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Abstract

The large success of deep learning based methods in Visual Question Answering (VQA) has concurrently

increased the demand for explainable methods. Most methods in Explainable Artificial Intelligence (XAI) focus on

generating post-hoc explanations rather than taking an intrinsic approach, the latter characterizing an interpretable

model. In this work, we introduce an interpretable approach for graph-based VQA and demonstrate competitive

performance on the GQA dataset. This approach bridges the gap between interpretability and performance. Our

model is designed to intrinsically produce a subgraph during the question-answering process as its explanation,

providing insight into the decision making. To evaluate the quality of these generated subgraphs, we compare

them against established post-hoc explainability methods for graph neural networks, and perform a human

evaluation. Moreover, we present quantitative metrics that correlate with the evaluations of human assessors,

acting as automatic metrics for the generated explanatory subgraphs. Our implementation is available at

https://github.com/DigitalPhonetics/Intrinsic-Subgraph-Generation-for-VQA.
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1. Introduction

Visual Question Answering (VQA) (Antol et al.,
2015; Shih et al., 2016) is acknowledged as a chal-
lenging multi-modal task for Machine Learning (ML)
algorithms as it requires a semantic comprehen-
sion of images in relation to the posed questions.
State-of-the-art approaches for VQA are systems
based on Deep Learning (DL), which are mostly
assessed by accuracy and efficiency metrics. To
enhance collaboration between humans and ML
systems in real-world settings, it is essential to reli-
ably comprehend the system’s outputs. Nonethe-
less, the majority of DL based VQA systems are
considered black boxes by both users and develop-
ers. Hence, deploying these systems in important
decision-making domains carries considerable risk,
despite their progress.

The domain of Explainable Artificial Intelligence
(XAI) addresses the aforementioned issue, and can
be categorized into two subdomains: explainabil-
ity and interpretability (Rudin, 2019; Marcinkevičs
and Vogt, 2020). The domain of interpretability cen-
ters on inherently interpretable models, i.e. where
the decision making process of the models can be
comprehended by humans, e.g. decision trees. Ex-
plainable ML focuses on methods that generate ex-
planations post-hoc for already existing (black-box)
models, possibly requiring additional hyperparam-
eter tuning. Notably, interpretable models possess
the advantage of intrinsic explanation generation,
where the model itself generates explanations. This
contrasts with post-hoc methods, which introduce

an additional method or model aimed at explain-
ing predictions, leading to increased computational
cost.

Explainability methods for VQA often focus on
pixel importance as visual explanations (Arras et al.,
2022; Panesar et al., 2022). Some approaches
address explainability by generating rationales to
explain the system’s predicted answers. These
rationales can be generated either post-hoc by a
another neural network or by the original network
itself (Schwenk et al., 2022). However, it remains
uncertain whether the answer and rationale gen-
eration processes influence one another. An al-
ternative strategy involves formulating contrastive
explanations (Arras et al., 2022). Moreover, some
models that yield intermediate outputs are consid-
ered to offer interpretability (Caro-Martinez et al.,
2023). For instance, in (Fu et al., 2023), the system
translates images into textual descriptions relevant
to the given question, uses these to predict the an-
swer and is thereby interpretable. These methods
purport to offer interpretability, yet they do not align
with our definition wherein an interpretable model
should intrinsically generate its own explanation.

In this work, we introduce an approach for graph
based VQA that employs a structured graph rep-
resentation of the displayed scene instead of the
raw image input. The primary goal of our work,
is to generate a subgraph alongside the model’s
prediction as explanation, highlighting the most rel-
evant nodes for a given question, as opposed to
employing post-hoc explanation methods.

We focus on the following research questions:

https://github.com/DigitalPhonetics/Intrinsic-Subgraph-Generation-for-VQA
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RQ1 How can we increase the interpretability of
deep learning-based VQA answer prediction
through the utilization of Graph Neural Net-
works?

RQ2 How does the quality of explanations gener-
ated by our method compare to that of state-
of-the-art post-hoc explanation methods when
evaluated by human assessors?

RQ3 What methods can we employ to quantita-
tively assess the quality of explanations in
cases where no ground-truth references are
available, and to what extent do these quantita-
tive measures align with human preferences?

To address these research questions, we pro-
pose a system featuring a Graph Attention Network
(GAT) at its core component, which is able to ex-
tract a subgraph as explanation for the prediction.
We validate our approach in a graph based VQA
setting using GQA (Hudson and Manning, 2019b).
Furthermore, we conduct a human evaluation to
compare our internally generated subgraph with
explanations generated by post-hoc methods. Ad-
ditionally, we introduce evaluation metrics tailored
to subgraphs used as explanations in scenarios
where ground-truth explanations are unavailable.

Our contributions can be summarized as follows:

1. We propose a novel VQA system that not only
provides answers but also offers relevant ex-
planations. Our approach has been proven
to deliver highly accurate results, and human
evaluators have shown a preference for our
intrinsic explanations over traditional post-hoc
explainability methods.

2. We introduce quantitative metrics, which cor-
relate with the results of the human evaluation,
to measure the quality of explanations.

2. Related Work

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) are evolving to
an increasingly more popular area of research
due to their recent successes (Xie et al., 2022;
Dai et al., 2022). They are designed to harness
graph-structured data and perform message pass-
ing among nodes to learn contextualized node em-
beddings. In addition to their natural applicability
in domains where it is obvious to represent data
as graphs, such as chemistry (where molecules
can be modeled as graphs) or e-commerce (where
users interactions can be represented as a graph)
(Dai et al., 2022), GNNs have been successfully ap-
plied in Natural Language Processing (NLP) tasks
(Wu et al., 2023) and Computer Vision (CV), includ-
ing tasks like Scene Graph Generation (SGG) (Dai

et al., 2022). For a comprehensive overview span-
ning various domains, readers are directed to Dai
et al. (2022) regarding a general survey on GNNs.
For in-depth exploration with a focus on NLP Wu
et al. (2023) offer an extensive resource.

