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Abstract
Dialogue policy learning (DPL) aims to determine an abstract representation (also known as action) to guide what
the response should be. Typically, DPL is cast as a sequential decision problem across a series of predefined
action candidates. However, such static and narrow actions can limit response diversity and impede the dialogue
agent’s adaptability to new scenarios and edge cases. To overcome these challenges, we introduce a novel Joint
Transformer Reinforcement Learning framework, coined as JoTR, where a text-to-text Transformer-based model is
employed to directly generate dialogue actions. More concretely, JoTR formulates a token-grained policy, facilitating
more dynamic and adaptable dialogue action generation without the need for predefined action candidates. This
method not only enhances the diversity of responses but also significantly improves the system’s capability to manage
unfamiliar scenarios. Furthermore, JoTR utilizes Reinforcement Learning with a reward-shaping mechanism to
efficiently fine-tune the token-grained policy. This allows the model to evolve through interactions, thereby enhancing
its performance over time. Our extensive evaluation demonstrates that JoTR surpasses previous state-of-the-art
models, showing improvements of 9% and 13% in success rate, and 34% and 37% in the diversity of dialogue
actions across two benchmark dialogue modeling tasks respectively. These results have been validated by both user
simulators and human evaluators. Code and data are available at https://github.com/KwanWaiChung/JoTR.

Keywords: Dialogue Policy Learning, JoTR Framework, Reinforcement Learning, Language Model, Dia-
logue System.

1. Introduction

Dialogue Policy Learning (DPL) seeks to identify
optimal actions for a dialogue agent to manage con-
versation flow and deliver contextually relevant re-
sponses. These actions, abstract representations
of strategic decisions, are typically optimized using
Reinforcement Learning (RL) (Lipton et al., 2016;
Li et al., 2017; Peng et al., 2018; Takanobu et al.,
2019; Wang et al., 2020; Li et al., 2020b; Wang
et al., 2023; Kwan et al., 2023). A dialogue action
typically includes one or more combinations of a
domain name, intent type, and slot name, collec-
tively known as an “atomic action” (Li et al., 2020a).
Traditional DPL often prioritizes frequent actions to
boost RL efficiency. This approach, while effective
in some scenarios, may unintentionally restrict the
range of responses and hinder the dialogue agent’s
ability to adapt to new circumstances and edge
cases. This constraint stems from the static and
narrow focus of the action candidates.(Wang and
Wong, 2021). In real-world scenarios, relying solely
on a set of incomplete action candidates, which
only cover a subset of potential atomic actions or
their combinations, may not always yield the most
suitable responses. This is because the complex-
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ity and unpredictability of human interactions often
require a broader range of responses than what
is typically covered by the most frequent actions.
This issue is illustrated in Figure 1, where the user
concurrently requests the address, postcode, and
phone number of a restaurant. Among the most
frequently chosen action candidates, the optimal
response to the user’s query is “Action 1”. However,
this action only provides the address, thus only par-
tially meeting the user’s needs. In contrast, “Action
2”, generated by our approach, delivers a more
appropriate response. It thoroughly addresses all
the requested slots, thereby enhancing the user ex-
perience. This instance highlights the necessity for
a more flexible and adaptable strategy in Dialogue
Policy Learning (DPL), which is precisely what our
method strives to offer.

To expand action candidates, Li et al. (2020a)
proposed a GRU-based decoder for sequential
atomic action prediction. This approach enhances
response flexibility but struggles with the expo-
nential growth of dialogue state and atomic ac-
tion space. Wang and Wong (2021) proposed a
multi-agent RL framework, which, despite promis-
ing results, allows only one atomic action per turn,
leading to more turns and potentially unnatural ut-
terances. A related study used a Transformer for

https://github.com/KwanWaiChung/JoTR
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Figure 1: This demonstrates two distinct dialogue
actions produced by different policies. The re-
sponse generated from Action 1, selected from
predefined candidates, addresses only one aspect
of the user’s question. In contrast, Action 2, gener-
ated by JoTR, comprehensively responds to all the
required elements of the user’s query.

