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Abstract
Instruction tuning has demonstrated its superiority in unlocking the abilities of pre-trained large language models
(LLMs), including their capability to respond to diverse human instructions and conduct complex reasoning. In order
to further enhance the continuous learning capabilities of pre-trained LLMs, we explore the training process of
instruction tuning through the lens of task sequences. We propose a 2-phase automated curriculum learning guided
instruction tuning framework, IT2ACL that learns easy-to-hard instructions for LLMs in a self-adjusting dynamic
manner. To facilitate curriculum learning from instructions, we propose a loss-driven progress signal for two-phase
strategies: instruction prediction gain that decides the instruction level syllabus. Through comprehensive experiments
on 70 Chinese datasets which have been grouped into 16 distinct task clusters, we demonstrate the effectiveness of
our approach in eliciting latent ability in pre-trained LLMs and achieving superior performance across diverse tasks.
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1. Introduction

Instruction Tuning (Wei et al., 2021) is a method
for fine-tuning models, with large language models
like GPT-3 (Brown et al., 2020) demonstrating a
strong capability for both zero- and few-shot learn-
ing (Rae et al., 2021; Smith et al., 2022; Guo et al.,
2023). It operates by supplying task descriptions or
prompts to aid the model in better comprehending
and adapting to a specific task or dataset. Most
natural language processing (NLP) tasks can be
described through natural language instructions,
and a significant advantage of this is that it allows
us to unify all tasks under one framework (Shen
et al., 2023). Sanh et al. (2021) and Wei et al.
(2021) introduce T0 and FLAN, respectively. Both
create diverse instructions that unify multiple tasks
into generative tasks, significantly enhancing the
model’s performance on unseen tasks. Scialom
et al. (2022) has demonstrated that the adaptability
and continual learning capabilities of these large
models are primarily rooted in their pre-training
phase. Therefore, finding ways to further unlock a
model’s potential post pre-training during the fine-
tuning phase is crucial. Previous research has
primarily focused on seeking better instruction tem-
plates (Prasad et al., 2022; Deng et al., 2022; Wei
et al., 2022) and has investigated the impact of
proportions of different datasets within the training
set. However, few have delved into the sequence
of tasks during the instruction-tuning process.

The fundamental idea of curriculum learning
(CL) (Bengio et al., 2009) is to train models in an
order from simple to complex instead of having the
model handle all the training samples right from
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the start. This approach allows the model to first
grasp the basics and then progressively transition
to more complex tasks. This method has been
proven effective in many downstream tasks, like
dialogue tasks (Cai et al., 2020; Su et al., 2020),
relation extraction (Yang and Song, 2022), and ma-
chine translation (Liu et al., 2020; Platanios et al.,
2019; Zhang et al., 2019; Zhou et al., 2020). It can
speed up training and enhance the model’s final
performance (Weinshall et al., 2018).

Based on the experience from previous work,
we hypothesize that combining CL with instruction
tuning can lead to improved model generalization,
faster convergence, and reduced overfitting by pro-
gressively teaching complex concepts rather than
overly relying on specific task-related features or
noise. However, integrating these two methods
poses some potential challenges: (i) Establishing
a fixed order might not be optimal and manually
defining the difficulty of a task (Liu et al., 2020;
Fomicheva et al., 2020) is a complex and time-
consuming process.(ii) Instructions are vital tools in
instruction tuning. Determining the best instruction
for each task might require extensive experimenta-
tion and iterations.

To this end, we propose IT2ACL, a Instruction
Tuning framework guided by 2-phase Automated
Curriculum Learning (Graves et al., 2017), which
learns easy-to-hard instructions for language mod-
els. Particularly, we propose a two-phase learn-
ing approach to embedding the CL strategy into
instruction tuning: In the first phase, the model
learns different tasks in an order from simple to
complex. In the second phase, once a particular
task is determined, the model progresses from eas-
ier to more challenging instructions within that task.
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For instance, the model might first fine-tune on
relatively simple tasks, such as part-of-speech tag-
ging, named entity recognition, or sentence-level
sentiment analysis. Within each task, there is a set
of instructions. This set might include straightfor-
ward instructions like "Translate the Chinese words
to French" and more complex phrasing like "Con-
vert all of the words in the input column to their
French translations." As the model’s learning and
fine-tuning advance, the complexity of the tasks
and instructions can be progressively increased by
introducing tasks that require more intricate skills
like reasoning, extensive comprehension, or dia-
logue management.

However, tasks or instructions that appear sim-
ple to humans might not necessarily be for models,
and their difficulty might dynamically change dur-
ing the training process. Addressing this concern,
we introduce a progress signal to guide the order
of learning for both phases. The instruction pre-
diction gain focuses on the decrease in loss when
the model trains under different instructions within
the same task. After multiple training sessions,
the weighted average of the signals from all in-
structions within a task serves as the signal for the
entire task, aids in defining the sequential order of
tasks. Our training scheduler utilizes the adversar-
ial multi-armed bandits (MAB) strategy (Auer et al.,
2002). The progress signal is scaled to a fixed
range, then perceived as the reward in MAB, dy-
namically choosing the optimal path for the model
while maximizing the overall gain.

We validate our approach in two experimental
setups. Under a full-shot setting, our results outper-
form both those without curriculum learning and
those using a predefined order of CL. In some
tasks, our method even surpasses models fine-
tuned solely on individual tasks. Under a zero-shot
setting, our model showcases robust generaliza-
tion capabilities to new tasks. Extensive analysis
reveals that introducing the second phase of in-
struction curriculum learning is one of the factors
leading to further improvements in our model. No-
tably, our method provides more significant perfor-
mance enhancements on tougher tasks. Addition-
ally, our approach offers a mechanism to identify
the optimal instruction under different tasks.

In summary, our contributions are threefold:

• We introduce a novel approach to instruction
tuning by incorporating 2-phase automated
curriculum learning strategies, aiming to en-
hance model’s ability to understand and exe-
cute instructions across a diverse set of tasks.

• We design a unique loss-driven progress sig-
nal for different instructions within the same
task, and employ the adversarial multi-armed
bandits approach, enabling the model to learn

tasks in an automatically adjusted dynamic
easy-to-hard manner.

• We conduct extensive experiments to substan-
tiate the effectiveness of our approach, which
demonstrates improved performance across
various tasks.

2. Related Work

Curriculum Learning Bengio et al. (2009) pro-
vided an excellent experimental overview of early
curriculum learning efforts. In this field, a press-
ing question is: What are the universal rules that
make some curriculum superior? Some methods
rely on human judgment based on prior linguistic
knowledge, such as sentence length and word rar-
ity (Liu et al., 2020; Platanios et al., 2019; Zhang
et al., 2019; Zhou et al., 2020), soft edit distance
metrics of data samples (Chang et al., 2021; Mo-
hiuddin et al., 2022), manually determining data
difficulty and adjusting the learning schedule (Liu
et al., 2020; Fomicheva et al., 2020). Others use
model-based capabilities, such as the model’s pre-
diction confidence on instances (Mohiuddin et al.,
2022; Varshney et al., 2022; Wan et al., 2020),
the model’s minimum loss (Weinshall et al., 2018),
and automatically adjust the learning schedule at
each iteration step (Wan et al., 2020). Further-
more, methods from reinforcement learning are ex-
plored to determine task (sample) difficulty, such as
teacher-guided, student feedback-based curricu-
lum learning (Graves et al., 2017; Matiisen et al.,
2020; Portelas et al., 2019), curriculum learning
where two agents play against each other based
on the main task (Sukhbaatar et al., 2018), and
curriculum learning with automatic goal genera-
tion (Florensa et al., 2018; Racanière et al., 2019).