2.2. Visual Question Answering

Many different datasets (Johnson et al., 2017; Hud-
son and Manning, 2019b; Agrawal et al., 2018;
Singh et al., 2019) and models have been published
since the task itself has been introduced, and aim
to evaluate divers capabilities of models (Väth et al.,
2021; Lin et al., 2023; Shao et al., 2023). Given
the graph-based nature of our VQA approach, the
subsequent section will be dedicated exclusively to
this aspect.

2.3. Graph based VQA Models

Graph based VQA represents a specialized variant
of VQA where models use intermediate graph struc-
tures that represent the scenes in images, which
enables the usage of powerful GNNs for the task.
Hudson and Manning (2019a) proposed a Neural
State Machine (NSM), which incorporated question
guided traversal of scene graphs. This approach
treats nodes as states and allows transitions along
edges (relations) in the graph. Subsequently, Liang
et al. (2021) extended this notion by employing
instruction vectors to guide the information prop-
agation of a Graph Neural Network (GNN). The
authors conducted comparisons utilizing ground-
truth scene graphs sourced from the GQA dataset
(Hudson and Manning, 2019b). Remarkably, the
GAT (Veličković et al., 2017; Brody et al., 2021)
achieved the best performance by a substantial
margin. In the work of Koner et al. (2021) a Re-
inforcement Learning (RL) based approach was
developed, treating VQA as a graph traversal prob-
lem. Their reported performance on ground-truth
scene graphs within the GQA dataset slightly trailed
behind the GAT approach by Liang et al. (2021).

Li et al. (2022) proposed an approach that cen-
ters on a SGG model, which transforms the scene
graph into two graphs. One of these graphs em-
phasizes objects, while the other focuses on the
relational aspects. Wang et al. (2022) is charac-
terized by a bidirectional fusion process between
unstructured and structured multimodal knowledge
to obtain unified knowledge representation. This
fusion ultimately yields a unified knowledge repre-
sentation. Both have a different focus compared
to our approach prioritizing the SGG task, partic-
ularly in terms of the methods applied for crafting
the scene graph.

The interpretability or explainability of such sys-
tems is often asserted without being tested, i.e. the
human for whom the explanation is intended is left
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out of the evaluation loop. Zhu (2022) construct
three types of graphs during the reasoning process
to generate an answer. Although the model is de-
scribed as interpretable because humans can view
the intermediate graph representations, there is no
actual assessment of its interpretability conducted
by human evaluators. Similarly, Sarkisyan et al.
(2022) assert that they construct an interpretable
model by mapping questions into a graph struc-
tures which is supposed to make it interpretable.
However, no tests are carried out to assess this
aspect of interpretability.

Chen et al. (2021) introduces an approach for
knowledge-based VQA, where masking strategies
are applied to predict answers to better general-
ize to out-of-distribution answers. In contrast, our
approach employs a differentiable hard-attention
masking to extract a subgraph during the message-
propagation of the GNN.

2.4. Explainability and Interpretability

Interpretability and explainability have garnered in-
creased attention alongside the successes of ML
methods across diverse domains. Linardatos et al.
(2020) conducted a review focusing on XAI and
interpretable ML methods. In addition to their com-
prehensive literature review, they introduced a sys-
tematic taxonomy of these approaches, coupled
with references to their programming implementa-
tions.

Liu et al. (2022) reviewed the interpretability in
GNNs. Notably, most approaches for GNNs are
post-hoc methods that try to explain predictions of
black-box models. Transparent approaches in this
context are relatively rare. DL methods are recog-
nized as interpretable or transparent that predom-
inantly rely on soft attention scores. Efforts have
been dedicated to investigate if soft attention can
be considered interpretable, yielding findings that
challenge their alignment with true interpretability
(Serrano and Smith, 2019).

Feng et al. (2022) proposed Kernel Graph Neu-
ral Networks (KerGNNs) that integrate kernels into
the message passing process of GNNs in order to
overcome the limitation of standard GNNs which
are not capable of surpassing the performance of
the Weisfeiler-Lehman (WL) algorithm in a graph
isomorphism test.

Drawing inspiration from the idea of visualizing
filters of Convolutional Neural Networks (CNNs)
(Krizhevsky et al., 2012) to identify important fea-
ture regions, they visualize the trained kernel based
filters to detect key structures in the input and thus
referring to their method being interpretable.

2.5. Soft- and Hard-Attention

Soft-attention (Bahdanau et al., 2014) is gener-
ally defined by a continuous variable, while hard-
attention is defined by a discrete variable. Conse-
quently, we can employ gradient-descent methods
to differentiate soft-attention, but we cannot utilize
these methods for hard-attention due to the non-
differentiable nature of a discrete step. In contrast,
hard-attention operates with discrete values, which
is typically implemented using sampling methods
such as the Gumbel-Softmax (Jang et al., 2017;
Maddison et al., 2017) or RL techniques.

In terms of interpretability, hard attention’s binary
nature makes results clearer and reduces ambiguity
about important data parts.

Niepert et al. (2021) proposed a framework for
backpropagating through such a discrete sampling
step. Their method can be described as a general-
purpose algorithm for hybrid learning of systems
that contain discrete components embedded in a
computational graph. In our specific application,
we leverage Implicit Maximum Likelihood Estima-
tion (I-MLE) to approximate the gradients for a dis-
crete top-k sampling procedure of nodes in a scene
graph.

