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Abstract
Large language models (LLMs) have proficiently solved a broad range of tasks with their rich knowledge but often struggle
with logical reasoning. To foster the research on logical reasoning, many benchmarks have been proposed so far. However,
most of these benchmarks are limited to English, hindering the evaluation of LLMs specialized for each language. To address
this, we propose JFLD (Japanese Formal Logic Deduction), a deductive reasoning benchmark for Japanese. JFLD assess
whether LLMs can generate logical steps to (dis-)prove a given hypothesis based on a given set of facts. Its key features are
assessing pure logical reasoning abilities isolated from knowledge and assessing various reasoning rules. We evaluate various
Japanese LLMs and see that they are still poor at logical reasoning, thus highlighting a substantial need for future research.
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1. Introduction

Large language models (LLMs) have proficiently
solved a broad range of tasks, making significant ad-
vancements towards realizing artificial intelligence as
“A machine that thinks like humans” (McCarthy et al.,
1955). Historically, two critical elements, knowledge
and reasoning, have been emphasized for achieving
artificial intelligence (McCarthy, 1959; Weizenbaum,
1966; Winograd, 1971; Colmerauer and Roussel, 1973;
Shortliffe, 1976; Elkan and Greiner, 1993). In the con-
text of natural language processing, knowledge refers
to facts about the world, such as “objects with mass
generate gravitational field” and “the Earth has mass.”
Reasoning, on the other hand, involves combining
multiple pieces of knowledge following specific rules
to generate new knowledge. For instance, applying
the reasoning rule “From ’∀x, F (x) → G(x)” and
“F (a)”, derive “G(a)” to the aforementioned knowl-
edge (where F=“has mass”, G=“generates gravita-
tional field”, a=“Earth”) yields the new knowledge that
“the Earth generates gravitational field.”

Recent observations suggest that LLMs solve tasks
based on “memorized knowledge” rather than reason-
ing. Such observations include: (i) LLMs can solve
past coding exams but not the most recent ones, or
(ii) LLMs can solve famous arithmetic problems un-
changed but fail when the numbers are altered (Razeghi
et al., 2022; Hodel and West, 2023; Dasgupta et al.,
2023). These observations reveal that LLMs rely on
similar instances in their training corpora to solve the
tasks. This tendency towards knowledge reliance has
been confirmed even in state-of-the-art LLMs like GPT-
4 (OpenAI, 2023) (Liu et al., 2023; Wu et al., 2023;
Dziri et al., 2023; Mitchell, 2023).

If LLMs struggle with reasoning, this poses a chal-
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lenge for achieving versatile artificial intelligence, as
they would be limited to solving tasks they have en-
countered before, unable to tackle genuinely novel chal-
lenges. Hence, research for enhancing LLMs’ reason-
ing abilities is essential.

To foster the research on reasoning, high-quality
benchmarks are crucial. Indeed, numerous benchmarks
have been proposed for the fundamental logical rea-
soning, providing not only performance evaluations
of each LLM (Habernal et al., 2018; Niven and Kao,
2019; Clark et al., 2021; Tafjord et al., 2021) but also in-
sights, such as emergent phenomena (Zoph et al., 2022)
and vulnerabilities to counterfactuals (Liu et al., 2023).

However, these benchmarks primarily focus on En-
glish, lacking in evaluating Japanese LLMs’ logical
reasoning abilities. While Japanese benchmarks like
JGLUE (Kurihara et al., 2022) and JaQuAD (So et al.,
2022) are well-known, their problems should often be
solved by knowledge. Tasks such as NLI and RTE
(Watanabe et al., 2013; Shima et al., 2011; Takumi
et al., 2020; Kurihara et al., 2022; Hayashibe, 2020;
Yanaka and Mineshima, 2021; Sugimoto et al., 2023)
frequently require common-sense knowledge, thus not
exclusively testing logical reasoning abilities. Hence,
there is a necessity for a Japanese logical reasoning
benchmark.

This paper introduces such a benchmark, JFLD
(Japanese Formal Logic Deduction), a deductive rea-
soning benchmark for Japanese. We showcase an ex-
ample from JFLD in Figure 1, which assesses whether
LLMs can generate logical steps to (dis-)prove a given
hypothesis based on a given set of facts. Its key fea-
tures are assessing pure logical reasoning abilities iso-
lated from knowledge and assessing various reasoning
rules. We extended a previous framework called FLD
(Morishita et al., 2023) into Japanese to generate such
examples.