Continual Learning Jin et al. (2022) demon-
strated that the CL algorithm can effectively retain
knowledge, allowing current models to have the
ability for continual learning without forgetting any
previously acquired knowledge and skills. This
can significantly improve the model’s generaliza-
tion performance on unseen tasks. CL has also
shown a promising ability for continual learning
in task-oriented dialogue systems (Madotto et al.,
2021), neural machine translation tasks (Cao et al.,
2021), and sentiment classification tasks (Ke et al.,
2021). Sun et al. (2020) proposed a lifelong learn-
ing method called LAMOL, which continually learns
new tasks by replaying pseudo-samples from pre-
vious tasks, achieving performance comparable to
state-of-the-art lifelong learning methods. Mean-
while, Scialom et al. (2022) suggest addressing
continual learning issue more broadly. They in-
troduced rehearsal as a mechanism to prevent
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Figure 1: Diagram of the proposed IT2ACL framework.

catastrophic forgetting in CL and validated their ap-
proach on 70 tasks. Yin et al. (2022) proposed two
strategies: learning from negative outputs and re-
visiting instructions from previous tasks, to provide
models with continual learning capabilities.

Both CT0 (Scialom et al., 2022) and Con-
TinTin (Yin et al., 2022) have focused on the sce-
nario of combining instruction learning with curricu-
lum learning, which is very similar to the motivation
of our work. However, we differ in the following
three aspects: (i) Methodology: They train models
using a predefined sequence and then prevent for-
getting by introducing an external memory module,
while we introduce automated learning methods to
dynamically adjust the curriculum learning outline;
(ii) Experimental setup: We have conducted vali-
dations under both full- and zero-shot scenarios;
(iii) Application scenarios: All their training data
and models are in English, whereas ours is entirely
based on Chinese.

3. Methodology

The overall framework IT2ACL that incorporates
automated curriculum learning into instruction tun-
ing is shown in Figure 1. We first introduce how we
group datasets into different task clusters, and then
elaborate the core curriculum learning modules:
the loss-driven progress signals and the dynamic
training scheduler, which exploit the adversarial
multi-armed bandits strategies.

3.1. Curriculum Definition

In instruction tuning, we define the target sequence
as set B, the input data sequence as set A,

and the instruction set as T . Thus, each batch
can be viewed as an individual instance x from
X = (A × T × B)N . Consequently, a task can
be interpreted as the distribution D over the se-
quences in X with the same t from T . In the con-
text of curriculum learning, a course is a set of
tasks D1, ..., DN , and our curriculum represents
the temporal variation of task distributions. We
consider the model parameters to be denoted by
θ, and the expected loss for the model on the kth

task is Lk(θ):

Lk(θ) := Ex∼Dk
L(x, θ) (1)

Generally, in the multi-task scenario of instruc-
tion tuning, our goal is to perform as well as pos-
sible across the entire task set Dk, which is repre-
sented by the objective function LMT :

LMT :=
1

N

N∑
k=1

Lk (2)

3.2. Distribution D: Task Clusters

We collect 70 Chinese fine-tuning datasets from dif-
ferent domains: legal, medical, e-commerce, and
social media, as summarized in Figure 2. Based on
factors such as the original format of the datasets,
their initial task source, and their broad usage, we
group these 70 datasets into 16 task clusters. In
the subsequent sections, when we mention "task",
it refers to these clusters, each containing one or
multiple datasets. Following this categorization,
the data volume of different clusters varies greatly.
Thus, to balance them, we perform either upsam-
pling or downsampling for each cluster, aiming to
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Figure 2: The task clusters (right) and examples of instruction template of LCQMC dataset and bq_corpus
dataset in the simarlarity task(left).

limit the data volume of each cluster to around 10K
instances, to prevent the model from oversampling
a specific task and causing biased results.

3.3. Sequence T: Instruction formatting

After grouping all datasets into their respective clus-
ters, we manually create ten instruction templates
for each datasets in one task cluster. We define
an instruction as consisting of a source and a tar-
get template, and a set of associated metadata.
Such feature allows us to unify all datasets into
one dataset according to the same data format.
For instance, in the Similarity task with examples
from LCQMC (Liu et al., 2018b) , the fields include
Sentence1, Sentence2, Label. We use an input
template: Sentence1: {sentence1} Sentence2:
{sentence2} Question: Do these sentences
have the same meaning? Yes or no?, and
define the target with {answer_choices[label]},
where answer_choices is the metadata with op-
tions yes, no, aligning with label being yes (1),
no (0). The same source-to-target format ap-
plies to BQ_corpus (Chen et al., 2018) and other
datasets in the similarity task cluster, shown in
Figure 2. The details of all data can be found in
https://github.com/YFHuangxxxx/cPromptSource.

3.4. Loss-driven Progress Signals

To adhere to the curriculum learning method pro-
posed by Bengio et al. (2009), it is crucial during
the training process to design a metric that gauges
task difficulty, enabling us to order tasks accord-
ingly. Measuring task difficulty is challenging, espe-
cially in the domain of multi-task natural language
generation (NLG). Prior rule-based strategies re-
lied largely on experience and intuition. Numerous

studies (Platanios et al., 2019; Kocmi and Bojar,
2017; Liu et al., 2020) have vouched for their effi-
cacy. Measuring task difficulty based solely on sen-
tence length becomes ambiguous for generation
tasks. It remains unclear if generating longer sen-
tences from shorter inputs is more challenging than
producing shorter responses from longer inputs.
Additionally, as a model’s capabilities enhance,
longer sequences or rare tokens aren’t always con-
sidered "difficult" (Wan et al., 2020). Therefore,
in reality, task difficulty might vary along multiple
axes of difficulty, or there might not be a predefined
order at all. To tackle this, we believe that employ-
ing automated curriculum learning (Graves et al.,
2017) can maximize learning efficiency. Viewing
the decision of the subsequent task to research
as a stochastic policy, the model autonomously
chooses the outline to follow in the curriculum, con-
stantly adapting to optimize the concept of learning
progress as mentioned by Oudeyer et al. (2007).
Various learning progress have been utilized as
reward signals to enhance training.