3. Problem Formulation

Our problem is framed as a graph representation
learning challenge within the multi-modal domain
of VQA. Typically, VQA is characterized by the
function f(q, i) → a, where q represents a ques-
tion, i corresponds to an image, and a signifies the
answer (treated as a classification problem, with
a ∈ R

na , where na denotes the predefined number
of potential answers).

In our case, we depart from the conventional
image i and instead employ a graph g as the vi-
sual representation, characterized as: f(q, g) → a.
The question is represented as a sequence of to-
kens q ∈ R

nq×dq , where nq signifies the number of
tokens and dq the dimensionality of the vector repre-
senting the token (we use 300d GloVe embeddings
(Pennington et al., 2014)).

A graph is defined as G = (V,E), where V := is
the set of nodes and E := the set of edges. Each
node vi ∈ V , is associated with a natural language
description, and we initialize them using GloVe em-
beddings, leading to vi ∈ R

dv , with dv = 300. Sim-
ilarly, we encode the edge information, with the
identity of ei,j defined by its natural language to-
ken, represented as ei,j ∈ R

de , with de = 300 as
well.

The primary aim of our interpretable approach
is to intrinsically generate a subgraph Sg as an
explanation, effectively identifying the most salient
nodes within G as V (Sg) ⊂ V (G). A prediction is
defined as ŷ = f(x, xe, q), and our model implicitly
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identifies the subgraph Sg from the node features
x, edge features xe, and question features q. We
implement this through a trainable hard-attention
node mask.

4. Proposed Model Architecture

We present the fundamental components of our
approach in Figure 1 and Algorithm 1, providing
an overview of the sub-modules within our system
and the algorithmic procedures involved. At the
center of our model, we employ a GAT, aimed to
construct an increasingly inherently interpretable
system. This GAT learns to intrinsically generate
a relevant subgraph from the input graph that con-
tains nodes, which are most relevant for the answer
finding process. The prediction process exclusively
utilizes nodes within the extracted subgraphs.

In Algorithm 1, the variable X ∈ R
n×d denotes

the node embedding matrix. Correspondingly,
Xe ∈ R

m×d represents the edge embedding matrix.
A denotes the adjacency matrix, containing the in-
terconnections between node pairs. Furthermore,
Q defines the sequence of tokens in the questions.

Algorithm 1 Our model pipeline

Require: Input Data: X,Xe, A,Q

1: Encode Question:

2: Qenc ← Transformer Encoder(Q)
3: Decode Question into Instruction Vectors:

4: I ← Transformer Decoder(Qenc)

5: Global Question Representation:

6: Qglobal ← MLP(I)
7: Encode Scene Graph:

8: X ′, X ′

e
← Scene Graph Encoder(X,Xe, A)

9: MGAT, outputs Mask for Subgraph:

10: X ′,mask← MGAT(X ′, X ′

e
, A, I)

11: Apply Hard-Attention Mask:

12: X ′
← X ′

×mask

13: Global Graph Representation Vector:

14: Xg ← Global Attention(X ′, Qglobal)
15: Final Answer Prediction:

16: logits← MLP(Xg, Qglobal, Xg ×Qglobal)
17: return Model Output: logits,mask

Question Processing We process the questions
Q with an encoder-decoder architecture. Both the
encoder and decoder are transformer-based mod-
els (Vaswani et al., 2017), randomly initialized and
not fine-tuned versions of pretrained transformer
models. The token sequence Q get transferred
into their respective vector representations through
an Embedding layer, constructed from the dataset
vocabulary, within the transformer encoder. We uti-
lize Pennington et al. (2014) vectors as initial vector
representations of the Embedding layer. The trans-
former decoder takes the encoded sequence Qenc

as input and generates a fixed-length sequence, de-
noted as instruction vectors, similar to the approach
by Liang et al. (2021). These instruction vectors,
represented as I, distribute information from the
textual modality (questions) to the visual modality
(scene graphs representing image scenes). The
instruction vectors I are flattened and projected
in the hidden dimensionality using a Multi-Layer
Perceptron (MLP) to produce the global question
vector Qglobal. This global question vector plays
an important role in the final answer token predic-
tion and guides the global attention aggregation
following the GNN processing step. The number of
instructions corresponds directly to the number of
layers we use in our GNN.

Scene Graph Encoding The scene graph en-
coding module functions as an interface, connect-
ing the graph to the GNN processing it. This en-
coder translates node identities (e.g., building) and
up to three corresponding attributes (e.g., large,
grey, square) into vector representatins using 300-
dimensional GloVe vectors, akin to the initialization
of question tokens. The node representation is
the summation of these vectors. In Algorithm 1,
the node’s identity and attributes are contained in
X, while edge (relation) information in encoded in
Xe. The bounding-box coordinates are encoded
using a MLP. Subsequently, the bounding-box vec-
tor and node representation are concatenated and
projected back into the defined hidden dimension-
ality.

To obtain the final representations, we process
both the node embeddings X and edge embed-
dings Xe through an MLP to obtain X ′ and X ′

e. In
the case of edge embeddings, we additionally con-
catenate the connected nodes prior to the MLP.

Masking Graph Attention Network Our pro-
posed approach aims to constrain the model’s us-
age of a subset of nodes of the original input graph,
referred to as subgraph, for making predictions.
This subgraph should be the only information that
the model has access to when generating answers
for given questions. Hence, we want to discretely
sample from the input graph G, which is typically not
easily differentiable using gradient-based backprop-
agation methods. To differentiate the aforemen-
tioned sampling step, we estimate the gradients
with I-MLE (Niepert et al., 2021). In our implemen-
tation, we introduce an additional hard attention
mask consisting of zeros and ones for nodes, i.e.
a binary mask. We extent the GAT and refer to it
as Masking Graph Attention Network (M-GAT).