Further, we evaluate various Japanese-specialized
LLMs and share insights. Most critically, these LLMs
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←distractors

facts

Logical steps (proof)

LLM
output

LLM
prompt

hypothesis

𝑺𝑺(𝒈𝒈) ∧ 𝑻𝑻(𝒈𝒈)

𝑺𝑺 𝒈𝒈 → 𝑨𝑨(𝒌𝒌)

𝑨𝑨(𝒌𝒌) → 𝑯𝑯(𝒅𝒅)

¬𝑯𝑯(𝒅𝒅)

𝑺𝑺 𝒈𝒈
𝑨𝑨 𝒌𝒌

𝑨𝑨 : 篤志である
𝑯𝑯 : はだける
𝑺𝑺 : 誠忠である
𝑻𝑻 : 津波山に
      のりつぐ
𝒌𝒌 : 乾留
𝒅𝒅 : 電脳
𝒈𝒈 : ガス

answer

Figure 1: A deduction example from JFLD.D8 dataset. Given a set of facts and a hypothesis, an LM is required
to generate (i) logical steps (“proof”) to (dis-)prove the hypothesis, and (ii) an answer (“proved”, “disproved” or
“unknown”). Note that the sentences are randomly constructed so that referring to existing knowledge never helps
solve the task.

are still poor at logical reasoning, thus highlighting a
substantial need for future research. To summarize:

• We release1 JFLD, the first benchmark that as-
sesses deductive reasoning ability in Japanese.

• We evaluate various Japanese-specialized LLMs
and share insights to foster future developments.

• We also release our code for corpus generation
and LLM evaluation to facilitate future experi-
ments.

2. Related Work
Logical Reasoning Benchmarks for English and
Others Many benchmarks have been proposed for
English, including single-step reasoning (Weston et al.,
2015; Tafjord et al., 2019; Lin et al., 2019; Richard-
son et al., 2020; Betz et al., 2021) and multistep reason-
ing (Clark et al., 2021; Gontier et al., 2020; Tian et al.,
2021; Mishra et al., 2022; Morishita et al., 2023). For
other languages, a few benchmarks related to logical
reasoning have been proposed, including cross-lingual
NLI benchmark XNLI (Conneau et al., 2018), NAIL
(NAIve Logical Reasoning) for English plus Chinese
(Zhang et al., 2021), and Korean (Ham et al., 2020).

Logical Reasoning Benchmarks for Japanese
Among the existing benchmarks, those of Natural Lan-
guage Inference (NLI) (Takumi et al., 2020; Yanaka
and Mineshima, 2022; Kurihara et al., 2022) and Rec-
ognizing Textual Entailment (RTE) (Shima et al., 2011;
Watanabe et al., 2013) are the most closely related to

1https://github.com/hitachi-nlp/FLD

logical reasoning in that these tasks require judging
whether the given premises deduce the conclusion.
(Yanaka et al., 2019b,a) introduced NLI benchmarks
specifically focusing on monotonicity. Yanaka and
Mineshima (2021) introduced JaNLI, which focuses
on Japanese-specific linguistic challenges, and Sugi-
moto et al. (2023) proposed JAMP, which focuses on
temporal inference. Hayashibe (2020) presented an
RTE benchmark utilizing realistic sentences curated
from Japanese corpora. Ando et al. (2023) investigated
whether LLMs can handle syllogistic arguments.

NLI/RTE tasks often require commonsense knowl-
edge. For example, to deduce that “A banana is in a
bowl” entails “There is a banana in a container” de-
mands knowledge that a bowl is a kind of container.
In contrast, JFLD explicitly provides accessible facts
in each example that are randomly constructed on-the-
fly, as in Figure 1. As a result, we can assess the logi-
cal reasoning ability isolated from knowledge. Further,
JFLD offers a more reliable and in-depth evaluation of
logical reasoning ability by examining all the interme-
diate reasoning steps, rather than just the final label of
“entail”/“neutral”/“contradiction”.