action production but required complex domain-
specific settings, forcing the agent to select from
fixed words (Geishauser et al., 2022). To address
these challenges and achieve efficient and effec-
tive dialogue action generation, we present a novel
Joint Transformer Reinforcement Learning Frame-
work (JoTR). JoTR’s primary innovation is its ability
to directly generate actions with a token-grained
policy, a significant departure from the traditional
reliance on fixed, human-defined templates. This is
achieved through a novel formulation for DPL, sub-
tle instruction design, and the integration of Trans-
former and Reinforcement Learning. Specifically,
JoTR uses a Transformer encoder to convert the
flattened language representations of various di-
alogue information into embeddings. These em-
beddings are then fed into another Transformer,
the token-grained policy, to autoregressively gener-
ate the dialogue actions in a structured format. To
optimize this policy, JoTR employs Reinforcement
Learning combined with reward shaping settings,
resulting in more efficient responses that require
fewer interaction turns, a critical aspect of enhanc-
ing user experience in dialogue systems. JoTR not
only achieves efficient dialogue modeling but also
improves response diversity and adaptation capa-
bilities. We evaluate JoTR’s performance on two
benchmark multi-domain dialogue modeling tasks
using common metrics like success rate, number of
turns, and average rewards. To assess response di-
versity, we introduce a new metric–distinct actions–
representing the total number of unique actions
applied during a series of conversations.

In summary, our key contributions include:

• Treating DPL as a generation problem, we in-
troduce JoTR, a transformer-based reinforce-
ment learning framework that learns the token-
grained policy.

• We integrate a reward-shaping mechanism
into the reinforcement learning fine-tuning pro-
cess to ensure efficient training.

• We conduct extensive experiments based on a
new metric–distinct actions–for response diver-
sity on two benchmarks, demonstrating JoTR’s
superior performance.

2. Related Work

Dialogue Policy Learning The conventional
method for building a task-oriented dialogue (TOD)
system involves a pipeline approach with four in-
terconnected modules: natural language under-
standing, dialogue state tracking, dialogue policy
learning (DPL), and natural language generation
Kwan et al. (2023). Reinforcement learning has
been the mainstream approach to optimize the
dialogue policy (Levin et al.; Singh et al.; Gašić
et al., 2010). To tackle the challenges of large
state-action spaces and low exploration efficiency
in DPL, hierarchical Reinforcement Learning has
been employed to divide the complex task into sub-
tasks (Budzianowski et al., 2017; Peng et al., 2017;
Kristianto et al., 2018; Tang et al., 2018). Other
researchers have used reward learning and reward
shaping for denser rewards and faster learning (Su
et al., 2015, 2016; Wang et al., 2020). Recently,
some studies have applied multi-agent Reinforce-
ment Learning to DPL (Liu and Lane; Zhang et al.,
2020), with some proposing a joint learning pro-
cess for the dialogue system and user agent, and
others partitioning the action space into subspaces
Wang and Wong (2021). These works frame model
DPL as a classification problem where the policy
chooses a suitable dialogue action from a prede-
fined action list. Contrasting to these methodolo-
gies, our approach obviates the need for a pre-
defined action list, generating the dialogue action
instead.

Pre-trained Language Model Recent research
has made significant strides in task-oriented dia-
logue (TOD) by fine-tuning pre-trained language
models (Budzianowski and Vulić, 2019; Hosseini-
Asl et al., 2020; Lee, 2021; Su et al., 2022; Zhao
et al., 2022), effectively unifying the learning pro-
cess of various pipeline modules. The SOLOIST
model leverages GPT-2 to sequentially generate
the belief state, dialogue action, and response
Peng et al. (2021). It’s first fine-tuned on a large di-
alogue corpus, then on the target dataset. He et al.
(2022) extended this approach by incorporating
unlabelled dialogue data through semi-supervised
learning. However, sequential subtask generation
can lead to error accumulation. To address this,
PPTOD concurrently generates the dialogue action
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and response after formulating the belief state, pre-
venting error propagation (Su et al., 2021). These
methods require a large dialogue corpus for pre-
training and fine-tuning. In contrast, our approach
only needs a small amount of data for the initial
model warm-up and uses Reinforcement Learn-
ing for fine-tuning, eliminating the need for labeled
data.