The hard attention mask is computed during
message-passing in a M-GAT layer. For each node
xi within the input graph G, we compute a score si
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Figure 1: High-level architecture of our model. The hard attention mask gets computed in GAT-layer four.
Only the top−k node embeddings within the hard attention mask are passed in the node attention pooling
module.

using the scoring function:

si = σ

(

X ′IT√
dx

)

. (1)

This function calculates the scaled dot-product
between node embeddings X ′ and the instruction
vector I, and dx representing the dimensionality
of X ′ and I. The purpose of this step is to allow
the model to learn an importance score for each
node. To obtain our γi, we map the scores si to
zero or one, which is typically non-differentiable
but by incorporating I-MLE we can backpropagate
through this discrete step. The idea is to expand
the mask on a node level to get a mask on an edge
level of the graph G. For each αi,j in a GAT we
want to get a corresponding γi,j , which is

γi,j =

{

0, otherwise

1, if si ∗ sj = 1
(2)

During message passing, we zero out edges and
nodes that are not part of our mask. The new up-
date rule is defined as:

x
′
i = αi,iΘxi +

∑

j∈N (i)

Θxjαi,jγi,j , (3)

Here, N (i) denotes all neighboring nodes xj of
node xi. The computation of αi,j remains un-
changed. It is worth noting that, in our experiments,
the hard attention mask and its effect on message-
passing are only applied in the final layer.

During backpropagation, we aggregate gradients
received on edge level via summation or multipli-
cation to estimate the gradients of our mask at a
node level.

To enhance the flow of information between GNN
layers in our M-GAT, we employ residual connec-
tions (He et al., 2016) with a forget-gate mechanism,
defined as l(x) = f(x) + x.

Global Attention Aggregation & Question An-
swering The node embeddings X ′ of the M-GAT
(line none to twelve in Algorithm 1) are aggregated
form a unified graph embedding vector, employing
a global attention mechanism driven by the ques-
tion vector Qglobal. This Qglobal, derived from the
instruction vectors, performs a scaled dot-product
with X ′ to obtain αi scores, which are normalized
using softmax. These αi scores guide the weighted
summation, resulting in a single graph embedding
vector Xg. To perform question answering, we take
the graph embedding vector Xg, the Qglobal repre-
sentation, and the the Hadamard product of both,
concatenate them before feeding them through a
MLP to receive our final answer token logits. We
optimize the system using a cross-entropy loss and
Adam-W (Loshchilov and Hutter, 2018).

5. Evaluation Methods

Due to the unavailability of ground-truth explana-
tions, we employ post-hoc XAI methods for graph
neural networks as a benchmark for our intrinsically
generated subgraphs. To assess the explanations,
we (i) perform a human evaluation as qualitative
analysis, and (ii) introduce metrics for quantitative
assessment.

5.1. Baselines for Comparison

We included Integrated Gradients (Sundararajan
et al., 2017) a gradient-based method and popu-
lar XAI method, and PGMExplainer (Vu and Thai,
2020) and GNNExplainer (Ying et al., 2019) as
perturbation-based methods. Additionally, we in-
clude a Random explainer as a baseline. We lever-
age the implementations of Agarwal et al. (2023),
except for the GNNExplainer1.

1The implementation of Fey and Lenssen (2019) of-

fered more flexibility, leading to improved results.
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GNNExplainer learns a soft-mask applied the
nodes. To ensure consistency with the number of
nodes in the subgraph, we utilize the same topK

value that we computed for our mask.

5.2. Human Evaluation

In our study, we include four explainability methods:
(1) our intrinsic subgraph, (2) GNNExplainer due
to its notable performance in quantitative metrics
(cf. Section 6.2.3 and Section 6.2.4), (3) Integrated
Gradients as gradient based method, and (4) the
random explainer serving as a baseline. PGMEx-
plainer was excluded due to GNNExplainer per-
forming better, and both being pertubation-based
methods (cf. Section 6).

To perform pairwise comparisons among these
methods, we conducted a total of six comparisons
that span all four techniques. Participants were pre-
sented with 18 randomly selected graph-question
pairs. It’s worth mentioning that the image was
additionally displayed solely as a reference, as the
model does not utilize the image as input. Notably,
each possible method pair occurred exactly three
times. For each graph, two subgraph visualizations
from different explainability methods were provided
as the corresponding explanations given the ques-
tion and graph. Participants were tasked with se-
lecting their preferred explanation, or they could
opt for one of two additional choices: equally good
or equally bad. The latter was to be chosen when
none of the explanations was deemed suitable for
the given graph-question pair, while the former rep-
resented a valid choice when both explanations
were deemed acceptable, with no preference be-
tween them.

To (i) minimize potential psychological biases (in-
stances where users refrain from selecting "equally
good" because they deem both explanations un-
satisfactory) and (ii) collect a more comprehensive
dataset, we split the equal option into equally good
and equally bad. We randomize the order and
orientation of the comparisons, enabling a robust
evaluation of user preferences.

We choose the Bradley-Terry model (Bradley and
Terry, 1952; Bradley and El-Helbawy, 1976) to an-
alyze the results, and we treated equally good and
equally bad as ties with a score of 0.5, given their
identical nature in pairwise comparisons.

5.3. Metrics for Subgraphs

Answer and Question Token Co-occurences
To get an estimate how well the subgraphs cap-
ture the information given by both the question and
its corresponding answer, we conduct a token co-
occurrences analysis. We expect the subgraphs
to include objects that are mentioned in the ques-
tion, as well as the answer token (if the answer

is indeed an object), to appear more frequently in
the explanation subgraph. Otherwise, the model’s
prediction seems implausible.