Specifically, we propose a instruction-level loss-
driven signal, where loss-driven refers to the
change in the overall loss function of the model
before and after a single gradient update during
training. Given the shared parameters in our gen-
erative model, it’s expected that different tasks will
contribute differently to the overall learning process.
Such a reward signal mirrors the speed of learn-
ing, as the extent of loss reduction for a task is
maximally equivalent to the fastest learning pace,
and equivalently suggests that the task difficulty is
lower for the model.

https://github.com/YFHuangxxxx/cPromptSource
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3.4.1. Instruction Prediction Gain

Once the decision is made about which task i to
train on at time point t, the model is about to en-
ter the training phase. However, it’s important to
note that for a given task, we often design multiple
instructions. These instructions differ in their gram-
matical structure, format, and content. They can
be computer programs or scripts, or they can be
instructional texts written by humans. By adjusting
the content and format of the instruction, we can
guide the model to generate more accurate and
useful outputs. Thus, in the second phase, during
intra-task training, we let Ti represent the set of
instructions for task i. Given a batch of examples
X , we define Lj(Xj , θj) as the non-negative loss
of instruction j. We define the instruction predic-
tion gain as the instantaneous change in loss for
instruction j, before and after training on examples
X with instruction j:

RINS = Li(X t
j , θ

t
i)− Li(X t

j , θ
t
i
′) (3)

Taking into consideration the potential instabil-
ity of model when receiving a diverse range of
rewards, we also need to scale these computed
rewards. Initially, we define Rt as the set of all re-
wards received up until time point t. Subsequently,
from this set, we identify maximum value Rtmax and
the minimum value Rtmin . Aiming to adjust all re-
wards within the fixed range of [−1, 1], we proceed
with scaling according to the following formula:

rt =
2(RINS −Rtmin

)

Rtmax −Rtmin

− 1 (4)

3.5. Adversarial Multi-Armed Bandits

After obtaining the aforementioned rewards r, we
now need the model to adaptively adjust its training
strategy based on these reward observations. We
treat curriculum learning with n tasks as an Adver-
sarial Multi-Armed Bandits (MAB) problem (Bubeck
et al., 2012). Specifically, the MAB problem can be
described as having N machines, each with a re-
ward probability. At each time step t, we choose to
execute action a on one slot machine and receive
a reward r from that machine, while the rewards
from the other machines remain unobserved. The
agent’s goal is to maximize the cumulative reward,
meaning it needs to determine the order in which to
pull the arm of these N slot machines. In the MAB
context, an effective approach is to use adaptive
policy learning to optimize the gains obtained from
the bandit. In the scenario applied in this paper,
the optimal curriculum outline is constantly chang-
ing, and the reward the model receives after each
change also varies. This setting leans towards ad-
versarial slot machines. A classic algorithm for this

is Exp3 (Auer et al., 2002). It selects an arm based
on the current weight distribution, observes the re-
ward of the chosen arm, uses the observed reward
information to update the weights of all arms, and
then repeats the above steps. The probability of
choosing an arm is as follows:

πEXP3
t (i) =

eηw
i
t∑N

j=1 e
ηwj

t

(5)

The formula for weight update is:

wi
t+1 = wi

t × exp

(
ηrit

πEXP3
t (i)

)
(6)

While Exp3 primarily focuses on weight updates,
there are scenarios where it might miss out on ex-
ploration opportunities due to not selecting certain
arms for extended periods. This can be detrimen-
tal to the generalized performance improvement
of our model across multiple tasks. Herbster and
Warmuth (1995) first introduce the Exp3.S strat-
egy to address this issue. Exp3.S was designed
to tackle this problem by employing an ε-greedy
strategy and additively mixing the weights. This en-
sures that each arm gets a chance to be selected,
enhancing exploration. This is particularly useful in
dynamic environments where the reward distribu-
tion may change over time and frequent strategy
adjustments are needed. Thus, in this paper, we
use the algorithm that Auer et al. (2002) further
refine and apply based on Exp3.S:

πEXP3.P
t (i) := (1− ϵ)πEXP3

t (i) +
ϵ

N
(7)

wS
t,i := log

[
(1− αt) exp

{
wS

t−1,i + ηr̃βt−1,i

}
+

αt

N − 1

∑
j ̸=i

exp
{
wS

t−1,j + ηr̃βt−1,j

}]
wS

1,i := 0 αt := t−1 r̃βs,i :=
rsIas=i + β

πs(i)
.

3.6. Automated Curriculum Learning for
Instruction Tuning

In the end, our training procedure is essentially a
two-stage multi-armed bandit problem, where task
selection constitutes the first stage and instruction
selection the second. At the outset of training,
we initialize the weights wi for all tasks i ∈ [D]
and the weights wi,j for each instruction j ∈ [T ]
within each task to 0. For each instruction, we
also maintain two additional information: historical
rewards Ri,j and the number of selected times Ci,j .
At each time t, we first compute the policy π(i)
based on the task weights wi. And then we sample
a task index k ∼ π(i). We then move to the second
stage, where we compute the policy π′(j) based
on the weights wi,j of the instructions in task k and
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Algorithm 1 Two-phase Automated Curriculum
Learning

Initially: wi = 0 for i ∈ D, wi,j = 0 for j ∈ T ,
historical rewards Ri,j = 0 and counts Ci,j = 0

for t = 1 . . . T do
π(k) := (1− ϵ) ewk∑

i e
wi

+ ϵ
N

Select task index k from π(k).
π′(j) := (1− ϵ) ewk,j∑

j ewk,j + ϵ
M

Select instruction index j for task k from π′(j).

Train network pθ using instruction j of task k.
Compute learning progress R. (Sections
3.4.1)
Scale R to reward r.
Update wk,j using Exp3.S (7).
Update Rk,j and Ck,j .
Compute weighted average reward using
Eq.(8)
Update wk using Exp3.S (7).

end for

subsequently sample an instruction index l ∼ π′(j).
We train the model using the selected instruction l
and compute the learning progress ν. This learning
progress is then mapped to a reward r. Next, we
employ Exp3.S to update the weights wi,j for all
instructions. In parallel, we update the historical
rewards Ri,j and increment its selection count Ci,j .
Subsequently, we compute the weighted average
reward ravgk

for task k:

ravgk
=

∑
j Rk,j∑
j Ck,j

(8)

Afterwards, we use the Exp3.S to update the
weights wi for all tasks. This process is repeated
across all time steps until the predefined total num-
ber of steps T is reached. The procedure is sum-
marized as Algorithm 1.

4. Experiments

To test the efficacy of our approach, we con-
ducted experiments on a set of datasets which
were grouped into 16 task clusters.

4.1. Settings

After performing balanced sampling for each task
cluster, the sizes of the training set, development
(or validation) set, and test set for each task were
consistent, containing approximately 10k, 3k, and
1k samples respectively. In our experiments, we
consider two experimental setups. The first setup
aims to observe the improvement of the model’s

performance across all tasks. In this configuration,
all tasks are visible to the model. The second setup
is designed to examine the model’s generalization
ability on unseen tasks. Under this scenario, tasks
such as Natural Language Inference(NLI), open-
domain Question Answering (QA), and summa-
rization are considered as unseen tasks. Conse-
quently, data related to these tasks are not present
in the training dataset.

4.2. Baseline Models

We used BART (Lewis et al., 2019) and mT5-
large (Xue et al., 2020) as our training model. mT5-
large is a transformer-based encoder-decoder lan-
guage model, pre-trained on a large multilingual
corpus, we hence condensed the parameters of
mT5-large by mainly condensing the embedding
layer to make it more suitable for Chinese con-
text, which greatly saves space and resources.
Specifically, we used mT5’s tokenizer of 250,000
tokens to tokenize the large Chinese corpus, retain-
ing 30,000+ tokens according to word frequency,
then modified the resulting word list to obtain a
new sentencepiece model. In addition, we also
compared with other benchmarks: i) Single task:
training directly on the target task (if applicable);
ii) Instruction tuning (IT): after mixing all tasks
together, then sampling from the entire dataset.
iii) Pre-defined order: pre-defining the syllabus
based on the average sentence length in the tasks,
and the model is then fine-tuned according to
this sequence. iv) One-phase aotumated cur-
riculum learning(IT1ACL): a simplified version of
the method we proposed, focusing solely on the
progress signal of whole task without proceeding
to the second phase of instruction selection within
tasks.

