ticular, we sum Upub

m and Uuni
m from each modal-

ity as the input to the unique decoder Dm to re-
construct the corresponding representations, i.e.,
Dm(Upub

m + Uuni
m ). Then, the discrepancy between

the raw and reconstructed multimodal representa-
tions can be formulated as:

Lrec =
∑

m∈{a,t}

∥Um −Dm(Upub
m + Uuni

m )∥22
dh

(7)

where, ∥ · ∥22 is the squared L2-norm and dh repre-
sents the size of Um.

Drawing inspiration from the field of generative
workers (Zhu et al., 2017), we incorporate a cy-
cle consistency loss (Lcyc) to further promote the
process of representation reconstruction. The re-
constructed representations will be re-encoded via
the unique encoders Euni

m to regress the unique rep-
resentations Uuni

m . In this sense, the discrepancy
between the regressed and unique representations
can be formulated as:

Lcyc =
∥ Uuni

a − Euni
a (Da(Upub

a + Uuni
a ))∥ 2

2

dh

+
∥ Uuni

t − Euni
t (Dt(Upub

t + Uuni
t ))∥ 2

2

dh

(8)

Finally, we combine the above constraints to form
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the whole subspace loss, as defined below:
Lsp = Lrec + Lcyc + α(Lsim + Ldif ) (9)

where α is the balance factor.

3.6. Modality Adaptation with
Cross-modality attention

The unique representations emphasize the diver-
sity and distinct characteristics of each modality,
thus manifesting a substantial modality gap. To
bridge the modality gap, we employ the multimodal
Transformer strategy (Tsai et al., 2019) to perform
modality adaptation. More specially, when tak-
ing the audio modality Uuni

a as the source and
the text modality Uuni

t as the target, the cross-
modality attention can be defined as: Qt = Uuni

t Pq,
Ka = Uuni

a Pk, and Va = Uuni
a Pv. Here, Pq,Pk,Pv

are the learnable parameters. Qt, Ka and Va sep-
arately represent Query, Key, and V alue. The
individual head of cross-modality attention can be
expressed as:

Funi
a→t = softmax(

QtK
T
a√
d

)Va (10)

Here, Funi
a→t denotes the representation enhance-

ment from audio to text modality. d is the dimension
of Qt and Ka.

Similarly, the individual head of cross-modality
attention, which takes the text modality Uuni

t as the
source and the audio modality Uuni

a as the target,
can be expressed as:

Funi
t→a = softmax(

QaK
T
t√

d
)Vt (11)

Then, we concatenate all public representations
and enhanced cross-modal representations from
the source to target modalities as the final fused fea-
tures, i.e.,[Funi

a→t,Funi
t→a,Upub

a ,Upub
t ]. The notation [·]

means feature concatenation. Next, the fused fea-
tures are used to conduct MER tasks in terms of
the following cross-entropy loss Ltask:

Ltask =

N∑
D∈S

M∑
i=1

− logP (ŷi = yi) (12)

Finally, we merge the above-mentioned loss func-
tions into a total target loss, as defined as:

Ltotal = Ltask + Lua + βLsp (13)
where β is the balance factor.

4. Experiments

4.1. Experimental Setup
4.1.1. Dataset

We evaluate our proposed method on two bench-
mark datasets: Interactive Emotional Dyadic Mo-

tion Capture (IEMOCAP) (Busso et al., 2008) and
MSP-Improv (Busso et al., 2016). The statistics of
these two datasets are listed in Table 1.

Dataset Happy Angry Sad Neutral Total
IEMOCAP 1636 1103 1084 1708 5531

MSP-Improv 999 460 627 1733 3819

Table 1: Data statistics of datasets.

IEMOCAP This dataset records 9 emotions from
10 actors: happy, angry, sad, disgust, neutral, ex-
cited, surprised, frustrated and fearful. Following in
(Zhang et al., 2023b), we use 4 emotion categories
for experiments, in which happy and excited are
merged into the happy category. The final dataset
contains 5,531 utterances in total.

MSP-Improv This dataset records 4 emotions
from 12 actors: happy, angry, sad and neutral. As
in (Zhang et al., 2022a) , our initial step involves the
removal of audio clips with a duration shorter than
1 second. Then, we meticulously select audio clips
along with their corresponding textual transcripts
from the ’Other-improvised’ group. These record-
ings are specifically derived from improvisational
scenarios and includes a total of 3,819 utterances.