When the ground-truth answer is an object that
can occur in the scene graph, we count the occur-
rences of the respective token within the subgraph
and report the resulting percentage. Likewise, we
calculate the percentage of question tokens present
in the subgraph.

Removing Subgraphs To measure the nodes’
importance for predictions, we suspect the nodes
included in our explanation subgraph to be crucial.
Accordingly, we aim to remove the subgraph and
passing the remaining graph through the network
to measure answer accuracy once more.

To remove a subgraph we do not alter the struc-
tural integrity of the scene graph. Instead, we ran-
domize the node embeddings, i.e. for each xi ∈ X,
where X is the matrix of node embeddings, we
randomize xi if γi equals 1.

Furthermore, the edge embeddings are also ran-
domized. Specifically, each ei,j between nodes xi

and xj also provides no information, if γi,j equals
1. This process ensures that the message-passing
paradigm among nodes remains undisturbed, en-
abling it to occur to the same extent as in the original
graph.

If the system remains capable of answering ques-
tions when information from the nodes within the
subgraph is absent, two potential interpretations
arise: (i) either the identified subgraph may not be
as relevant, or (ii) the model could be exploiting
biases present in the question-graph pair.

6. Experimental Setup and Results

6.1. Setup

Resources We conduct experiments2 on the
GQA3 dataset (Hudson and Manning, 2019b) since
it is designed to test a model’s real-world reasoning
capabilities. It provides ground-truth scene graphs,
which enable perfect sight using graph-structured
representations of images.

Due to the unavailability of the scene graphs for
the test sets of GQA, we report the performance on
the validation set. This practice aligns with common
conventions in the field, as observed in previous
works such as Koner et al. (2021) and Liang et al.
(2021). Each question type in GQA corresponds
to a specific structural question type as well as a
semantic question type. The structural question
types are: Verify: yes/no questions. Query: open-
ended questions. Choose: questions offer two

2Implementation details are in the Appendix A.2
3Additional information is in the Appendix A.1.
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Method All Attr Rel Obj Global Cat Query Verify Choose Logical Compare

GNNExplainer 0.35 0.41 0.39 0.18 0.5 0.99 0.48 0.26 0.36 0.26 0.41
Int. Grad. 0.09 0.13 0.13 0.18 0.0 0.01 0.10 0.24 0.14 0.14 0.0
Random 0.04 0.12 0.10 0.12 0.0 0.0 0.10 0.13 0.12 0.07 0.26
Ours 0.52 0.35 0.38 0.52 0.5 0.0 0.32 0.37 0.38 0.53 0.33

Table 1: Results of the Bradley-Terry model. Each real valued pi score for the corresponding explainability
method is displayed column-wise. Int. Grad. abbreviates Integrated Gradients.

alternatives to choose from. Logical: involve logi-
cal inference. Compare: comparison among two
or more objects in the scene. The semantic ques-
tion types include: Object: existence questions.
Attribute: questions about properties or position
of an object. Category: object identification within
classes. Relation: questions asking about the sub-
ject or object of an relation. Global: questions
about general properties of a scene.

6.2. Results

6.2.1. RQ1: Question Answering
Performance

In terms of question-answering performance, as
indicated by answer token accuracy, presented in
Table 2, our approach yields competitive results.
It slightly surpasses the GAT model of Liang et al.
(2021) (94.79% compared to 94.78% accuracy). Ta-

Model Masks QA-%

GAT - 94.78
Graphhopper - 92.30

Oursk%=.50 (1.0, 1.0, 1.0, 0.50) 93.20
Oursk%=.30 (1.0, 1.0, 1.0, 0.30) 94.21
Oursk%=.25 (1.0, 1.0, 1.0, 0.25) 94.72
Oursk%=.20 (1.0, 1.0, 1.0, 0.20) 94.15
Oursk%=.15 (1.0, 1.0, 1.0, 0.15) 94.79
Oursk%=.10 (1.0, 1.0, 1.0, 0.10) 77.88

Table 2: Question answering performance. GAT
by Liang et al. (2021) and Graphhopper by Koner
et al. (2021).

ble 2 additionally contains several topK% configu-
rations. It is important to note that the hard atten-
tion masks are exclusively computed and applied
within the final layer. The first three layers learn
contextualized embeddings for all nodes. Only in
the last layer do we introduce constraints on the
message-passing to learn the hard attention mask
(as indicated by the values in the Masks column,
with a value of 1.0 for the first three layers) 4 We
use the top-performing model in the remaining ex-
periments.

4Please refer to Appendix A.4, Table 7 for a compre-

hensive overview of results.

6.2.2. RQ2: Human Evaluation

In our study, we gathered data from 16 participants
aged between 20 and 59, resulting in a total of
288 data points5. Utilizing the Bradley-Terry model
(Bradley and Terry, 1952; Bradley and El-Helbawy,
1976), we established a probabilistic model to as-
certain human preferences for various explainability
methods, subsequently producing a ranking. The
derived pi scores are positive real values associ-
ated with the i-th explainability method. These out-
comes were determined both on an overall scale
and specifically for each question type. The de-
tailed pi scores can be observed in Table 1. In this
context, the scores serve as an interpretation of the
relative preferences of humans.