4.3. Evaluation Metrics

We use F1 score for Conference Resolution, Key-
words Recognition, Text-to-Sql, Extractive QA,
Open-Domain QA task, ROUGE for Translation,
Summarization, and Text Generation task, and ac-
curacy for other tasks.

4.4. Implementation details

We chose ten instruction templates per dataset
to provide a balance between variety and man-
ageability. The instruction template selection is not
arbitrary, but based on our preliminary experiments
that suggested this as an optimal balance for maxi-
mizing learning while preventing overfitting. We set
most hyperparameters as suggested by previous
works (Wolf et al., 2020) and conducted exper-
iments under fully supervised and low-resource
settings. The parameters for the Exp3.S algorithm
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Method Model ConR NER KR TSql Sent Sim TClas IClas Fact NLI mcQA exQA odQA Trans Summ Gen

Single Task BART 31.5 34.6 36.1 27.7 30.9 43.8 40.2 39.6 38.1 33.4 31.8 41.2 25.3 31.5 42.7 41.9

mT5 31.7 41.8 42.9 35.5 44.6 48.9 50.6 45.2 49.3 45.6 35.5 39.5 27.9 41.2 35.8 32.7

IT(None) BART 25.7 26.1 21.1 23.7 18.5 41.2 34.5 37.8 30.1 35.4 16.7 40.0 23.3 16.6 39.5 38.6

mT5 26.2 28.8 37.6 29.2 40.1 45.4 46.5 42.2 47.2 42.0 33.4 34.8 26.3 24.1 32.9 30.8

Rule-based CL(Pre-
defined Order)

BART 25.2 29.8 30.3 23.8 24.9 40.7 33.2 37.3 31.5 34.2 20.5 39.8 24.4 16.9 39.2 40.7

mT5 26.8 30.5 37.9 28.4 40.7 48.5 46.9 43.6 48.8 43.7 34.2 35.9 27.5 26.3 33.9 31.9

IT1ACL BART 25.9 30.1 32.8 25.2 28.8 42.2 38.1 37.5 35.8 34.9 26.4 41.4 24.8 16.7 42.6 41.2

mT5 30.2 36.2 39.3 28.8 45.5 48.7 49.2 45.7 49.2 45.5 35.6 36.1 28.3 25.8 34.3 32.5

IT2ACL(ours) BART 26.6 31.5 32.4 25.7 30.7 42.5 39.5 37.6 36.1 33.4 29.3 42.9 25.1 16.8 43.9 42.3

mT5 30.4 37.9 39.8 29.1 45.2 48.5 49.7 46.8 49.6 46.3 34.1 36.4 29.1 25.6 34.7 33.1

Table 1: Overall experimental results of our proposed framework IT2ACL and the compared baselines.
The columns denote different tasks: ConR stands for Conference Resolution, NER for Named Entity
Recognition, KR for Keywords Recognition, TSql for SQL Task, Sent for Sentiment Analysis, Sim for
Similarity, TClas for Text Classification, IClas for Iintent Classification, Fact for Fact Checking, NLI
for Natural Language Inference, mcQA for Multiple Choice Question Answering, exQA for Extractive
Question Answering, odQA for Open-Domain Question Answering, Trans for Translation, Summ for
Summarization, and Gen for Text Generation.

Method Model NLI mcQA Summ

IT(None) BART 24.8 18.9 32.9

mT5 29.5 17.9 25.9

Rule-based CL(Pre-defined Order) BART 22.6 20.8 31.2

mT5 28.7 19.8 24.6

IT1ACL BART 25.4 21.3 35.7

mT5 31.0 22.3 27.1

IT2ACL BART 26.9 22.8 36.9

mT5 32.2 23.5 28.3

Table 2: Generalization results of our proposed
framework IT2ACL and the compared baselines.

are η = 10−3, β = 0, γ = 0.05. We conduct all
experiments on 8 NVIDIA A6000 GPU and select
the best model checkpoint according to the perfor-
mance on the development set.

4.5. Results

We show our validation results corresponding to
the two experimental setups.

4.5.1. Multi-task

Table 1 shows the overall experimental outcomes
across all tasks for our proposed method and the
benchmarked baselines. From the result, it’s evi-
dent that our IT2ACL approach outperforms both
the random order with instruction tuning and the
pre-determined order with curriculum learning. For
mT5, out of 16 tasks, 5 tasks achieved even better
results than training on just a single task. Mean-
while, for BART, 3 tasks surpassed the perfor-
mance of single-task training. We speculate that
multi-task learning in our experiments might aid
the model in capturing the universal features and

structures shared among various tasks, thereby
enhancing the performance on individual tasks.

Furthermore, we can also observe that both
models generally underperform in multiple-choice
question answering and translation tasks com-
pared to other tasks. Taking a closer look at the
translation task, we notice that solely relying on
rule-based curriculum learning yield even better re-
sults than using our IT1ACL and IT2ACL methods.
This might be attributed to the intrinsic character-
istics of the translation task where the complexity
directly correlates with sentence length. Also, if the
model undergoes training with more Chinese data
from other tasks, the accuracy of the translated tar-
get language might decline. This highlights the vast
performance disparity the model has across differ-
ent tasks, which often correlates with the setup and
composition of multi-tasking.

Comparing the results of IT1ACL and IT2ACL,
we can discern that using a one-phase curriculum
learning algorithm to decide the task learning order,
without considering multiple instructions, still gives
a performance boost over random order and pre-
defined order. However, this improvement is not as
substantial as with two-phase learning. This under-
scores that from easy-to-hard-learning instruction
in the second phase is an indispensable aspect of
enhancing model performance. By recording and
observing the selection frequency of various in-
structions, this approach also allows us to pinpoint
the most optimal instruction for a specific task.

4.5.2. Generalization

In this experimental setup, we designate three task
categories (NLI, multiple-choice QA, Summariza-
tion) as our unseen tasks. The models are trained
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Figure 3: The model performance as a function of training time when the unseen task is NLI (a), multiple-
choice QA (b), Summarization (c). We show results with 4 scheduling methods: our method denoted
2-phase curriculum (solid green), our method denoted 1-phase curriculum (dashed yellow), rule-based
curriculum learning with pre-defined order (dotted red), and instruction tuning with no curriculum learning
(dashdotted blue).

on the training dataset, excluding data related to
these three tasks, ensuring a zero-shot setting in
our experiments. From the results in Table 2, we
observe that curriculum learning further enhances
the model’s generalization capability. However,
the model trained using the rule-based curriculum
learning approach exhibited the weakest gener-
alization performance in NLI and Summarization
task. This might be attributed to the pre-defined
order, which could significantly deviate from the
optimal sequence for the model. As a result, the
model’s continuous learning potential might not
have been fully realized (Weinshall et al., 2018).