4.1.2. Implementation Details

Description Symbol Value
Batch size b 20
Epoch number e 150
Dropout rate p 0.2
Hidden size d 100
Self- and cross-modality attention heads h 4
L2 regularization weight w 0.00001
Loss balance factor α, β 0.1

Table 2: Parameter settings in experiments.

All experiments were conducted using the Py-
Torch deep learning toolkit on the Nvidia RTX 3090
GPU with 24GB of memory. The experiment con-
figurations are detailed in Table 2. The hidden
size is 100, which is equal to the feature dimen-
sion of modality-unique and cross-modality atten-
tion embeddings. The dropout rate is 0.2, and is
employed after self-attention and cross-modality
attention layers. The epoch number is 150, and
the batch size is 20. The L2 regularization weight
value is 0.00001. On the IEMOCAP dataset, the
first 4 sessions were used for training and the fifth
session was employed for testing. On the MSP-
Improv dataset, we leveraged a 12-fold speaker-
independent cross-validation strategy for experi-
ments. Specially, 10 speakers’ utterances were
selected for training and the remaining 2 speakers
were adopted for testing. The obtained average
results in the 12-fold cross-validation experiments
were used as the final reported results.
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Dataset Modality Happy(%) Sad(%) Neutral(%) Angry(%) Average(%)

IEMOCAP

A 57.11 64.49 66.15 91.18 69.73

T 90.74 88.16 72.39 71.18 80.62

A+T (w/o Lua) 86.00 87.76 66.15 86.47 81.10

A+T 94.01 88.30 73.40 88.00 85.92

MSP-Improv

A 84.55 72.73 67.21 51.79 69.07

T 87.27 69.32 72.13 90.18 82.00

A+T (w/o Lua) 87.27 77.27 83.61 83.04 82.80

A+T 95.01 84.86 80.01 87.12 86.75

Table 3: Performance comparisons of our method
for unimodal and multimodal emotion recognition
on the IEMOCAP and MSP-Improv datasets. A and
T refer to the audio and text modality, respectively.
(w/o Lua) means to remove Lua.

For evaluation metric, on the IEMOCAP dataset
we select Weighted Accuracy (WA) for a compari-
son. On the MSP-Improv dataset, we choose F1-
score as the evaluation metric due to the imbalance
of emotion categories.

4.2. Experimental Results and Analysis

4.2.1. Unimodal vs. Multimodal

To present a performance evaluation of unimodal
and multimodal emotion recognition, we employ
the achieved results on the IEMOCAP and MSP-
Improv dataset for a comparison. Table 3 shows
the performance comparisons of unimodal and mul-
timodal emotion recognition on the IEMOCAP and
MSP-Improv dataset. According to the results pre-
sented in Table 3, the text modality exhibited supe-
rior performance compared to the audio modality,
achieving an improvement of 10.89% and 12.93%
on the IEMOCAP and MSP-Improvs datasets, re-
spectively. This indicates that the textual modality
contains much richer emotional clues for identify-
ing emotion than the audio modality. In addition,
integrating both audio and text modalities clearly
outperforms their unimodal counterparts. In partic-
ular, when fusing these two modalities, the reported
accuracy is 85.92% and 86.75% on two datasets,
which is much higher than the unimodal audio and
text modality. This demonstrates the complemen-
tarity of audio and text modalities. Besides, Table 3
presents a performance comparison of our method
when integrating both audio and text modalities
whether or not with the unimodal auxiliary loss. The
results in Table 3 show that the designed unimodal
auxiliary loss yields an improvement of 4.82% and
3.95% on two datasets when it is leveraged for fus-
ing both audio and text modalities. This indicates
the effectiveness of the designed unimodal auxil-
iary loss for removing redundancy, before perform-
ing representation subspace mapping and feature
fusion.