6.2.3. RQ3: Token Co-occurrences

Answer Token Co-occurrence (AT-COO) The
co-occurrence rates between answer tokens and
graph nodes are presented in Table 3. We utilized
a random subset of 10% of the evaluation data to
compute the results in Table 3 and Table 4, due to
the intensive computational costs of all explainabil-
ity methods. For our method, in 75.15% of cases,

Method AT-COO

Oursk%=.15 75.15
Randomk%=.15 30.59
GNNExplainerk%=.15 89.12
PGMExplainerk%=.15 22.37
Integrated Gradientsk%=.15 8.14

Table 3: AT-COO, represented as a percentage of
potential matches.

the intrinsic subgraph captures the node aligned
with the answer token. Notably, the GNNExplainer
outperforms with a coverage of 89.12%, suggest-
ing a higher precision in encompassing the answer
token node. Conversely, other methods display di-
minished focus on the node associated with the
answer token.

5Additional information is available in the Ap-

pendix A.3.
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Question Token Co-occurrence (QT-COO) Ta-
ble 4 presents the co-occurrence results for ques-
tion tokens and their alignment with graph nodes.
The subgraph generated by our method contains
78.35% of the feasible question token matches.
Other methods show a reduced frequency of in-

Method QT-COO

Oursk%=.15 78.35
Randomk%=.15 29.79
GNNExplainerk%=.15 59.67
PGMExplainerk%=.15 24.67
Integrated Gradientsk%=.15 39.95

Table 4: QT-COO, represented as a percentage of
potential matches.

cluding the respective question token nodes in their
explanatory subgraphs. Noteworthy among these
are GNNExplainer and Integrated Gradients, with
inclusion rates of 59.67% and 39.95%, respectively.

6.2.4. RQ3: Removing Subgraphs

Table 5 presents the question-answering accuracy
when removing the explanatory subgraph, based
on the same 10% of the evaluation data, as in Sec-
tion 6.2.3. A larger reduction in accuracy implies

Method QA-%

Oursk%=.15 37.13
Randomk%=.15 52.10
GNNExplainerk%=.15 33.28
PGMExplainerk%=.15 69.46
Integrated Gradientsk%=.15 33.28

Table 5: Question answering performance after
randomizing the important nodes of the respective
methods.

the importance of the subgraph in capturing essen-
tial graph nodes for the given question. Notably,
the highest degradations were observed for Inte-
grated Gradients, GNNExplainer, and our method.
In contrast, PGMExplainer and Random resulted in
lesser performance reductions, indicating their gen-
erated subgraphs were less important than those
of the other methods. It is worth noting, that only
our approach, our variant of GNNExplainer (refer
to Section 6.1), and PGMExplainer are restricted
to leveraging just 15% of the input graph.

7. Analysis

RQ1: Intrinsically Interpretable GNN To an-
swer the first research question, we incorporated a

discrete sampling method into the message pass-
ing mechanism of GNNs. This was to learn a dis-
crete, adjustable mask capable of isolating the most
important subgraph in the input with respect to
a given question. Our findings underscore that,
even when constraining the model to operate on a
subset of nodes, it remains feasible to attain com-
petitive performance, thereby mitigating the gap
between entirely black-box models and those that
are interpretable. It is noteworthy that the topK%-
hyperparameter, crucial in the model configura-
tion, yielded the highest accuracy when just 15% of
nodes were actively used in making predictions.

RQ2: Human Evaluation In order to address the
second research question, we conducted a user
study to ascertain the preferred explainability meth-
ods among human participants6. In the evaluation,
explanations derived from our method were notably
preferred, registering a score of pi = 0.52. The GN-
NExplainer ranked second with a score of pi = 0.35,
while both the Integrated Gradients and the random
explainer demonstrated lower preferences. Ana-
lyzing the results on a question-type specific basis,
divergent preferences were identified, underscoring
the competitive performance between our method
and GNNExplainer. The GNNExplainer was pre-
dominant in for the question types attribute, rela-
tion, category, query, and compare. In contrast,
our method exhibited superior performance in the
object, verify, choose, and logical question types.
For the global category, both methods achieved
congruent scores.

RQ3: Quantitative Evaluation We introduced
two metrics to assess the quality of the explana-
tions, specifically the subgraphs, whether they cap-
tured crucial aspects of the questions and answers.
Firstly, token co-occurrences between either the
question or answer and the graph nodes enabled
us to evaluate if the model appropriately concen-
trated on relevant input segments. Secondly, we
measured the performance drop when the explana-
tion subgraphs were omitted from the input graph.

Metric Pearson Spearman

AT-COO 0.84 0.60
QT-COO 0.99 1.00
Subg-Rem -0.48 -0.32

Table 6: Pearson and Spearman correlation scores
between our quantitative metrics and the outcomes
of the human evaluation.

To determine the effectiveness of our metrics, we
computed the Pearson and Spearman correlation

6Qualitative examples are in the Appendix A.5
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between the outcomes from our human assess-
ment and our quantitative evaluations, as illustrated
in Table 6. The AT-COO exhibits a strong positive
Pearson correlation and a moderate Spearman cor-
relation. Both Pearson and Spearman metrics for
QT-COO present a very high correlation. Interest-
ingly, the subgraph removal metric exhibits a mild
negative correlation for both Pearson and Spear-
man, a trend that aligns with our expectations as
a lower accuracy for this metric indicates better
performance.

From these findings, it can be inferred that
explainability methods with higher token co-
occurrence values or lower subgraph removal per-
formances are also generally favored by human
evaluators, as supported by our human evaluation
results.