3. JOTR

We utilize a Transformer-based model to directly
generate dialogue actions, distinguishing it from
conventional approaches that rely on selecting dia-
logue actions from a predefined set of atomic dia-
logue actions and their combinations. The architec-
ture of our model is illustrated in Figure 2. In this
section, we first provide a formal definition of DPL,
and then present the overview of our approach.

3.1. Problem Definition
The objective of DPL is to learn a policy capable
of generating dialogue actions that interact with a
user, given the belief state and the database results,
with the aim of fulfilling the user’s goal G = (C,R).
In this context, C denotes the user constraints (e.g.
a flight ticket to Seattle) and R represents the infor-
mation the user seeks (e.g. the price of the flight
ticket). The belief state keeps track of the user’s
constraints throughout the dialogue. It is defined as
a list of domain, slot, and value triplets (e.g. [(flight,
destination, Seattle), (flight, day, tomorrow)]). The
dialogue action is represented as a list of domain,
intent, slot, and value quadruples (e.g. [(flight, re-
quest, time, ?)]). An external database provides
relevant entries to the dialogue policy based on
the belief state. Figure 1 provides an illustrative
example of such a process.

3.2. Dialogue State Text Encoding
The encoder generates state embeddings
eu, es, eb, ed ∈ Rd by encoding the flattened textual
representations of four elements: user action,
system action, belief state, and the database
result. These linearized textual representations
are referred to as the dialogue state text. The
user action is a sequence of tokens derived from
atomic dialogue action triplets, each comprising
the domain D, intent I, and slot S. This sequence
is represented as D1, I1, S1, . . . , DNu , INu , SNu ,
where Nu denotes the number of atomic user
dialogue actions. For instance, "Attraction Request
Address Attraction Request Phone" is a valid exam-
ple. The system action, similar to the user action,
is represented as D1, I1, S1, . . . , DNs , INs , SNs ,
with Ns indicating the number of atomic system
dialogue actions. The belief state is a sequence

formed by concatenating the belief state triplets,
where each triplet is composed of the domain
D, slot S, and value V . This sequence can
be represented as D1, S1, V1, . . . , DNb , SNb , VNb .
A typical example could be "Attraction Name
cherry hinton water play.". The database result
is represented as D1, Q1, . . . , DNd , QNd , with Nd

denoting the number of queried domains and
Q denoting the number of matched entities in
the database. An illustrative example would be
“Attraction two”.

To obtain the state embeddings eu, es, eb, ed, the
[CLS] token, a common sentence representation
placeholder, is prefixed to each dialogue state text
(Devlin et al., 2018). The output representation
of the [CLS] token of each dialogue state text is
used as the state embedding. Initial experiments
revealed inferior performance if the model is only
fed with the state embeddings, likely due to the
model’s confusion about the varying types of state
information being encoded. Therefore, a context
embedding was constructed for each dialogue state
text. The context embeddings are added with the
state embeddings individually to produce the state
s ∈ R4×d.

3.3. token-grained Dialogue Policy

We have formulated the problem of dialogue pol-
icy learning (DPL) as a Markov Decision Process
(MDP) on the word level. In this process, the sys-
tem agent observes the current dialogue state s,
executes an action a (generated by the policy func-
tion), receives a response, a reward r, and the up-
dated dialogue state s′. This cycle continues until
the conversation ends. The action a is textually rep-
resented as a sequence of words w1:N = w1 . . . wN .
The policy function can be detailed as a series of
conditional probabilities:

πθ(a|s) =
N∏
i=1

Pθ(wi|w1:i−1, s), (1)

where P is approximated with a Transformer
encoder-decoder network parameterized by θ, rep-
resenting the probability of the word wi condition on
the preceding words and state. As shown in Figure
2, the Transformer decoder generates the dialogue
action text word by word, beginning with the start
signal “[start]”, conditioned on the dialogue state,
and proceeds until it encounters the stop signal
“[end]”. Additionally, an action interpreter decodes
the dialogue action text into a structured format,
populating slot values from the database, and yield-
ing the final dialogue action. This process involves
verifying whether the dialogue action text adheres
to the domain, intent, and slot order, discarding any
words that violate these conditions. The policy π,
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Figure 2: The joint Transformer and Reinforcement Learning framework illustration consists of: 1) (Left
Part) Text Encoding - The encoder processes user act, system act, belief state, and database query
results to form the state,D denotes the Domain (e.g., restaurant), I is the Intent (e.g., inform), S is the
slot type (e.g., request), V is the slot’s value (e.g., date), and Q represents the Number of matched
queries in the database; 2) (Right Part) Model Optimization - The state directs action generation, with the
Action Interpreter generating structured dialogue actions. The Transformer-based policy model undergoes
interactive optimization through Reinforcement Learning from scratch.

parameterized by θ, is optimized using Reinforce-
ment Learning to minimize the negative expected
cumulative future rewards:

Lθ = −Eat∼πθ(·|st)

[
T∑

t=1

r(st, at)

]
, (2)

where st and at are the state and dialogue action
turn t, and T is the maximum turn. In practice,
the expected gradient for a dialogue session can
be approximated by using a Monte Carlo sample
from Pθ. For each session example, the gradient
is approximated as:

∇θLθ ≈ −
T∑

t=1

r(st, at)∇θ log πθ(at|st) =

−
T∑

t=1

r(st, w
t
1:Nt)

Nt∑
i=1

∇θ logPθ(w
t
i |wt

1:i−1, st),

(3)
where N t is the length of the action text at turn t.

3.4. JoTR for Efficient Policy Training

We employ Proximal Policy Optimization (PPO)
(Schulman et al., 2017) to optimize the policy. More
specifically, we minimize the objective function for
each session example.

Lθ =

T∑
t=1

−Êt

[
min

(
πθ (at | st)
πθold (at | st)

Âϕ
t ,

clip

(
πθ (at | st)
πθold (at | st)

, 1− ϵ, 1 + ϵ

)
Âϕ

t

)]
=

T∑
t=1

−Êt

[
min

( ∏N
i=1 Pθ(wi|w1:i−1, st)∏N

i=1 Pθold(wi|w1:i−1, st)
Âϕ

t ,

clip

( ∏N
i=1 Pθ(wi|w1:i−1, st)∏N

i=1 Pθold(wi|w1:i−1, st)
, 1− ϵ, 1 + ϵ

)
Âϕ

t

)]
,

(4)
where Âϕ

t = r(st, at) + γV ϕ(st+1)− V ϕ(st) is the
advantage estimation and V ϕ(st) is the value func-
tion estimated by the critic parameterized by ϕ.

To improve the efficiency and quality of the dia-
logue response, we integrate reward-shaping into
the Reinforcement Learning fine-tuning process.
The goal is to prevent the policy from generating
protracted yet predominantly irrelevant dialogue ac-
tions during optimization with PPO. To achieve this,
we propose a reward-shaping function assigning
supplementary rewards to guide the model to learn.
Formally, we replace the r(st, at) with r̂(st, at, G)
defined as

r̂(st, w
t
1:Nt , G) = r(st, at) + F (G,wt

1:Nt), (5)

where G denotes the user goal and F represents
the shaping reward. We design F to provide dif-
ferent rewards based on the following: (1) If the
system informs a slot present in the user’s request
slot list, it receives an additional λ reward. Con-
versely, informing other slots receives an additional
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-1 reward. (2) If the system requests a slot included
in the user’s inform slot list, it receives an additional
λ reward. However, requesting other slots results
in an additional -1 reward. λ is a hyperparameter
that controls the aggressiveness of the dialogue
agent to inform or request additional slots. We try
λ with values 3, 4, 5, 6, 7. We find that the range
of 3 to 5 yielded favorable results during validation.
Higher λ values encourage the dialogue agent to
attempt many actions in a single turn, where one
successful inform or request action offsets the neg-
ative rewards incurred by other irrelevant actions.
We pick λ = 3 for all the experiments.