3. Benchmark Design Principles

We explore the essence of pure logical reasoning in the
context of mathematical logic, establishing the design
principles for the benchmark. Let us first consider the
following single logical step:

Earth orbits the Sun. If Earth orbits the Sun,
there are four seasons on Earth.

There are four seasons on Earth.
(1)

https://github.com/hitachi-nlp/FLD
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𝓖𝓖

𝓗𝓗

Modus ponens

𝓕𝓕 → 𝓖𝓖 ∧ (𝓖𝓖 → 𝓗𝓗)
∧ elimination

𝓕𝓕 → 𝓖𝓖 (𝓖𝓖 → 𝓗𝓗)𝓕𝓕

(𝓖𝓖 → 𝓗𝓗)

(𝓕𝓕 → 𝓗𝓗)

→ introduction

Modus ponens

𝓕𝓕 → 𝓖𝓖 ∧ (𝓖𝓖 → 𝓗𝓗)

(𝓕𝓕 → 𝓗𝓗) …

…

…

…

…

… …

…

…

…

…

Syllogism

Multistep 
deduction by 
the axioms

Other deduction rules

Figure 2: Multistep deductions constructed from the
aximos can express any other deduction rules.

The conclusion logically follows from two premises;
therefore, this step is logically valid. Next, consider
another step:

Earth orbits the Sun. If Earth orbits the Sun,
there are no seasons on Earth.

There are no seasons on Earth.
(2)

The second premise is false, and thus, the conclusion
is false too. However, if the premises were correct, the
conclusion would be logically derived. In this sense,
this step is still logically valid. Finally:

There is "piyopiyo" If there is "piyopiyo",
then there is "poyopoyo".

There is "poyopoyo".
(3)

"Piyopiyo (ぴよぴよ)" and "poyopoyo (ぽよぽよ)"
are undefined; nevertheless, we can understand that this
step is also logically valid. The examples (1) to (3) can
be abstracted into a deduction rule using symbols:

F F → G modus ponens
G (4)

This deduction rule is called “modus ponens”.
From the discussions above, we can see that the log-

ical validity of deduction rules does not depend on the
factual correctness of F or G (i.e., F and G are ar-
bitrary), but solely on whether the conclusion is logi-
cally derived from the premises. Factual correctness (or
knowledge) and logical validity are distinct concepts.

Humans can easily perform reasoning using the de-
duction rule like (4). LLMs might also generate the
conclusion of (1) given the premises because such an
example should be common in the pre-training corpus.
However, this does not necessarily mean that LLMs
understand the deduction rule (4), especially the arbi-
trariness of F and G. Whether LLMs genuinely under-
stand the deduction rule (4) is revealed only when they
can logically deduce conclusions under counterfactual
premises like those in (2) and (3). Hence:

• Design Principle 1: Use counterfactual exam-
ples to assess if LLMs comprehend the deduc-
tion rules.

In addition to the modus ponens rule, various other
deduction rules exist:

(F∧G)
F

(F∧G) ∧-elimination
G

(5)

(F → G)∧(G → H) syllogism
F→ H

(6)

Since we have infinite forms of logical formulas appear-
ing in premises or conclusions, we have an infinite va-
riety of deduction rules. However, incorporating these
infinite deduction rules into our corpus is impractical.
Therefore, we need a trick.

Here, let us consider multistep deductive reasoning
(Figure 2 left). As seen, the conclusion is derived by ap-
plying multiple deduction rules. Interestingly, the syl-
logism (6) can be derived through multistep application
of more “atomic” deduction rules (Figure 2 right). In-
deed, there exists a set of atomic deduction rules called
axioms (Figure A.3), satisfying the following:

Theorem 3.1 (Completeness of first-order predicate
logic (Gödel, 1930)). Any valid deduction rule is deriv-
able by multistep deduction constructed from the ax-
ioms.

Therefore, if an LLM can handle multistep deduc-
tions constructed by the axioms, then it can effectively
manage various other deduction rules. We use this na-
ture for our corpus design as:

• Design Principle 2: As examples, we employ
multistep deductions constructed by the ax-
ioms. These examples can effectively assess
whether the LLMs can handle various deduc-
tion rules.

