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Abstract
Interpretation methods provide saliency scores indicating the importance of input words for neural summarization
models. Prior work has analyzed models by comparing them to human behavior, often using eye-gaze as a proxy
for human attention in reading tasks such as classification. This paper presents a framework to analyze the model
behavior in summarization by comparing it to human summarization behavior using eye-gaze data. We examine
two research questions: RQ1) whether model saliency conforms to human gaze during summarization and RQ2)
how model saliency and human gaze affect summarization performance. For RQ1, we measure conformity by
calculating the correlation between model saliency and human fixation counts. For RQ2, we conduct ablation
experiments removing words/sentences considered important by models or humans. Experiments on two datasets
with human eye-gaze during summarization partially confirm that model saliency aligns with human gaze (RQ1).
However, ablation experiments show that removing highly-attended words/sentences from the human gaze does
not significantly degrade performance compared with the removal by the model saliency (RQ2).
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1. Introduction

Interpretation of deep neural network models has
recently drawn much attention in the natural lan-
guage processing (NLP) community (Doshi-Velez
and Kim, 2017; Lipton, 2018; Belinkov et al., 2020).
To analyze a model behavior, past studies have
proposed various interpretation methods that pro-
vide saliency of input words (Simonyan et al.,
2013; Ribeiro et al., 2016; Sundararajan et al.,
2017; Guan et al., 2019). One research stream to
understand the model behavior compares it with
human behavior when they solve the same task.
Particularly, eye-gaze information has been often
used as a surrogate of human behavior relying
on the eye-mind assumption (Just and Carpenter,
1980), which claims “…the eye remains fixated on
a word as long as the word is being processed.”
So, the gaze duration on a fixated word indicates
the time to process the word. In comparison, the
eye-gaze information on input tokes can be a coun-
terpart of saliency provided by the interpretation
methods (Sood et al., 2020a; Hollenstein and Bein-
born, 2021; Ikhwantri et al., 2023).
The eyemovement study has a long history of in-

vestigating various human cognitive functions, en-
compassing tasks like text reading, scene percep-
tion, and visual search (Rayner, 1998; Richardson
et al., 2007; Rayner, 2009). Particularly, the eye
movements during reading activity have been sub-
ject to comprehensive investigation (Clifton et al.,
2007).
In contrast, eye movement studies on the writ-

ing process have been less studied. Carl and
Kay (2012) studied eye movement during transla-

tion and found the behavior between professional
translators and students is different. The profes-
sionals read the source text and wrote its transla-
tion almost in parallel, while the students did these
two phases more interleaving way.
In this study, we investigate behaviors of neu-

ral summarization models in terms of human eye-
gaze information collected during the human sum-
marization activity. Similar to translation, sum-
marization involves reading and generating a text.
Still, in addition, it should identify the core ideas of
the source text and generate a coherent short text
that covers them. The languages of the source
text and its summary are the same, unlike transla-
tion.
Recent progress on pre-trained Transformer-

based summarization models (Liu and Lapata,
2019; Stiennon et al., 2020; Lewis et al., 2020)
improved the model performance by a large mar-
gin. Xu and Durrett (2021) investigated the inner-
working process of a pre-trained transformer-
based summarization model by breaking it down
into different parts of models, the pre-trained and
fine-tuned stages, and the Transformer compo-
nents. They also addressed the difference in rep-
resentation for interpreting the classification and
autoregressive generation model. However, they
did not consider comparing the model and human
behavior.
This paper proposes a framework to analyze

neural summarization models through comparison
with human summarization behavior. We utilize
human eye-gaze and keystroke data as a proxy
of human behavior. Through the analysis, we an-
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swer the following two research questions.

RQ1. Does the input word saliency from interpre-
tation methods in summarization models con-
form with human eye-gaze features during
summarization?

RQ2. How do the model saliency and human
visual attention from eye movement affect
model performance?

To answer RQ1, we analyze whether the ma-
chine looks at the same input elements as hu-
mans during summarization. We measure their
conformity by calculating the correlation between
saliency scores from the summarization models
and fixation counts from human eye-gaze data of
words in the source texts.
To answer RQ2, we take the ablation approach

following DeYoung et al. (2020); Xu and Durrett
(2021); at a generation of each word of the sum-
mary, the words of interest by the models or hu-
mans are removed from the source text, and the
quality of the final summary is assessed. If the
saliency score and eye-gaze feature represent the
importance of words in the source text, the word
removal degrades the summary quality.
We conduct experiments using two datasets

that include eye-gaze data during human summa-
rization.