4. Experiments and Results

Experiments are carried out on MultiWOZ 2.0
(Budzianowski et al., 2018), utilizing a publicly ac-
cessible agenda-based user simulator (Zhu et al.,
2020), and on the SGD dataset with our developed
rule-based simulator. Furthermore, we incorporate
human evaluations, in which evaluators interact
with various models and assess the success of the
dialogue upon its completion. While all models,
except SimpleTOD, are optimized in the dialogue
action space, SimpleTOD takes the utterance dia-
logue history as input and generates both the dia-
logue action and the system utterance.

5. Evaluation Metrics

We employ three primary evaluation metrics: suc-
cess rate, the average number of turns, and aver-
age rewards, aligning with previous work (Wang
and Wong, 2021). Additionally, we introduce a new
metric, distinct actions, to assess response diver-
sity. A detailed explanation of these metrics: 1)
Success rate (Succ.). A dialogue session is con-
sidered successful if it fulfills all the user requests,
and reserves an entity that meets the user’s specifi-
cations if necessary. 2) Average number of turns
(Turn) is calculated by counting the number of inter-
actions between the two parties, with each full inter-
action counted as two turns. 3) Average rewards
(Rew.) is the total cumulative reward obtained in
each dialogue session. 4) Distinct actions (#Acts)
calculate the number of different dialogue actions
utilized during a series of conversations indicating
the coverage of the dialogue actions.

Furthermore, as SimpleTOD uses text utterances
as input, a natural language generation (NLG) com-
ponent is required to transform the user’s dialogue
actions into utterances. However, SimpleTOD’s
performance heavily relies on the NLG component.
Hence, we also evaluate it against a testing corpus,
which we believe is a more effective method than
using a user simulator equipped with natural lan-
guage understanding and NLG modules that could

potentially introduce variances.

6. Training & Implementation Details

We implement all the models in PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020).
We use a randomly initialized Transformer encoder
with 1 hidden layer, 1 head, and a hidden size of
256 as the dialogue state text encoder of JoTR. In
JoTRpretrained, we use DistilBert (Sanh et al., 2019)
with pre-trained weights from Huggingface as the
initial weights for the dialogue state text encoder.
For the encoder-decoder model, we use a Trans-
former with 1 hidden layer, 1 attention head, and
a hidden size of 256 for both the encoder and de-
coder. The total number of parameters is 5M. All
variants of JoTR and MLPppo are warmed up before
Reinforcement Learning by first performing super-
vised learning on a training set to be consistent
with previous work (Wang and Wong, 2021). We
use the same set of 10K dialogue turns sampled
randomly from the original training set to warm up
all models. A separate, non-overlapping set of 3K
dialogue turns is used for validation in the warm-
up phase. The same set of hyperparameters is
used on MultiwWOZ and SGD in both pretraining
and PPO fine-tuning. For the warm-up phase, the
models are trained using a batch size of 32 and a
learning rate of 3×10−4. The models are trained for
80 epochs but we include an early stopping mech-
anism that halted training when no improvement is
observed in the validation set over five consecutive
epochs. In PPO training, we use an actor learning
rate of 5×10−7 and a critic learning rate of 1×10−4.
The critic is a Transformer with identical architec-
ture to the encoder-decoder model. The maximum
interaction turn allowed is 40. The main reward
provided by the environment is -1 in every turn and
a reward of 80 or -40 at the end for successful or
failed dialogue respectively.