4. Construction of JFLD

On the basis of the design principles discussed in the
previous section, we construct JFLD. To this end, we
extend a previous corpus generation framework FLD
(Morishita et al., 2023). FLD initially generates mul-
tistep deductiojn examples constructed by the axioms
(Design Principle 2). Subsequently, each logical for-
mula in the example is converted into English using
templates and vocabulary assignments. The vocabulary
assignments are random, and therefore the examples
will be counterfactual (Design Principle 1). In JFLD,
we extended the templates and vocabulary assignments
to Japanese.

4.1. Linguistic Templates of Japanese
Common Expressions for Formulas

FLD first creates a deductive proof tree with (i) a root
node indicating the hypothesis to be (dis-)proved, (ii)
leaf nodes indicating the accessible facts, and (iii) inter-
nal nodes indicating intermediate logical steps. Each
node is represented as a formula. These formulas are
then converted into English using linguistic templates.



9529

Name
Proof tree

depth
Proof tree
branches

Total
logical steps

No. of
distractors

D1− 1 - 1 - 1 0
D1 1 - 1 - 1 0 - 20
D3 3 ✓ 1 - 8 0 - 20
D8 8 ✓ 1 - 13 0 - 20

Table 1: JFLD datasets in ascending order of diffi-
culty. Each dataset consists of 30k/5k/5k instances for
train/valid/test splits, respectively. See Section 4.3.

We manually crafted templates of common Japanese
expressions. We prepared about 4,000 templates in to-
tal for various formulas, such as follows:

∀x, F (x) → G(x) : F なものは Gだ (F things are G)

:何かが Fなら、それは Gだ

(If something is F , it is also G.)

: . . .

F (a) → G(b) : aが F なら bは Gだ (If a F , then b G.)

: F な aは Gな bに繋がる (F a leads to G b )

: . . . (7)

4.2. Phrase Assignment to Logical Symbols
under Japanese Syntax

We assign a Japanese phrase to each atomic logical
symbol, such as F,G, a, b in (7). Following Morishita
et al. (2023), we make the assignments as random as
possible. First, we prepared a Japanese grammatical
constraint for each formula, such as follows:

• Logical predicates such as F and G must map to
Japanese predicates such as “[動詞]” ([VERB]), ‘‘は
[形容詞]だ” (is [ADJ]), and ‘‘は [名詞]” (is [NOUN]).

• Constants such as a and b must map to entity nouns
“[エンティティ名詞]” ([entity-NOUN]).

We then randomly sample a phrase from a vocabulary
that satisfies each constraint. We used Multilingual
WordNet (Bond and Foster, 2013) for the vocabulary.
The resulting assignments are exemplified below:

F :‘‘単純” (simple) G : ‘‘最良” (best)

a :‘‘ハンバーガー”(hamburger) b : ‘‘詩”(poem)

Further, we incorporate the Japanese-specific syntac-
tical phenomena as follows. First, Japanese word order
is highly flexible, e.g., a subject and an object are al-
most always interchangeable. We accounted for this by
randomly permuting phrases when allowed. Second,
Japanese is an agglutinative language, where phrases
often undergo complex morphological changes (inflec-
tions) depending on their contexts, e.g., from ‘‘彼が
走る” (He runs=“Kare ga hashiru”) to ‘‘もし彼が走れ
ば” (If he runs = “Kare ga hashireba”). We ensure the cor-
rect inflections by means of the dictionary of MeCab
(Kudo, 2005), a well-known Japanese morphological
analyzer.

name # of training tokens huggingface hub name

rinna 300B
japanese-gpt-neox-3.6b
-instruction-ppo

line - (600GB) japanese-large-lm-3.6b

stablelm 750B
japanese-stablelm-base
-alpha-7b

calm 1300B open-calm-7b
weblab 600B weblab-10b
plamo 1500B(en+jp) plamo-13b
llmjp 300B llm-jp-13b-v1.0
stockmark 200B stockmark-13b

elyza 2000B(en)+20B(jp)
ELYZA-japanese-Llama-2
-7b-fast

swallow 2000B(en)+600B(jp) Swallow-70b-hf

Table 2: Japanese LLMs evaluated in this paper. See
https://github.com/llm-jp/awesome-japanese-llm for
the details of each model.