2. Related Work

2.1. Interpretation of NLP Models
Interpreting neural networks in classification tasks
is defined as assigning an importance score to
an input element for the model to output the re-
sults (Ancona et al., 2018). For example, in text
classification, given an input text of X of n tokens
(x1, x2, ..., xn), the model predicts an output y ∈
{c1, c2, . . . ck}, where k is the number of classes.
We define the saliency score ϕ(xi, y) for each to-
ken xi ∈ X, which indicates the importance of xi

to classify the text X.
Early studies on analyzing NLPmodels visualize

the input salience for model output in terms of sev-
eral linguistic properties (Li et al., 2016) in manifold
space (van der Maaten and Hinton, 2008). Re-
cently, the gradient-based interpretation method
has been popular for input saliency calculation,
which was initially introduced in the computer vi-
sion field. The saliency scores of pixels in the in-
put image were calculated using backpropagation
of the gradient (Simonyan et al., 2013). In the NLP
models, saliency scores are calculated for input
words, typically represented as a vector #»vi ∈ R at
the embedding layer. The saliency ϕ(xi, y) of the
input word xi is calculated as the Euclidean norm

of the the gradient of the embedding vector

ϕ(xi, y) = ∥∇xi
fy(X)∥2, (1)

where X is an input consisting of xi, and fy de-
notes a function corresponding to the task, e.g.,
text classification. We obtain a saliency vec-
tor [ϕ(x1, y), ϕ(x2, y), ..., ϕ(xn, y)], where each ele-
ment corresponds to the input word.
Feng et al. (2018) assessed neural models’ sen-

sitivity to input alterations using gradient-based
methods (Sundararajan et al., 2017) in reading
comprehension tasks. They reported that the
model frequently gained high saliency scores for
less important parts of the input texts.
Analyzing the attention layer is also one of

the common and convenient methods to inter-
pret deep learning models adopting the attention
mechanisum (Bahdanau et al., 2014). The ef-
fectiveness of the attention layer for the inter-
pretation method is still controversial (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019; Ser-
rano and Smith, 2019; Vig, 2019; Vashishth et al.,
2019; Wiegreffe and Pinter, 2019). DeYoung
et al. (2020) and Atanasova et al. (2020) devel-
oped benchmarks to evaluate interpretation meth-
ods with human annotation. Both studies found
that the gradient-based method performs better
than the attention-based method. However, other
studies still claimed the effectiveness of the atten-
tion layer for an explanation of the model perfor-
mance (Wiegreffe and Pinter, 2019) and themodel
behavior similar to human eye movement, espe-
cially for Transformer-based models (Eberle et al.,
2022; Ikhwantri et al., 2023).

Interpreting models for Reading Task An ini-
tial study by Hollenstein et al. (2019) compiled a
collection of different modalities of cognitive data
such as eye-tracking, EEG, and fMRI to evaluate
word embedding semantic information. Sood et al.
(2020a) focused on the attention layer in deep
learning models and eye movements in question-
answering (QA) tasks. Hollenstein and Beinborn
(2021) compared a language model and human
behavior by calculating a correlation betweenword
importance from the model and that from human
eye movements. Ikhwantri et al. (2023) conducted
a comprehensive investigation of the models for
various NLP tasks, such as sentiment analysis,
QA, and relation classification. All these studies
target NLP tasks involving reading texts.

Interpreting models for Writing Task The au-
toregressive generation has been a popular tech-
nique for neural network-based language genera-
tion, where a word is generated according to the
probability distribution over the vocabulary at each
time step (Alvarez-Melis and Jaakkola, 2017; Vafa
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et al., 2021). The probability distribution is deter-
mined based on the network state at the previous
time step. Unlike most reading tasks that result
in a single output, we have a sequence of outputs
(words) in generation tasks. Therefore, we have
a saliency distribution of input words at each time
step, resulting in a saliency distribution matrix in-
stead of a saliency vector.
The interpretation study for sequential gen-

eration has been active in the translation
task (Alvarez-Melis and Jaakkola, 2017; Vafa
et al., 2021; Voita et al., 2021). The apparent ap-
plication of the saliency score matrix is to analyze
the alignment between source and target tokens
in Machine Translation (Ding et al., 2019; He et al.,
2019). This naturally can be used to calibrate at-
tention models to improve performance (Lu et al.,
2022). Recently, hallucination has been analyzed
with the model interpretation method (Tang et al.,
2023; Xu et al., 2023).
Xu and Durrett (2021) investigated the role

of the encoder and decoder components in the
BART (Lewis et al., 2020) model in the summariza-
tion task. Other studies in summarization use text
alignment for corpus creation (Tardy et al., 2020)
and detect model hallucinations in summaries us-
ing mutual information (van der Poel et al., 2022).

2.2. Eye-gaze studies in NLP Tasks
The Eye-tracking device is a powerful tool to col-
lect eye-gaze data during human cognitive activi-
ties. It provides a sequence of screen coordinates
of human gaze points with timestamps. Recently,
eye-tracking software that uses inexpensive Web
cameras has become available(Papoutsaki et al.,
2016; Ribeiro et al., 2023). The collected gaze
points are clustered into fixations that are collec-
tions of close gaze points in terms of both space
and time. A fixation consists of the start and end
time points and the coordinates of the centroid of
the belonging gaze points. The centroid coordi-
nates can be mapped to an object on the screen,
e.g., a word in a text.
A bulk of eye-gaze datasets in writing activity

has been collected in translation process stud-
ies (Carl, 2012a). The collection is well supported
by the data collection tool Translog(-II) (Jakob-
sen, 1999; Schou et al., 2009; Carl, 2012b), which
records user’s eye-gaze points and keystroke logs.
Although Translog was initially designed for the
translation study, it can also be used for other writ-
ing activities (Sahoo and Carl, 2019). Rodeghero
and McMillan (2015) analyzed eye movement pat-
terns for program comprehension through writing
in-line code summaries (Rodeghero and McMillan,
2015).
In this research, we use the Translog-II (Carl,

2012b) that records the user’s eye movement from

the eye-tracker device and keystrokes logs during
a writing activity. Translog-II also transforms col-
lected eye-gaze points into a sequence of fixations
on words in the text on the screen.