Approaches WA(%)

bc-LSTM(Poria et al., 2017a) 75.60
CATF-LSTM(Poria et al., 2017b) 80.10
Zheng.(Lian et al., 2019) 78.02
DANN (Lian et al., 2020) 82.68
CONSK-GCN(Fu et al., 2021) 84.79
Wen. (Wu et al., 2021) 83.08
Soumya. (Dutta and Ganapathy, 2022) 83.80
MER-HAN (Zhang et al., 2023b) 73.33
Bubai. (Maji et al., 2023) 83.57
Our Method (A) 69.73
Our Method (T) 80.62
Our Method (A+T) 85.92

Table 4: Performance comparisons of different
methods on the IEMOCAP dataset. A and T re-
fer to the audio and text modality, respectively.

Approaches Metric A T A+T

MCTN(Pham et al., 2019) F1(%) 32.85 50.50 56.11
MMIN(Zhao et al., 2021) F1(%) 46.47 55.73 61.88
Bi-LSTM F1(%) 44.06‡ 60.04‡ 63.57‡

GRU F1(%) 43.49‡ 73.92‡ 73.18‡

Bi-GRU F1(%) 49.08‡ 82.27‡ 82.70‡

Our Method F1(%) 55.50 82.68 85.26

Table 5: Performance comparisons of different
methods on the MSP-Improv dataset. ‡ indicates
the obtained results of reproducing the correspond-
ing methods. A and T refer to the audio and text
modality, respectively.

4.2.2. Our Method vs. Previous Works

To show the advantages of our proposed method,
we provide a comparison of our method and state-
of-the-art approaches. Table 4 and 5 separately
show the performance comparisons of our method
as well as other comparing approaches on the
IEMOCAP and MSP-Improv datasets. In partic-
ular, on these two datasets our method performs
best among all used comparing approaches. This
highlights the advantages of our method over other
used approaches. Moreover, on the MSP-Improv
dataset our method obtains much higher F1-score
than other comparing approaches when perform-
ing unimodal and multimodal emotion classification.
This is attributed to integrating representation sub-
space mapping with the unimodal auxiliary loss for
enhancing multimodal fusion capabilities.

To show the recognition accuracy of each emo-
tion, Figure 3 displays the confusion matrices of
recognition results obtained by our method on two
datasets. As depicted in Figure 3, we can see that
our method yields excellent performance on these
two datasets. Specially, on both datasets, happy,
sad, and angry can be identified well with an accu-
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Figure 3: The confusion matrices of recognition results obtained by our method on two datasets: (left)
IEMOCAP, (right) MSP-Improv.

Dataset Lua Lsp Cross-modality Attention WA(%) F1(%)

IEMOCAP

! ! ! 85.92 84.48
! ! % 85.23(↓) 83.96(↓)
! % % 84.79(↓) 83.02(↓)
% % % 80.85(↓) 78.91(↓)

MSP-Improv

! ! ! 86.75 85.26
! ! % 86.13(↓) 84.83(↓)
! % % 84.64(↓) 84.29(↓)
% % % 79.36(↓) 78.33(↓)

Table 6: The effect of key components in our
method.

racy of over 85%. By contrast, neutral is classified
relatively poorly with an accuracy of 73% on the
IEMOCAP dataset, and 80% on the MSP-Improv
dataset, respectively. This further emphasizes the
effectiveness and robustness of our method.

4.2.3. The Effect of Representation Subspace
Mapping

In order to efficiently reduce the modality gap while
retaining the unique representations of each modal-
ity simultaneously, we design a representation sub-
space mapping module to project the representa-
tions of each modality into both a public subspace
and a unique subspace. To intuitively investigate
the effect of representation subspace mapping, we
provide the visualization results of mapped repre-
sentations as well as the quantitative analysis of
the regularization losses, as described below.

Visualizing mapped representations. We
present the t-SNE visualization results of public
representations Upub

m and unique representations
Uuni
m on two datasets, as shown in Figure 4. Here,

the balance factor α in the whole subspace loss Lsp,
is used to control the effect of Lsim and Ldif regu-
larization. Specially, α = 0 indicates the absence
of constraints imposed by Lsim and Ldif regular-

Dataset Methods w/o Lua w/ Lua

WA (%) / F1 (%) WA (%) / F1 (%)

IEMOCAP
Bi-LSTM 71.36/69.23 73.21/71.28
Bi-GRU 83.14/82.01 84.64/83.63

Our Method 81.84/80.51 85.92/84.48

MSP-Improv
Bi-LSTM 69.54/67.63 71.26/69.28
Bi-GRU 83.35/82.64 84.93/84.05

Our Method 82.80/81.34 86.75/85.26

Table 7: The effect of unimodal auxiliary loss (Lua)
on the IEMOCAP and MSP-Improv datasets.

ization. By contrast, α ̸= 0 signifies the presence
of these constraints. When using Lsim and Ldif

regularization, the results in Figure 4 clearly show
that public representations tend to overlap, while
unique representations have more distinct clusters
from each other. This indicates that our method
has successfully learned both public and unique
representations.