4.3. Benchmark Statistics

We designed JFLD as a collection of datasets span-
ning various degrees of difficulty, as shown in Table 1.
“Proof tree branches” indicates whether a tree contains
multiple branches, and “Total logical steps” shows the
number of intermediate logical steps required to (dis-
)prove a given hypothesis. The presence of branches
and an increased number of logical steps make the task
more challenging. “No. of distractors” indicates the
number of noisy facts irrelevant to the proof. An in-
creased number of distractors also makes the task more
difficult, as a model could include the wrong facts in its
proof.

5. Experiments

We evaluated the Japanese LLMs shown in Table 2.
All LLMs were fine-tuned2 on the training split of
each dataset, using a variable number of examples
n = 5 to 30, 000. We then evaluated their perfor-
mance on the test split using the answer accuracy
and the proof accuracy (Morishita et al., 2023). The
answer accuracy assesses whether the final answer
(proved/refuted/unknown) is correct. The proof accu-
racy is a more stringent measure, evaluating whether
the final answer is correct and the all of the interme-
diate logical steps are also correct. For reference, we
also evaluated GPT-4 with in-context learning under a
5-shot setting3.

For the training, we implemented simple causal mod-
eling, where we prompt an LLM by the facts and the hy-
pothesis and then make it generate the logical steps and
the answer maker, as illustrated in Figure 1. We trained

2In-context learning (ICL), which is often used for few-
shot settings, is infeasible for Japanese LLMs due to their
short context length (up to 2k). Note that fine-tuning yields
comparable results to ICL (Mosbach et al., 2023).

3Only five examples could fit into the GPT-4’s context.

https://github.com/llm-jp/awesome-japanese-llm
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D1- D1 D3 D8

n=5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000

GPT-4 82.1 - - - - 38.6 - - - - 10.9 - - - - 0.9 - - - -

rinna-4B 36.8 51.3 93.3 97.2 99.7 20.2 6.8 16.4 30.8 64.4 3.5 8.9 14.7 31.3 27.3 1.8 9.5 23.3 32.9 32.7
line-4B 31.9 61.1 90.8 95.8 99.7 14.7 11.9 25.3 44.0 81.5 0.0 10.3 14.0 34.1 37.6 1.8 11.3 26.6 34.1 38.1
stablelm-7B 32.2 57.2 94.1 98.9 99.9 19.5 10.5 32.7 77.7 93.1 0.0 5.6 13.7 44.5 68.6 0.0 6.4 18.7 39.6 44.4
calm2-7B 37.6 60.8 93.3 98.9 99.5 26.7 9.3 36.3 77.4 93.2 0.0 5.8 12.7 45.1 69.9 0.0 9.2 20.9 39.2 47.4
weblab-10B 32.9 61.4 94.8 99.7 100 13.4 11.1 37.2 76.1 94.2 0.0 9.9 18.0 45.8 64.9 1.3 8.1 22.6 39.7 43.4
plamo-13B 32.2 57.5 94.7 98.0 100 18.5 11.3 37.0 77.9 93.7 0.0 6.2 18.0 48.4 69.9 0.2 11.7 20.9 39.9 45.8
llmjp-13B 36.6 71.9 95.9 98.8 99.9 19.6 8.3 47.8 74.8 94.3 0.0 7.3 23.3 43.0 66.5 3.5 12.7 16.0 39.3 47.3
stockmark-13B 37.3 66.9 94.0 99.3 100 12.6 12.7 53.2 87.6 96.6 0.0 7.8 28.1 57.6 72.3 0.0 9.5 27.7 41.7 47.7
elyza-13B 35.3 66.4 97.4 99.3 100 4.4 20.6 66.9 90.8 96.9 0.0 9.2 40.4 70.0 82.0 0.0 12.3 31.9 46.9 53.7
swallow-13B 36.3 82.7 98.1 99.9 100 22.3 21.9 71.6 91.0 98.2 0.8 8.3 42.9 69.5 81.6 1.5 8.6 30.1 44.1 54.2
swallow-70B 34.2 91.4 98.0 100 100 9.9 36.2 81.6 97.4 100 0.0 25.7 50.7 82.2 91.4 0.0 13.8 37.5 54.6 65.1

Table 3: Proof accuracies of LLMs on each dataset. n indicates the number of training examples.