7. Simulator Details

We employ an agenda-based simulator to sample
a user goal based on the slot distribution in the
MulwiWOZ training set. The user goal remains
undisclosed to the dialogue agent. The simulator
maintains a stack (i.e., user agenda) storing all nec-
essary user actions to achieve the goal during the
conversation, responding to system actions based
on predefined rules. We’ve also implemented an
agenda-based simulator for SGD, adhering to the
widely accepted user simulator design approach
from previous works (Schatzmann et al., 2007;
Wang and Wong, 2021; Kwan et al., 2023). This im-
plementation is a valuable tool for future research
and development in this field.
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Figure 3: The learning curve of various models on MultiWOZ and SGD, with the mean and standard
deviation illustrated over 5 runs. JoTR outperforms other models in performance and exhibits enhanced
training efficiency, achieving a success rate of 0.93 within 50k frames. In contrast, JOIE, the previous
state-of-the-art model, reaches a success rate of 0.91 over 400k frames.

7.1. Baseline Agents
We compare our model, JoTR, to five other models.

• JOIE (Wang and Wong, 2021), the current
state-of-art(SOTA) on MultiWOZ, is a collab-
orative multi-agent model that generates an
atomic action per turn.

• MLPppo is an agent optimized with PPO with
fixed action candidates.

• SimpleTOD (Hosseini-Asl et al., 2020) is a
GPT-2-based agent trained with supervised
learning to generate dialogue actions along
with both belief states and responses based
on the dialogue history.

• DASP (Jhunjhunwala et al., 2020), is an LSTM-
based agent that is trained with human supervi-
sion to select among N-best action candidates
based on the dialogue history.

• ChatGPT built on InstructGPT (Ouyang et al.,
2022), is an effective conversational agent
used in our work to generate dialogue actions
from action history using a zero-shot prompt.

To further demonstrate the advantages of our
model, JoTR, we also compare it to three vari-
ants. JoTRw/o rs does not use reward shaping.
JoTRw/o ppo is only pre-trained with supervised
learning and not further fine-tuned with PPO.
JoTRpretrained uses a pre-trained BERT as the con-
text encoder but with the weights fixed.

7.2. Main Results
The learning curve depicted in Figure 3 shows the
superior performance and efficiency of the pro-
posed JoTR model. Notably, JoTR outperforms

the previous SOTA model JOIE (0.93 vs 0.91 for
MultiWOZ and 0.79 vs 0.51 for SGD) despite only
being trained with 50K frames, compared to JOIE’s
400K frames (Wang and Wong, 2021). Notice that
JOIE only obtained a success rate of 0.55 when
trained with 50K frames similar to JOTR, demon-
strating a significant improvement in training effi-
ciency. Moreover, the ability of JoTR to improve
significantly with such short training makes it more
suitable for real-world applications.

Table 1 shows that JoTR requires significantly
fewer turns than JOIE to satisfy the user goal. This
efficiency can be attributed to JoTR’s capacity to
generate multiple atomic actions in one turn, in
contrast to JOIE’s single-action prediction. This
characteristic not only reduces the total number of
interaction turns but also enhances JoTR’s practi-
cality for everyday use.

All JoTR variants outperform MLPppo. Notably,
JoTRw/o ppo surpasses MLPppo without additional
RL fine-tuning, suggesting that the robust learning
capacity of the Transformer is effectively utilized to
learn the specific structural properties of dialogue
actions. Compared to SimpleTOD, JoTR exhibits
superior performance due to its use of dialogue ac-
tions as input, which reduces noise and complexity
compared to SimpleTOD’s language utterances.
Moreover, JoTR demonstrates significantly more
diversity in the dialogue actions generated, as ev-
idenced by the distinct actions. It generated 249
and 494 different actions in MultiWOZ and SGD
respectively, which is 34% and 37% more dialogue
actions than SimpleTOD, the most diverse among
the previous models. This indicates that JoTR has a
profound understanding of atomic dialogue actions,
enabling it to combine them effectively to handle
unseen dialogue scenarios. Furthermore, JoTR’s
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Figure 4: The dialogue example provided illustrates a user goal that requires: 1) querying the address,
postcode, and phone number of a park located in the east; 2) booking a guesthouse with parking service
located in the center for 8 people on Saturday, staying for 5 days, and asking for the phone number;
3) calling a taxi to arrive at 18:15 and requesting information about the car type and phone number.
User utterances are in italics, while agents’ responses are highlighted in bold. Boxes in different colors
are used for different models. The system’s dialogue actions (text on the right) highlighted in yellow
underscore JoTR’s ability to manage complex and out-of-domain user actions, a task that other models
find challenging. The dialogue actions highlighted in pink demonstrate JoTR’s skill in proactively providing
relevant slots, an area where other models tend to underperform.