8. Conclusion

We proposed an interpretable approach for graph-
based VQA that intrinsically generates a subgraph
as an explanation during the answer prediction. De-
spite utilizing only a subset of the nodes from the
input graph, the model demonstrates competitive
performance. Through a human evaluation, it was
discerned that our intrinsically produced explana-
tions were more frequently favored over other state-
of-the-art post-hoc explainability methods. More-
over, our evaluation extended beyond the conven-
tional answer token accuracy metric, leveraging to-
ken co-occurrences between the question, answer,
and graph nodes and assessing the performance
decreases upon removal of the subgraph. We pre-
sented the results of these metrics for the selected
post-hoc explainability methods in comparison to
ours. The quantitative measures demonstrated cor-
relations with human evaluators, thus serving as
effective metrics for the explanation’s quality. Ad-
ditionally, our method’s inherent capability to gen-
erate the subgraph explanation concurrently with
the answer eliminates the need for an additional
method with further hyperparameter tuning, reduc-
ing the computational overhead.

9. Ethics Statement

All subjects gave their informed consent for inclu-
sion before they participated in the study. We pro-
vided a detailed description of the task and research
objectives and did not collect personally identifying
data from any users. All logs and survey responses
are encrypted using an anonymous hash generated
based on the freely chosen username, rather than
the plain username. We verified the estimated time
in our pilot study to ensure the time we selected
was below the median time. All participants took

part voluntarily and could stop participating at any
time.

10. Limitations

Generally, the performance of machine learning
models is dependent on the quality and quantity
of data they are trained on. Consequently, every
model learns biases from the data distributions they
have been exposed to during training. This lim-
its the applicability to real-world scenarios, which
should be tested before deployment. In our case,
the model might have picked up certain biases re-
garding the distributions of objects, scenes, or rela-
tions among objects. As a result, certain categories
of objects and scenes might be over- or underrepre-
sented. While we chose scene graphs to represent
images as graphs to increase the interpretability of
deep learning architectures, this simplification of
scenes displayed in images might lose information
about tiny nuances contained in the raw image.
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A. Appendix

A.1. GQA Dataset

GQA (Hudson and Manning, 2019b) is a dataset
for real-world visual reasoning and compositional
question answering. The questions are created
automatically based on Visual Genome (Krishna
et al., 2017) scene graphs. The dataset consists of
113, 018 images and 22, 669, 678 questions that are
grouped into different splits. The splits are divided
as follows: 70% train, 10% validation, 10% test
and 10% as challenge test set. Each image of the
training and validation split has a corresponding
ground-truth scene graph (Hudson and Manning,
2019b).

A.2. Implementation Details

We use the AdamW (Loshchilov and Hutter, 2018)
optimizer with a learning rate of 1e−4 and a weight
decay factor of 1e − 5. Additionally, we apply an
exponential learning rate scheduler with an initial
learning rate of 1e − 6 and a warmup duration of
15 epochs. Afterward, we decrease the learning by
a factor of 0.98 for each epoch. The total number
of epochs depends on the loss on the validation
set, which we observed to occur after training for
60 to 70 epochs (i.e. we apply early stopping). To
further enhance the training procedure, we use a
gradient scaler. We train on four GPUs with a batch
size of 128 samples. Our model has 44, 945, 761
trainable parameters. One training epoch consists
of 943, 000 data instances, the validation split of
132, 062 instances.

A.3. Human Evaluation

Our user study was performed online via a web
interface. First of all, users need to agree on a data
collection policy before a few questions regarding
demographic information are asked. Afterward, the
actual user study was performed.

Data Collection Policy In the following, we list
the information users need to agree to participate
in the user study:

• Purpose of research: To examine prefer-
ences of different explainability methods.

• What users will perform: Users will be pro-
vided with 18 images, a corresponding ques-
tion, the prediction from the model, and expla-
nations of two explainability methods in the
form of graphs.

• Time required: Participation will take approxi-
mately 5-10 minutes.
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Figure 2: Age and gender distribution of our partic-
ipants in the user study.

• Risks: There are no anticipated risks associ-
ated with participating in this study. The effects
of participating should be comparable to those
you would experience from viewing a computer
monitor for 5-10 minutes and using a mouse
and keyboard.

• Limitations: This task is suitable for all peo-
ple who can read from and input text into a
computer.

• Confidentiality: Your participation in this
study will remain confidential. Your responses
will be assigned a code number. You will be
asked to provide your MechanicalTurk ID, but
this will not be stored, but rather converted to
an anonymous hashed ID. You will be asked
to provide your age and gender and previ-
ous experience with chatbots/business travel.
Throughout the experiment, we may collect
data such as your textual input, and your feed-
back in the form of a questionnaire. The
records of this study will be kept private. In
any sort of report we make public we will not
include any information that will make it pos-
sible to identify you. Research records will be
kept in a locked file; only the researchers will
have access to the records.

• Participation and Withdrawl: Your partici-
pation in this study is voluntary, and you may
withdraw at any time.

• Data Regulation: Your data will be processed
for the following purposes: (1) Analysis of the
respondents’ evaluations of the dialog and
their experience, (2) analysis of potential in-
fluencing factors for individual behavior of the
participants in the interaction with the dialog
system, and (3) scientific publication based on
the results of the above analyses.

Demographic Information We asked each par-
ticipant about the gender they identified as, given a
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Figure 3: Results of the self-assessment regarding
the general topics of artificial intelligence (AI) and
explainable artificial intelligence (XAI).

set of three options: female, male, and other. Par-
ticipants were given the option to select their age
category from the following ranges:

• Less than 20

• 20 to 29

• 30 to 39

• etc.

The gender and age distributions are displayed in
Figure 2. The study participants were in the range
from 20 to 39 with slightly more male users.

We asked two more questions about the partici-
pants’ general understanding of machine learning
(ML) or artificial intelligence (AI) and general un-
derstanding of the field around explainable artificial
intelligence (XAI). Figure 3 contains the results,
measured by a Likert scale. Our participants range
from no understanding of ML to a very good un-
derstanding, contrary to the understanding in XAI
where most participants have little to no knowledge
about.