Chosen facts Generated conclusion

1. その向性は跡見学園女子大学短期大学部を送り届ける
(“The tropism delivers Atomi Junior College.”)

2. もしあの土管が跡見学園女子大学短期大学部を送り届けるならばこのはたはたは危なっかしい
(“If the clay pipe delivers Atomi Junior College, then the grouper is in jeopardy.”)

このはたはたが跡見学園女子大学短期大学部を送り
届けるかあるいはそれが段物であるか両方である
(“Either the grouper delivers Atomi Junior College,
or it is Danmono, or both.”)

1. あの地区は遅谷であるしそれは唱える
(“The district is Osodani and also it chants.”)

2. 「騒々しいし茶臼台を騒げるということがない」ものがある
(“There is something noisy that can not clamor Chausudai.”)

あの地区は遅谷である
(“The district is Osodani.”)

1. 「この歩兵は安良里であるが退城ということはない」ということは成り立たない
(“It does not follow that the infantryman is Ajari but not a retreat.”)

2. 「この歩兵は安良里であるがそれが退城ということはない」ということが成り立たないなら
その歩兵はニッコーである
(“If it does not follow that the infantryman is Ajari but not a retreat, then it is Nikko.”)

その歩兵はニッコーでない
(“The infantryman is not Nikko.”)

Table 4: Examples of incorrect logical steps generated by weblab-10B-instruct.

each LLM for a maximum of 300 gradient steps (See
Appendix A for the details of the training).

6. Results and Discussion
6.1. Quantitative Evaluation - Proof

Accuracy

Table 3 presents the proof accuracy for each LLM.
Firstly, GPT-4’s few-shot (n = 5) performance was
moderately successful on low-difficulty datasets (D1−,
D1), but its insufficient on higher-difficulty datasets
(D3, D8).

The performance of Japanese LLMs in the few-shot
setting was even lower than GPT-4. When evalu-
ated using the answer accuracy (Appendix A.1), the
gap widened further between GPT-4 and the Japanese
LLMs. Comparing Japanese LLMs, generally, larger
models exhibited better performance.

The aforementioned results suggest that: (i) The
Japanese LLMs have not acquired sufficient logical rea-
soning abilities during pre-training, (ii) given GPT-4’s
better performance, there is potential for improvement
in the reasoning abilities of Japanese LLMs through
the enhancement of pre-training quality and quantity,
as well as by increasing the model size, but (iii) it is un-
likely that their abilities will achieve a fully sufficient
level, mirroring the limitations observed even in GPT-
4.

Performance improved across all datasets with an in-
crease in the number of samples n, indicating that train-

ing on larger logical datasets is promising.
Most of Elyza’s pre-training corpus is in English,

with significantly less Japanese content compared to
other LLMs. Nevertheless, Elyza demonstrated equal
or better performance than other Japanese LLMs, sug-
gesting that logical reasoning abilities can be transfer-
able across languages.

6.2. Qualitative Evaluation - Error Analysis
of Logical Steps

Table 4 provides examples of incorrect logical steps
generated by LLMs. The first example represents what
could be termed a logical hallucination, where the gen-
erated conclusion is not logically deducible from the
premises. In the second example, one of the chosen
premises (i.e., premise 2) is logically unrelated to the
conclusion. The third example suggests that LLMs do
not comprehend the logical implications of negation.
These findings imply that Japanese LLMs still lack a
fundamental understanding of logic.

7. Conclusion
We proposed a deductive reasoning benchmark for
Japanese. Our evaluation of Japanese LLMs revealed
their poor reasoning ability. Our future work will inves-
tigate whether the training on larger corpus will further
enhance their logical reasoning ability. We will also ex-
plore the cross-lingual transferability of reasoning abil-
ities.
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A. Details of Training

In evaluating LLMs, in-context learning is commonly
employed; however, JFLD examples exceed 1k tokens,
making them challenging to fit within the context win-
dow of Japanese LLMs. Consequently, we opted for
evaluation through fine-tuning. According to Mosbach
et al. (2023) (Mosbach et al., 2023), fine-tuning and
in-context learning can yield comparable results under
proper experimental setups. Thus, we adhered to the
protocol from Mosbach et al. (2023): a learning rate of
1e-05, a batch size of 32, and 300 gradient steps. To pre-
vent overfitting, we limited the number of epochs to a
maximum of 50, with 50 gradient steps for n=5 and 156
gradient steps for n=100. Experiments were conducted
with three different seeds. For additional details, refer
to the code.