encoder-decoder model structure is more effective
at capturing context information than SimpleTOD’s
decoder-only model. Lastly, JoTR significantly out-
performs ChatGPT. Most errors made by ChatGPT
fall into two categories: 1. hallucination on domain,
slot, and values, and 2. violations of output format
constraints.

7.3. Ablation Study

7.3.1. The Effectiveness of Reward Shaping

Applying reward shaping improves the success rate
from 0.89 to 0.93 in MultiWOZ, and from 0.72 to
0.79 in SGD. This improvement is clearly demon-
strated when comparing JoTR without reward shap-
ing (JoTRw/o rs) and JoTR. It indicates that reward
shaping significantly contributes to enhancing the
success rate. As Figure 3 illustrates, JoTR main-
tains a higher success rate than JoTRw/o rs through-
out the fine-tuning process. Additionally, without
reward shaping, the generated dialogue actions
are 17% and 13% less diverse in MultiWOZ and
SGD, respectively. It suggests that the reward shap-
ing encourages the policy to explore more actions.
Overall, these performance differences highlight
the advantage of using a dense and well-designed
reward in RL fine-tuning, consistent with previous
findings (Wang et al., 2022).

7.3.2. The Necessity of RL Fine-Tuning

JoTRw/o ppo markedly underperforms without being
further fine-tuned with RL, exhibiting a reduction
of up to 28% in success rate on MultiWOZ. The
diversity of generated actions also diminishes no-
tably in the absence of RL fine-tuning, showing a
27% decrease in unique dialogue actions. This is
expected since the training set only covers a limited
amount of dialogue actions, thus the policy does
not have the chance to explore a broader action
set compared to those fine-tuned with RL. This un-
derlines the critical role of RL fine-tuning in refining
the behavior of the policy model through the reward
signal.

7.3.3. Importance of Training from Scratch

JoTR significantly outperforms JoTRpretrained,
achieving a success rate of 0.93 versus 0.76
in Multiwoz and 0.79 versus 0.64 in SGD. As
evidenced by Figure 3, JoTRpretrained exhibits a
notably lower success rate initially. This can be
attributed to the distinct structure of the dialogue
actions’ input space, which markedly differs from
the natural language space where the model was
originally pre-trained. This discrepancy cannot be
bridged effectively by supervised training during
the warm-up phase or Reinforcement Learning in
the fine-tuning phase.
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Model MultiWOZ SGD
Succ.↑ Turn↓ Rew.↑ #Acts↑ Succ.↑ Turn↓ Rew.↑ #Acts↑

JOIE 0.55 18.90 40.82 147 0.51 11.10 15.32 210
MLPppo 0.56 30.72 -26.76 162 0.54 23.43 16.50 233
SimpleTOD‡ 0.62 - - 186 0.50 - - 361
DASP‡ 0.85 - - - 0.70 - - -
ChatGPT 0.73 13.10 41.05 165 0.50 11.04 15.48 242
JoTR 0.93 9.94 68.46 249 0.79 15.23 49.25 494
JoTRw/o rs 0.89 9.95 66.42 207 0.72 16.53 38.84 429
JoTRw/o ppo 0.67 18.44 32.18 189 0.55 24.76 14.62 357
JoTRpretrained 0.76 14.19 44.87 195 0.64 19.25 28.18 372

Table 1: Performance of various models in dialogue act modeling on MultiWOZ and SGD datasets,
assessed using metrics: success rate (Succ.), average turns (Turn), average (Rew.), and distinct actions
(#Acts). from the original paper are underscored. Models marked with ‡ are evaluated using a test corpus;
the highest scores are highlighted in bold.