Explainability User Study Each participant re-
ceives 18 images accompanied by two scene
graphs with the respective highlighted subgraph
that serves as an explanation of the model’s pre-
diction. The image is displayed as a reference only,
it is communicated to the users that the image was
not used by the model to predict an answer. Next to
the original image, we displayed the question, the
predicted answer, and the ground-truth label. We
mention that some questions might be ambiguous
and that this should not be evaluated or taken into
account when evaluating the explanations.

We further describe that we display the corre-
sponding graphs below the original image. The
whole graph is input to the model alongside the
question. The graph itself (all nodes, green and
blue nodes combined) might not be a perfect rep-
resentation of the image. Nodes, which represent

objects in the image, might be missing, or the an-
notation (the label/name) might be misleading. We
displayed the edges between nodes in the visual-
ization of the graph, but we excluded the annotation
(the name of the relation). Edges represent rela-
tions between objects, e.g. a man holding a racket
would result in two nodes, man and racket, and one
edge (relation) holding between them.

We always perform a pair-wise comparison be-
tween two explainability methods, users can find
their explanations next to each other. All nodes
colored in green are part of the subgraph that rep-
resents the explanation. All nodes colored in blue
are excluded, so they are not part of the explana-
tion. To judge which explanation users prefer, they
should take the question and answer into account,
and evaluate if the nodes in green form a more
valid explanation than the other explanation. Some
explanation methods include more graph nodes in
the explanations, while others tend to have fewer
nodes included.
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A.4. Extended Results

We provide the results from Section 6 for all top-k values of Table 2 in Table 7. We report the question an-
swering accuracy as QA, the answer token co-occurrences as AT-COO, the question token co-occurrences
as QT-COO, and the question answering accuracy after removing the explanation subgraph as QA-SubG.
We find that the results for the methods Random, PGMExplainer, and Integrated Gradients stay roughly

Method TopK% QA AT-COO QT-COO QA-SubG

Random .15 94.79 30.59 29.79 52.10
PGMExplainer .15 94.79 22.37 24.67 69.46
Integrated Gradients .15 94.79 8.14 39.95 33.28
GNNExplainer .15 94.79 89.12 59.67 33.28
Ours .15 94.79 75.15 78.35 37.13

Random .20 94.15 28.35 27.88 51.07
PGMExplainer .20 94.15 26.29 29.94 70.29
Integrated Gradients .20 94.15 8.76 32.78 30.87
GNNExplainer .20 94.15 91.24 50.66 30.87
Ours .20 94.15 33.51 80.68 45.63

Random .25 94.72 30.41 33.63 52.10
PGMExplainer .25 94.72 34.34 39.62 69.46
Integrated Gradients .25 94.72 7.14 40.06 33.28
GNNExplainer .25 94.72 92.99 63.60 33.28
Ours .25 94.72 81.26 79.20 37.13

Random .30 94.21 30.46 29.53 48.58
PGMExplainer .30 94.21 37.93 38.23 61.74
Integrated Gradients .30 94.21 6.90 36.00 34.82
GNNExplainer .30 94.21 94.83 61.42 34.82
Ours .30 94.21 78.74 89.11 39.88

Random .50 93.20 31.28 29.82 48.49
PGMExplainer .50 93.20 39.89 38.92 58.48
Integrated Gradients .50 93.20 7.33 32.62 33.15
GNNExplainer .50 93.20 94.68 61.70 33.15
Ours .50 93.20 74.81 88.50 35.37

Table 7: AT-COO abbreviates answer-token co-occurrence. QT-COO abbreviates question-token co-
occurrence. QA-SubG refers to the question answering accuracy, when the explanation subgraph is
removed.

the same across different tok-k sized models. However, increasing the subgraph size with the number of
nodes included (determined by the top-k factor), the AT-COO and QT-COO increase, while the QA-SubG
remains roughly the same. Since we match the number of nodes included from the soft mask learned
by GNNExplainer with the number of nodes received by our top-k factor, this effect is unsurprising.
Nevertheless, it is worth noting that the QA-SubG accuracy drops by a similar order of magnitude when
we learn to identify a subgraph with a size of tok-k= .15 or tok-k= .5, highlighting the importance of nodes
included in the subgraphs.
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A.5. Qualitative Examples

(a) I-MLE. (b) GNNExplainer.

(c) Random. (d) Integrated-Gradients.

Figure 4: Graph and image for question Id: 17745707. Question: Is the woman to the left or to the right of
the phone?Prediction: left. Ground-truth answer: left. Semantic type: relation. Structural type: choose.
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(a) I-MLE. (b) GNNExplainer.

(c) Random. (d) Integrated-Gradients.

Figure 5: Graph and image for question Id: 17267496. Question: Are his eyes large and green? Prediction:
no. Ground-truth answer: no. Semantic type: attribute. Structural type: logical.
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(a) I-MLE. (b) GNNExplainer.

(c) Random. (d) Integrated-Gradients.

Figure 6: Graph and image for question Id: 07339770. Question: Are there either pizza trays or hand
soaps in the image? Prediction: no. Ground-truth answer: no. Semantic type: object. Structural type:
logical.
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(a) I-MLE. (b) GNNExplainer.

(c) Random. (d) Integrated-Gradients.

Figure 7: Graph and image for question Id: 11389703. Question: Does the girl to the right of the person
wear shorts? Prediction: yes. Ground-truth answer: yes. Semantic type: relation. Structural type: verify.
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(a) I-MLE. (b) GNNExplainer.

(c) Random. (d) Integrated-Gradients.

Figure 8: Graph and image for question Id: 1662748. Question: Who is wearing a suit? Prediction:
people. Ground-truth answer: people. Semantic type: relation. Structural type: query.
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