Quantitative analysis. To quantify whether our
model can learn public and unique representations
or not through the designed representation sub-
space mapping, we use the subspace loss func-
tions Lsp and Lsim to measure the ability of learning
representations. Figure 5 depicts the trends in the
regularization loss during training. From Figure 5,
we can see that with the increase of training epochs,
Lsp can converge rapidly. This rapid convergence
indicates that our model can capture meaningful
representations through the representation sub-
space mapping. Meanwhile, the rapid convergence
of Lsim with increasing epochs also demonstrates
our model’s ability of learning modality-public rep-
resentations.

4.2.4. Ablation Study

In this section, we present a comprehensive analy-
sis of several key components in our method, includ-
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Figure 4: t-SNE visualizations of mapped features: (left) IEMOCAP, (right) MSP-Improv.
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Figure 5: Trends in the regularization loss during training on the IEMOCAP and MSP-Improv datasets.

ing the unimodal auxiliary loss, the subspace loss,
and cross-modality attention unit. The results of
various evaluation are presented in Table 6. From
Table 6, our findings can be summarized as follows:

(1) The used unimodal auxiliary loss significantly
enhances MER performance. This is attributed to
the unimodal auxiliary loss which is able to filter out
the representations that are unrelated to emotion
classification, and yield more meaningful represen-
tations for downstream tasks.

(2) Combining the unimodal auxiliary loss with
the subspace loss yields the best performance.
The representation subspace mapping leverages
the subspace constraints to decompose raw repre-
sentations into both public and unique representa-
tions. The public representations can substantially
reduce the discrepancies across modalities. The
unique representations can eliminates redundant
inter-modal attributes while preserving modality-
unique characteristics.

(3) The cross-modality attention can effectively
bridge the modality gap in unique representations
and facilitate modality adaptation. In this sense,
our model can diminish the distribution differences
among unique representations from different modal-
ities, and enhance modality adaptation simultane-
ously.

To further validate the effectiveness of the pro-
posed unimodal auxiliary loss, we also provide a
comparative analysis when whether using the uni-
modal auxiliary loss or not on the IEMOCAP and
MSP-Improv dataset. In this study, we compared

our method with classic models such as Bi-LSTM
and Bi-GRU. The comparing results are presented
in Table 7. Here, "Bi-LSTM (w/ Lua)" and "Bi-GRU
(w/ Lua)" indicate that we integrate the unimodal
auxiliary loss with Bi-LSTM and Bi-GRU to elim-
inate emotion-irrelevant representations. The re-
sults in Table 7 demonstrate that the used models
incorporating Lua clearly exhibit an improvement
compared to those without Lua. This observation
highlights the positive impact of the introduced uni-
modal auxiliary loss on both fusion and represen-
tation subspace mapping. Moreover, the key differ-
ence between our model and Bi-GRU is whether
representation subspace mapping is incorporated
or not. From Table 7, we can see that representa-
tion subspace mapping in our model contributes
significantly to the overall performance improve-
ment with the aid of the unimodal auxiliary loss.

5. Conclusion

This work presents a novel attention-based audio-
text emotion recognition framework which inte-
grates the proposed representation subspace map-
ping and unimodal auxiliary loss. The designed
representation subspace mapping can project raw
representations into modality-public and modality-
unique subspaces. The unimodal auxiliary loss can
filter out the irrelevant redundancy, ensuring robust
and meaningful representations for MER. Experi-
mental results on the IEMOCAP and MSP-Improv
datasets show that our method outperforms state-
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of-the-art approaches on MER tasks. In future, it is
interesting to explore alternative multimodal fusion
methods, and integrate more modalities such as
visual and physiological signals related to emotion
expression for MER (Zhao et al., 2022a; Can et al.,
2023).
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