A.1. Results and Discussion on Answer
Accuracy

The results for the answer accuracy are presented in Ta-
ble .5. The proof accuracy discussed in Section 6.1 is a
stringent metric as it requires the correctness of all the
intermediate logical steps in addition to the final answer
(proved/refuted/unknown). In contrast, the answer ac-
curacy, which only demands correctness in the answer,
is a more lenient indicator, with even random guessing
achieving 33.3%.

The answer accuracy for GPT-4 significantly sur-
passes its proof accuracy, thereby widening the perfor-
mance gap with Japanese LLMs. Analysis of the logi-
cal steps generated by GPT-4 reveals that it often pro-
duces the correct answers through incorrect steps. This
suggests that GPT-4 may not always adhere to its gener-
ated logical steps, possibly conducting correct reason-
ing internally within the model. Therefore, when as-
sessing GPT-4’s logical reasoning abilities, the proof
accuracy might lead to an underestimation. The obser-
vation that LLMs may not follow their generated rea-
soning steps is supported by other studies (Turpin et al.,
2023; Lanham et al., 2023).
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D1- D1 D3 D8

n=5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000 5 100 1,000 10,000 30,000

GPT-4 83.2 - - - - 60.4 - - - - 39.6 - - - - 37.6 - - - -

rinna-4B 38.8 53.0 94.8 98.9 99.9 33.9 43.8 55.1 72.5 82.6 31.9 39.5 49.6 44.2 55.4 26.4 38.7 40.0 37.6 38.3
line-4B 35.9 64.2 92.5 98.0 99.7 37.6 40.2 59.2 72.4 89.8 30.4 37.0 44.6 39.3 58.1 25.9 37.0 40.7 36.8 40.6
stablelm-7B 32.2 59.5 94.6 99.3 99.9 33.9 41.0 62.3 83.4 94.2 30.5 37.1 48.1 59.2 73.4 28.4 40.5 40.6 40.4 45.2
calm2-7B 38.4 63.5 94.6 99.7 99.5 32.1 48.1 63.8 85.1 93.8 32.6 40.0 51.5 62.3 73.9 35.7 38.0 46.2 40.3 48.9
weblab-10B 35.5 64.0 95.6 99.8 100.0 36.1 45.8 64.2 81.1 95.0 31.9 39.5 47.1 54.3 68.3 27.0 37.8 42.6 41.2 43.9
plamo-13B 37.1 60.2 95.7 98.1 100.0 34.1 37.7 61.3 83.6 94.1 28.6 38.2 50.2 59.3 75.7 19.6 47.5 43.7 40.5 46.4
llmjp-13B 37.3 75.0 96.5 99.8 99.9 33.4 40.5 65.8 82.1 95.5 35.4 38.6 57.8 57.8 74.4 28.4 40.2 48.4 40.6 50.7
stockmark-13B 42.8 69.4 94.9 99.3 100.0 36.5 52.1 69.7 89.9 97.2 33.1 39.4 56.7 67.5 75.5 28.6 42.4 48.1 42.5 49.5
elyza-13B 36.6 68.9 97.8 99.3 100.0 36.8 50.9 74.1 91.9 98.0 36.3 48.3 64.2 77.2 84.9 30.8 41.8 49.7 47.8 55.0
swallow-13B 39.6 84.7 98.2 99.9 100.0 34.6 49.9 80.3 92.3 98.6 33.0 38.6 65.4 75.2 84.3 25.7 41.1 50.1 45.4 55.2
swallow-70B 34.2 92.8 99.3 100.0 100.0 34.2 59.2 82.9 98.0 100.0 46.7 42.1 66.4 83.6 92.8 32.2 40.8 53.9 55.9 67.8

Table .5: Answer accuracies of LLMs on each dataset. n indicates the number of training examples.
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Figure A.3: The axioms of first-order predicate logic.
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