Figure 5: This figure presents a comparison of
various responses to the same user query. In this
instance, the user is seeking information on three
slots: address, postcode, and phone number. We
use distinct colors to emphasize the parts of the
response that correspond to the user’s requested
slots. Upon examination, we find that only JoTR
and JJoTRw/ors inform all the slots requested by
the user.

7.4. Case Study

As demonstrated in Figure 5, we observe that when
the user requests a slot combination that is never
seen in the training set, both JoTR and JoTRw/o rs
can inform all requested slots successfully. This
demonstrates their robust ability to generate ef-
fective and efficient dialogue actions. In contrast,
JoTRw/o ppo, JoTRw/o pretrained, and SimpleTOD were
unable to inform all requested slots, potentially a
reflection of their inferior performance relative to
JoTR. JOIE only informed one requested slot, likely
due to its design limitation of generating a single
action per turn. Moreover, MLPppo could not inform
the complete slots as well, since the dialogue ac-
tion for informing address, postcode, and phone
number is not found within its predefined action

set. Lastly, ChatGPT responded inappropriately,
for reasons elaborated in the preceding section.

We also provide a full dialogue example of var-
ious models interacting with the user simulator in
Figure 4. The user requested the address, post-
code, and phone of the park in the second turn.
There is not a single training example that requests
these three slots simultaneously, showcasing the
ability of different models to respond to complex
and out-of-domain user actions. Consistent with
Figure 5, JoTR and JoTRw/o rs were able to inform
all three slots while other models can’t (highlighted
in yellow). Furthermore, when the user requested
a guesthouse in turn three, JoTR is able to provide
the phone number without being explicitly asked
while JoTRw/o rs and other models failed to do so as
(highlighted in pink). This illustrates that rewarding
shaping can incentivize the model to provide ad-
ditional information preemptively. In this example,
we can also see the dialogues of other models are
significantly longer than those of JoTR. Therefore,
JoTR is able to achieve the user’s goal efficiently.

7.5. Human Evaluation

Model Succ.(MultiWOZ)↑ Succ.(SGD)↑
JOIE 0.56 0.53
MLPppo 0.52 0.56
SimpleTOD 0.62 0.50
DASP - -
ChatGPT 0.66 0.52
JoTR 0.92 0.76
JoTRw/o rs 0.84 0.70
JoTRw/o ppo 0.66 0.56
JoTRpretrained 0.68 0.60

Table 2: Human evaluation results. We use the
models trained with 50K frames for all agents.

We further conduct a human evaluation to vali-
date the simulation results using the models trained
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with 50K frames. We recruited 3 volunteer student
helpers as evaluators to interact with different mod-
els. For each model, we held 50 dialogue sessions.
In each session, an evaluator is assigned a ran-
domly selected model and user goal. The evalu-
ators are instructed to interact with the model in
accordance with the user goal, with a maximum
of 20 turns per session, aligning with the settings
used in the experiments in previous sections. At
the end of each session, the evaluators assessed
the success or failure of the dialogue. The results
are illustrated in Table 2, which are consistent with
the previous results using a user simulator.

8. Conclusion

We introduced JoTR, a versatile framework for dia-
logue policy learning using joint text-to-text Trans-
former Reinforcement Learning. It trains token-
grained policies that can generate dialogue actions
without the need for predefined templates. Empiri-
cal results from two benchmark datasets show that
our model, which does not rely on predefined ac-
tion templates, outperforms the strongest baseline
in terms of both policy learning efficiency and di-
alogue action quality as determined by simulated
and human evaluations.
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