4.6. Analysis

How does the frequency of task and instruction
sampling change during the training process?
We observe the training process repeatedly, dis-
playing task names and instruction contents at the
beginning of each batch to visualize the chosen
task and instruction in Figure 4. Taking senti-
ment analysis as an example, we initially assign
higher weight to intent classification task, leading
the model to start training with tasks similar to
unseen tasks. We find that there is considerable
randomness in the early stages of training using
the Exp3.S algorithm. However, in later stages,
similar classification tasks such as topic classifica-
tion and fact checking are increasingly chosen for
training. They also tend to be repeatedly selected
later on. However, since they always appear in the
latter phase of the training, this can be resolved by
limiting the maximum number of training epoches
to prevent overtraining on a few tasks, which could
lead to overfitting. In terms of the instruction space,
according to our observation during training, there
isn’t a particular concentration towards a few in-
dividual instructions. Sometimes there is a ten-
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Figure 4: Sampling frequency of different tasks
during training process when sentiment analysis is
for unseen tasks. Each point shows the task with
the highest selection frequency in every 20 steps.

dency to select longer instructions first, and other
times, shorter ones are chosen initially. We believe
that by using the Exp3.S algorithm, we have better
avoided over-concentration on a limited number of
instructions.

How does model’s generalization ability change
over the course of training? In our experimen-
tal setup, we observed that curriculum learning ac-
celerates the learning process at the beginning of
training. The generalization performance after con-
vergence is also comparable to the instruction fine-
tuning training without the use of any curriculum
learning. However, when we employed curriculum
learning with a predefined order based on rules,
for some tasks, more complex tasks are preferred
at the beginning of training. This approach, in fact,
reduces the model’s generalization capability, with
the exception of improvement seen only on the
multiple-choice QA task. Task difficulty can be as-
sessed based on the final performance illustrated
in each graph in Figure 3. From the charts, it is
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Figure 5: The effect of hyperparameters settings
on mT5 model performance with b=2x and lr=0.5x
relative to the typical setting.

evident that when the task complexity is higher, the
improvement in final accuracy due to curriculum
learning is more pronounced.

Can changes in hyperparameters affect the
model performance? We defined three settings:
(i) base setting, (ii) b=2x, i.e., increasing the batch
size by a factor of 2, and (iii) lr=0.5x, i.e., the learn-
ing rate is set to be half of the original learning
rate. We trained all tasks again in our task mixture,
recording the average of the mT5 model perfor-
mance. Our aim is to evaluate to what extent the
hyperparameters settings can have an influence
on the model-based task difficulty score during the
training process. Our results are summarized in
Figure 5. They show that larger learning rates
and smaller batch sizes could achieve better per-
formance in our algorithm, and the experimental
results presented have proven to be relatively good
and the most stable.

Effectiveness of the reward algorithm across
different task clusters The Exp3.S algorithm,
combined with our adaptive curriculum learning
strategy, shows that the model maintains robust-
ness with an increase in the number of task clus-
ters. In our preliminary experiments, we observe
that with an increase in clusters, there was a slight
improvement in performance. However, as the
number of clusters continued to increase, the im-
provement in performance became marginal, even-
tually reaching a saturation point where further
increase in the number of clusters did not enhance
the task performance. This trend suggests a poten-
tial relationship with the model size. For example,

when the number of clusters increases from 5 to
15, we observe a gradual improvement in accuracy
when the unseen task is NLI, but this improvement
plateaus beyond 15 clusters.

How do we address the issue of catastrophic
forgetting in our method? In the initial stages
of the MAB algorithm, each arm has a certain prob-
ability of being selected for exploration purposes.
As time progresses and more data is gathered, the
algorithm tends to favor arms that have previously
performed well. However, thanks to the inherent
exploration mechanism of Exp3.S algorithm, even
arms with extremely low selection probabilities still
get chosen occasionally. This balance between ex-
ploiting high-reward arms and exploring other arms
is crucial for maximizing the overall return. Based
on our observations and the detailed results we
have gathered, it becomes clear that tasks which
yield high rewards are selected consistently and
frequently. As a consequence, we have noticed
that certain samples emerge repeatedly through-
out our experiments. Employing such a strategy
has its merits; one of the most significant benefits
is its ability to reduce the impact of catastrophic
forgetting. Our approach provides a buffer against
this phenomenon, ensuring that previously learned
tasks remain reinforced. Nonetheless, if the num-
ber of tasks to be learned were to increase by sev-
eral orders of magnitude, our method might require
significantly more training time and resources, an
issue we leave for future research.

5. Conclusion

In this paper, we have presented a novel instruc-
tion tuning framework IT2ACL to dynamically learn
easy-to-hard instructions for LLMs guided by 2-
phase Curriculum Learning. We propose a loss-
driven progress signal to incorporate curriculum
learning strategy into instruction tuning, for decid-
ing the sequences to learn instructions within a
same task. The weighted average of all instruc-
tions within the same task is then used to deter-
mine the order in which tasks are trained. The
progress signal is also scaled to a reward to be
used in the adversarial multi-armed bandits strat-
egy. This facilitates the model’s ability to auto-
matically adjust its learning curriculum based on
the changing difficulty of tasks. Extensive experi-
ments have been conducted over 16 task clusters,
covering a wide array of applications. Experiment
results demonstrate that IT2ACL achives higher
or competitive performance against baseline mod-
els across all tasks, indicating the effectiveness of
applying the curriculum learning strategy to instruc-
tion tuning for LLMs.
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6. Limitations

The limitations of our work are as follows:

1. Many of Chinese datasets are not yet publicly
available, which limits the scope of datasets
and tasks that can be explored in our study.

2. We fine-tune the task mixture with two types of
models (BART and mT5), leaving recent open-
source Chinese LLMs to our future work.

3. We may find that the hyperparameter settings
and the content and length of the instruction
templates have an effect on the loss decrease,
for which we nevertheless have only validated
the case under one of the settings, leaving
other impact factors not being explored.

7. Ethics Considerations

We strictly adhere to the legal requirements in all
of our dataset usage. This includes how we cite
and how we use the resources. Legal awareness
have been kept throughout this project.

8. Acknowledgements

The present research was supported by the Key
Research and Development Program of Yunnan
Province (Grant No. 202203AA080004). We would
like to thank the anonymous reviewers for their
insightful comments.

9. Bibliographical References

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. 2002. The nonstochastic
multiarmed bandit problem. SIAM journal on
computing, 32(1):48–77.

Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
learning. In Proceedings of the 26th annual inter-
national conference on machine learning, pages
41–48.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al.
2012. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Founda-
tions and Trends® in Machine Learning, 5(1):1–
122.

Hengyi Cai, Hongshen Chen, Cheng Zhang, Yong-
hao Song, Xiaofang Zhao, Yangxi Li, Dongsheng
Duan, and Dawei Yin. 2020. Learning from easy
to complex: Adaptive multi-curricula learning for
neural dialogue generation. In Proceedings of
the AAAI Conference on Artificial Intelligence,
volume 34, pages 7472–7479.

Yue Cao, Hao-Ran Wei, Boxing Chen, and Xiaojun
Wan. 2021. Continual learning for neural ma-
chine translation. In Proceedings of the 2021
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2021, Online, June 6-11, 2021, pages 3964–
3974. Association for Computational Linguistics.

Ernie Chang, Hui-Syuan Yeh, and Vera Demberg.
2021. Does the order of training samples mat-
ter? improving neural data-to-text generation
with curriculum learning. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, EACL 2021, Online, April 19 - 23, 2021,
pages 727–733. Association for Computational
Linguistics.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. 2022. Rlprompt: Op-
timizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548.

Carlos Florensa, David Held, Xinyang Geng, and
Pieter Abbeel. 2018. Automatic goal genera-
tion for reinforcement learning agents. In Pro-
ceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning
Research, pages 1514–1523. PMLR.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia
Specia. 2020. Unsupervised quality estimation
for neural machine translation. Trans. Assoc.
Comput. Linguistics, 8:539–555.

Alex Graves, Marc G. Bellemare, Jacob Menick,
Rémi Munos, and Koray Kavukcuoglu. 2017. Au-
tomated curriculum learning for neural networks.
In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research,
pages 1311–1320. PMLR.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang,
Dan Shi, Supryadi, Linhao Yu, Yan Liu, Jiaxuan



9415

Li, Bojian Xiong, and Deyi Xiong. 2023. Evalu-
ating large language models: A comprehensive
survey. CoRR, abs/2310.19736.

Mark Herbster and Manfred Warmuth. 1995. Track-
ing the best expert. In Machine Learning Pro-
ceedings 1995, pages 286–294. Elsevier.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao,
Shang-Wen Li, Xiaokai Wei, Andrew O. Arnold,
and Xiang Ren. 2022. Lifelong pretraining: Con-
tinually adapting language models to emerging
corpora. In Proceedings of the 2022 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 4764–
4780. Association for Computational Linguistics.

Zixuan Ke, Hu Xu, and Bing Liu. 2021. Adapting
BERT for continual learning of a sequence of
aspect sentiment classification tasks. In Pro-
ceedings of the 2021 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 4746–4755. Association for Com-
putational Linguistics.

Tom Kocmi and Ondrej Bojar. 2017. Cur-
riculum learning and minibatch bucketing in
neural machine translation. arXiv preprint
arXiv:1707.09533.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. Bart: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Xuebo Liu, Houtim Lai, Derek F Wong, and Lidia S
Chao. 2020. Norm-based curriculum learning
for neural machine translation. arXiv preprint
arXiv:2006.02014.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou,
Seungwhan Moon, Paul A. Crook, Bing Liu,
Zhou Yu, Eunjoon Cho, Pascale Fung, and
Zhiguang Wang. 2021. Continual learning in
task-oriented dialogue systems. In Proceedings
of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, pages 7452–7467. Asso-
ciation for Computational Linguistics.

Tambet Matiisen, Avital Oliver, Taco Cohen, and
John Schulman. 2020. Teacher-student cur-
riculum learning. IEEE Trans. Neural Networks
Learn. Syst., 31(9):3732–3740.

Tasnim Mohiuddin, Philipp Koehn, Vishrav Chaud-
hary, James Cross, Shruti Bhosale, and Shafiq R.
Joty. 2022. Data selection curriculum for neural
machine translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 1569–1582. Association for
Computational Linguistics.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V
Hafner. 2007. Intrinsic motivation systems for
autonomous mental development. IEEE trans-
actions on evolutionary computation, 11(2):265–
286.

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabas Poczos, and Tom M
Mitchell. 2019. Competence-based curriculum
learning for neural machine translation. arXiv
preprint arXiv:1903.09848.

Rémy Portelas, Cédric Colas, Katja Hofmann, and
Pierre-Yves Oudeyer. 2019. Teacher algorithms
for curriculum learning of deep RL in continu-
ously parameterized environments. In 3rd An-
nual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019,
Proceedings, volume 100 of Proceedings of
Machine Learning Research, pages 835–853.
PMLR.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based
instruction search for prompting large language
models. arXiv preprint arXiv:2203.07281.

Sébastien Racanière, Andrew K. Lampinen, Adam
Santoro, David P. Reichert, Vlad Firoiu, and
Timothy P. Lillicrap. 2019. Automated curric-
ula through setter-solver interactions. CoRR,
abs/1909.12892.

Jack W Rae, Sebastian Borgeaud, Trevor Cai,
Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring,
Susannah Young, et al. 2021. Scaling language
models: Methods, analysis & insights from train-
ing gopher. arXiv preprint arXiv:2112.11446.

Thomas Scialom, Tuhin Chakrabarty, and
Smaranda Muresan. 2022. Fine-tuned language
models are continual learners. In Proceedings
of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages
6107–6122.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang
Liu, Weilong Dong, Zishan Guo, Xinwei Wu, Yan
Liu, and Deyi Xiong. 2023. Large language
model alignment: A survey. CoRR.



9416

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using
deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative lan-
guage model. arXiv e-prints, pages arXiv–2201.

Yixuan Su, Deng Cai, Qingyu Zhou, Zibo Lin, Si-
mon Baker, Yunbo Cao, Shuming Shi, Nigel Col-
lier, and Yan Wang. 2020. Dialogue response
selection with hierarchical curriculum learning.
arXiv preprint arXiv:2012.14756.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov,
Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. 2018. Intrinsic motivation and automatic
curricula via asymmetric self-play. In 6th Interna-
tional Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2020. LAMOL: language modeling for lifelong
language learning. In 8th International Confer-
ence on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net.

Neeraj Varshney, Swaroop Mishra, and Chitta
Baral. 2022. Let the model decide its curriculum
for multitask learning. CoRR, abs/2205.09898.

Yu Wan, Baosong Yang, Derek F. Wong, Yikai
Zhou, Lidia S. Chao, Haibo Zhang, and Box-
ing Chen. 2020. Self-paced learning for neu-
ral machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 1074–1080. As-
sociation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. 2022. Chain of thought prompting elic-
its reasoning in large language models. arXiv
preprint arXiv:2201.11903.

Daphna Weinshall, Gad Cohen, and Dan Amir.
2018. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In
Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine
Learning Research, pages 5235–5243. PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan

Funtowicz, et al. 2020. Transformers: State-
of-the-art natural language processing. In Pro-
ceedings of the 2020 conference on empirical
methods in natural language processing: system
demonstrations, pages 38–45.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A massively
multilingual pre-trained text-to-text transformer.
arXiv preprint arXiv:2010.11934.

Sicheng Yang and Dandan Song. 2022. Fpc: Fine-
tuning with prompt curriculum for relation extrac-
tion. In Proceedings of the 2nd Conference of
the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th Interna-
tional Joint Conference on Natural Language
Processing, pages 1065–1077.

Wenpeng Yin, Jia Li, and Caiming Xiong. 2022.
Contintin: Continual learning from task instruc-
tions. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 3062–3072.
Association for Computational Linguistics.

Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul
McNamee, Marine Carpuat, and Kevin Duh.
2019. Curriculum learning for domain adaptation
in neural machine translation. In Proceedings
of the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1903–
1915.

Yikai Zhou, Baosong Yang, Derek F. Wong,
Yu Wan, and Lidia S. Chao. 2020. Uncertainty-
aware curriculum learning for neural machine
translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10,
2020, pages 6934–6944. Association for Com-
putational Linguistics.

10. Language Resource References

Mikel Artetxe, Sebastian Ruder, and Dani Yo-
gatama. 2019. On the cross-lingual transferabil-
ity of monolingual representations. arXiv preprint
arXiv:1910.11856.

Jiahao Bu, Lei Ren, Shuang Zheng, Yang Yang,
Jingang Wang, Fuzheng Zhang, and Wei Wu.
2021. Asap: A chinese review dataset towards



9417

aspect category sentiment analysis and rating
prediction. arXiv preprint arXiv:2103.06605.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiao-
jiang Liu, and Shuming Shi. 2019. Retrieval-
guided dialogue response generation via a
matching-to-generation framework. In Proceed-
ings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
1866–1875.

Jiangjie Chen, Rui Xu, Ziquan Fu, Wei Shi,
Zhongqiao Li, Xinbo Zhang, Changzhi Sun, Lei
Li, Yanghua Xiao, and Hao Zhou. 2022a. E-
kar: A benchmark for rationalizing natural lan-
guage analogical reasoning. arXiv preprint
arXiv:2203.08480.

Chen, Jing and Chen, Qingcai and Liu, Xin and
Yang, Haijun and Lu, Daohe and Tang, Buzhou.
2018. The bq corpus: A large-scale domain-
specific chinese corpus for sentence semantic
equivalence identification.

Yirong Chen, Weiquan Fan, Xiaofen Xing, Jianxin
Pang, Minlie Huang, Wenjing Han, Qianfeng Tie,
and Xiangmin Xu. 2022b. Cped: A large-scale
chinese personalized and emotional dialogue
dataset for conversational ai. arXiv preprint
arXiv:2205.14727.

LI CO. 2019. Iflytek: a multiple categories chinese
text classifier. competition official website.

Alexis Conneau, Guillaume Lample, Ruty Rinott,
Adina Williams, Samuel R Bowman, Holger
Schwenk, and Veselin Stoyanov. 2018. Xnli:
Evaluating cross-lingual sentence representa-
tions. arXiv preprint arXiv:1809.05053.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao,
Zhipeng Chen, Wentao Ma, Shijin Wang, and
Guoping Hu. 2018. A span-extraction dataset for
chinese machine reading comprehension. arXiv
preprint arXiv:1810.07366.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao,
Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu,
Qiaoqiao She, et al. 2017. Dureader: a chi-
nese machine reading comprehension dataset
from real-world applications. arXiv preprint
arXiv:1711.05073.

Baotian Hu, Qingcai Chen, and Fangze Zhu.
2015. Lcsts: A large scale chinese short
text summarization dataset. arXiv preprint
arXiv:1506.05865.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra
Kübler, and Lawrence S Moss. 2020. Ocnli: Orig-
inal chinese natural language inference. arXiv
preprint arXiv:2010.05444.

Xuming Hu, Zhijiang Guo, Guanyu Wu, Aiwei Liu,
Lijie Wen, and Philip S Yu. 2022. Chef: A
pilot chinese dataset for evidence-based fact-
checking. arXiv preprint arXiv:2206.11863.

Yanzeng Li, Tingwen Liu, Diying Li, Quangang Li,
Jinqiao Shi, and Yanqiu Wang. 2018. Character-
based bilstm-crf incorporating pos and dictionar-
ies for chinese opinion target extraction. In Asian
Conference on Machine Learning, pages 518–
533. PMLR.

Bang Liu, Di Niu, Haojie Wei, Jinghong Lin,
Yancheng He, Kunfeng Lai, and Yu Xu. 2018a.
Matching article pairs with graphical decom-
position and convolutions. arXiv preprint
arXiv:1802.07459.

Liu, Xin and Chen, Qingcai and Deng, Chong and
Zeng, Huajun and Chen, Jing and Li, Dongfang
and Tang, Buzhou. 2018b. Lcqmc: A large-scale
chinese question matching corpus.

Hua Lu, Siqi Bao, Huang He, Fan Wang, Hua Wu,
and Haifeng Wang. 2022. Towards boosting
the open-domain chatbot with human feedback.
arXiv preprint arXiv:2208.14165.

Maria Pontiki, Dimitrios Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manand-
har, Mohammad Al-Smadi, Mahmoud Al-Ayyoub,
Yanyan Zhao, Bing Qin, Orphée De Clercq, et al.
2016. Semeval-2016 task 5: Aspect based sen-
timent analysis. In International workshop on
semantic evaluation, pages 19–30.

Sanh, Victor and Webson, Albert and Raffel, Colin
and Bach, Stephen H and Sutawika, Lintang and
Alyafeai, Zaid and Chaffin, Antoine and Stiegler,
Arnaud and Scao, Teven Le and Raja, Arun and
others. 2021. Multitask prompted training en-
ables zero-shot task generalization.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text con-
versation. arXiv preprint arXiv:1503.02364.

Chih Chieh Shao, Trois Liu, Yuting Lai, Yiying
Tseng, and Sam Tsai. 2018. Drcd: a chinese
machine reading comprehension dataset. arXiv
preprint arXiv:1806.00920.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wen-
fei Xu, and Xiaoyan Zhu. 2019. Long and di-
verse text generation with planning-based hi-
erarchical variational model. arXiv preprint
arXiv:1908.06605.



9418

Hongxuan Tang, Hongyu Li, Jing Liu, Yu Hong, Hua
Wu, and Haifeng Wang. 2020. Dureader_robust:
a chinese dataset towards evaluating robustness
and generalization of machine reading compre-
hension in real-world applications. arXiv preprint
arXiv:2004.11142.

Yida Wang, Pei Ke, Yinhe Zheng, Kaili Huang,
Yong Jiang, Xiaoyan Zhu, and Minlie Huang.
2020. A large-scale chinese short-text conver-
sation dataset. In CCF International Conference
on Natural Language Processing and Chinese
Computing, pages 91–103. Springer.

Wei, J. and Bosma, M. and Zhao, V. Y. and Guu, K.
and Yu, A. W. and Lester, B. and Du, N. and Dai,
A. M. and Le, Q. V. 2021. Finetuned Language
Models Are Zero-Shot Learners.

Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and Zhou-
jun Li. 2016. Sequential matching network: A
new architecture for multi-turn response selec-
tion in retrieval-based chatbots. arXiv preprint
arXiv:1612.01627.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chen-
jie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian
Yu, Cong Yu, et al. 2020. Clue: A chinese
language understanding evaluation benchmark.
arXiv preprint arXiv:2004.05986.

Ningyu Zhang, Mosha Chen, Zhen Bi, Xiaozhuan
Liang, Lei Li, Xin Shang, Kangping Yin, Chuanqi
Tan, Jian Xu, Fei Huang, et al. 2021. Cblue:
A chinese biomedical language understand-
ing evaluation benchmark. arXiv preprint
arXiv:2106.08087.

Xiang Zhang and Yann LeCun. 2017. Which encod-
ing is the best for text classification in chinese,
english, japanese and korean? arXiv preprint
arXiv:1708.02657.

Yongfeng Zhang, Haochen Zhang, Min Zhang,
Yiqun Liu, and Shaoping Ma. 2014. Do users
rate or review? boost phrase-level sentiment la-
beling with review-level sentiment classification.
In Proceedings of the 37th international ACM
SIGIR conference on Research & development
in information retrieval, pages 1027–1030.

Yongfeng Zhang, Min Zhang, Yi Zhang, Guokun
Lai, Yiqun Liu, Honghui Zhang, and Shaoping
Ma. 2015. Daily-aware personalized recommen-
dation based on feature-level time series analy-
sis. In Proceedings of the 24th international con-
ference on world wide web, pages 1373–1383.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020.
Jec-qa: a legal-domain question answering

dataset. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages
9701–9708.

Hao Zhou, Chujie Zheng, Kaili Huang, Minlie
Huang, and Xiaoyan Zhu. 2020. Kdconv: A
chinese multi-domain dialogue dataset towards
multi-turn knowledge-driven conversation. arXiv
preprint arXiv:2004.04100.



9419

Task Clusters

Similarity
LCQMC 
AFQMC 
sohu_sts_A_sl 
sohu_sts_A_ll 
sohu_sts_A_ss 
sohu_sts_B_sl 
sohu_sts_B_ll 
sohu_sts_B_ss 
BQ_corpus 

oppo 
CBLUE_CHIP_STS 
KUAKE_QTR 
KUAKE_QQR 
CNSS 
CNSE 
CINLID 
cmnli_public 

17 Datasets

Conference Resolution
cluewsc2020_public 

1 Dataset

NER

CMeEE 

1 Dataset

Text-to-SQL

NL2SQL 

1 Dataset

Keywords Recognition
CHIP-CDEE
COTE-BD 
COTE-MFW

COTE-DP
csl_public

5 Datasets

Sentiment

yf_amazon 
waimai_10k 
online_shopping_10cats 
ChnSentiCorp 
weibo_senti_100k 
yf_dianping 
dmsc_v2 
nCov_100k 

BDCI2019 
SMP2019_ECISA 
SE-ABSA16 
NLPCC14-SC 
ASAP-ASPECT 
ASAP-SENT 
CPED 

15 Datasets

Topic Classification
tnews_public 
nlpcc2017_NC 

Ifeng 
iflyteck_public 

4 Datasets

Intent Classification
KUAKE-QIC 

1 Dataset

Fact  
Checking
CHEF 

1 Dataset

NLI
ocnli_public 
xnli-zh 

2 Datasets

Extractive-QA

DRCD 
xquad-zh 
Dureader_robust 
cmrc2018_public 
CAIL2019_MRCQA 
CAIL2020_MRCQA 
DureaderQG 

7 Datasets

Open-domain QA
douban_QA 
weibo_QA 
LCCC_QA 

tencent_QA 
luge_Diamante 
ESTC-QA

6 Datasets

Summarization
LCSTS_new 
WANGFANG 

CSL_SUMM 
CAIL2020_SUM 

4 Datasets

Translation

bltc 
1 Dataset

Text 
Generation 
AdvertiseGen 

1 Dataset

Multiple-Choice QA

ekar_Chinese 

ChineseBiomdicalQA 
JEC-QA 

3 Datasets

Figure 6: Our all datasets and task clusters.

Appendix A. Data Card

All the datasets used in this paper, along with their
corresponding task clusters, are presented in Fig-
ure 6.

We present the data card in Table 3, where
we provide specific pointers and references. All
datasets are publicly available.
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Table 3: The list of all datasets used in our instruction tuning.

Datasets Task Reference
LCQMC Similarity Liu et al. (2018b)
AFQMC Similarity Xu et al. (2020)
sohu_sts_A_sl Similarity 2021 Sohu Campus Text Matching Algorithm Competition
sohu_sts_A_ll Similarity 2021 Sohu Campus Text Matching Algorithm Competition
sohu_sts_A_ss Similarity 2021 Sohu Campus Text Matching Algorithm Competition
sohu_sts_B_sl Similarity 2021 Sohu Campus Text Matching Algorithm Competition
sohu_sts_B_ll Similarity 2021 Sohu Campus Text Matching Algorithm Competition
sohu_sts_B_ss Similarity 2021 Sohu Campus Text Matching Algorithm Competition
BQ_corpus Similarity Chen et al. (2018)
oppo Similarity LUGE(https://www.luge.ai/#/luge/dataDetail?id=28)
CHIP-STS Similarity Zhang et al. (2021)
KUAKE-QTR Similarity (Zhang et al., 2021)
KUAKE-QQR Similarity Zhang et al. (2021)
CNSS Similarity Liu et al. (2018a)
CNSE Similarity Liu et al. (2018a)
CINLID Similarity LUGE(https://www.luge.ai/#/luge/dataDetail?id=39))
CMNLI Similarity Xu et al. (2020)
CLUEWSC2020 Conference Resolution Xu et al. (2020)
CMeEE Named Entity Rocognition Zhang et al. (2021)
CHIP-CDEE Keyword Recognition Zhang et al. (2021)
COTE-BD Keyword Recognition Li et al. (2018)
COTE-MFW Keyword Recognition Li et al. (2018)
COTE-DP Keyword Recognition Li et al. (2018)
CSL Keyword Recognition Xu et al. (2020)
NL2SQL Text-to-Sql LUGE(https://www.luge.ai/#/luge/dataDetail?id=12)
yf_amazon Sentiment Zhang et al. (2015)
waimai_10k Sentiment -
online_shopping_10cats Sentiment
ChnSentiCorp Sentiment -
weibo_senti_100k Sentiment -
yf_dianping Sentiment Zhang et al. (2014)
DMSC_v2 Sentiment Kaggle(https://www.kaggle.com/datasets)
nCov_100k Sentiment CCIR2020(https://www.datafountain.cn/competitions/423)
BDCI2019 Sentiment CCF-BDCI2019
SMP2019_ECISA Sentiment SMP-ECISA 2019
SE-ABSA16 Sentiment Pontiki et al. (2016)
NLPCC14-SC Sentiment LUGE(https://www.luge.ai/#/luge/dataDetail?id=20)
ASAP-ASPECT Sentiment Bu et al. (2021)
ASAP-SENT Sentiment Bu et al. (2021)
CPED Sentiment Chen et al. (2022b)
TNEWS Topic Classification Xu et al. (2020)
NLPCC2017_NC Topic Classification NLPCC2017(http://tcci.ccf.org.cn/conference/2017)
Ifeng Topic Classification Zhang and LeCun (2017)
IFLYTEK Topic Classification CO (2019)
KUAKE-QIC Intent Classification Zhang et al. (2021)
CHEF Fact Checking Hu et al. (2022)
OCNLI Natural Language Inference Hu et al. (2020)
XNLI-zh Natural Language Inference Conneau et al. (2018)
Ekar_Chinese Multiple-Choice QA Chen et al. (2022a)
JEC-QA Multiple-Choice QA Zhong et al. (2020)
ChineseBiomdicalQA Multiple-Choice QA LUGE(https://www.luge.ai/#/luge/dataDetail?id=40)
DRCD Extractive-QA Shao et al. (2018)
XQUAD-zh Extractive-QA Artetxe et al. (2019)
Dureader_robust Extractive-QA Tang et al. (2020)
Dureader_checklist Extractive-QA He et al. (2017)
CMRC2018 Extractive-QA Cui et al. (2018)
CAIL2019_MRCQA Extractive-QA CAIL2019
CAIL2020_MRCQA Extractive-QA CAIL2020
DureaderQG Extractive-QA Tang et al. (2020)
Douban_QA Open-Domain QA Wu et al. (2016)
Continued on next page
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– continued from previous page
Datasets Task Reference

Weibo_QA Open-Domain QA Shang et al. (2015)
LCCC_QA Open-Domain QA Wang et al. (2020)
Tencent_QA Open-Domain QA Cai et al. (2019)
Luge_Diamante Open-Domain QA Lu et al. (2022)
ESTC-QA Open-Domain QA Zhou et al. (2020)
BLTC Translation
LCSTS_new Summarization Hu et al. (2015)
WANGFANG Summarization WANGFANG Database
CSL_SUMM Summarization CLGE(https://github.com/fighting41love/CLGE)
CAIL2020_SUM Summarization CAIL2020
AdvertiseGen Text Generation Shao et al. (2019)
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