3. Eye-gaze Data for Summarization

We use two eye-gaze datasets collected during hu-
man summarization in this study. Table 1 shows
the statistics of the datasets.

Dataset CS19 IELTS33

#Participants 13 11
#Source texts 6 3
#Summaries 26 33
Ave. source length [word] 141 867
Ave. source length [sentence] 6.3 15
Ave. reading time [min] 0.5 4
Ave. writing time [min] 6 14
Reduction rate [%] 80 22

Table 1: Statis of eye-gaze datasets

CS19 Sahoo and Carl (2019) collected eye-gaze
data for three writing tasks: text copying, para-
phrasing, and summarization in English. We use
their summarization data in this study. Thirteen
people wrote a total of 26 summaries from six
source texts. Four out of six source texts come
from news articles. The other two source texts
are sociological texts from an encyclopedia. Each
summary was written by at least four people.

IELTS33 Wealso collected eye-gaze data during
summarization using Translog-II1. We randomly
selected three texts from the English proficiency
test IELTS that would fit on our screen while ex-
cluding texts that were too similar to each other.
The texts describe scientific discussions on the ef-
fects of noise, 20th-century architecture, and en-
dangered languages, which are 834, 955, and
813 words in length, respectively. We recounted
11 participants, 10 males and one female for the
data collection experiment. They are mostly na-
tive speakers or near-native speakers of English
proficiency. One was a master’s-level computer
science professional, four were undergraduate stu-
dents, and seven were PhD students.
The participants used a workstation equipped

with an eye tracker (Tobbi Pro X3-120) and
Translog-II software running onWindows. The par-
ticipants use a chinrest, which helps to fix the dis-
tance between the eyes and the screen and boosts
the eye-tracker’s overall accuracy without being

1The resource has not been published yet. We con-
sider its publication upon the paper’s acceptance
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overly intrusive. Three observed summarization
sessions were conducted following a brief train-
ing phase. Each session began with a calibra-
tion phase on Tobii, with brief breaks between ses-
sions. An entire session with three texts takes, on
average, 1.5 hours. We collected 33 summaries,
11 for each source text in total.
After the data collection, we noticed four partic-

ipants had a high rate of vertical errors in the eye
tracker. To remedy the vertical errors, we apply
an error correction algorithm (Mishra et al., 2012),
which vertically shifts the fixations to the nearest
line of the previous gaze and discards the vertical
jump based on the past and future gaze location.
The algorithm was applied to all data, setting the
algorithm threshold so that the correction did not
affect the other less errorous data. To check the
validity of the correction, wemanually compare the
data before and after the correction.

4. Experimental Setting

In the experiments, we use BART (Lewis et al.,
2020) as our primary target architecture as it is
widely used in summarization task 2. We con-
sider three BART variations: the pre-trained BART
model (BART-PT3), the fine-tuned BARTmodel by
the xsum dataset (Narayan et al., 2018) (BART-
FT)4, and its distilled BART model (DistilBART5).
We consider four interpretation methods: Input

Gradient (Grad), Integrated Gradient (IG) (Shriku-
mar et al., 2017), Occlusion (Occ) (Zeiler and Fer-
gus, 2014) and Attention (Attn) (Bahdanau et al.,
2014). In addition, we consider two baselines:
Random, which randomly assigns a token distinct
integer representing an importance ranking, and
Lead, which assigns a token a rank based on its
input position.
As an eye-gaze feature, we adopt fixation count

(FC), defined as the number of fixations on a spec-
ified object during a specified duration.
We run the summarization models using force

decoding to generate human summaries.

5. Macroscopic Analysis

This section analyzes the correlation between the
model saliency and fixation counts over the sum-
mary generation process. We calculate the word
saliency scores by an interpretation method at
each step of generating a word of the output sum-
mary. For each source text, we conduct word-wise

2Based on the Huggingface download metrics
search Link on 13th Oct 2023

3https://huggingface.co/facebook/bart-large
4https://huggingface.co/facebook/bart-large-xsum
5https://huggingface.co/sshleifer/distilbart-xsum-6-6

aggregation of the saliency scores across the en-
tire generation steps. As a result, we obtain a
saliency vector for the source text in which the di-
mensions correspond to the word token, and their
values indicate the word saliency. We consider
two aggregation methods, max andmean. The max
aggregation takes the maximum saliency score
across all word generation steps as a saliency
vector element, while the mean aggregation takes
the average saliency scores. Likewise, we aggre-
gate the fixation counts of each word token in the
source text by summing up them across the sum-
mary writing process to obtain a fixation count (FC)
vector for the source text. We consider summary
writing to start at the first character input of the
summary. We do not distinguish fixations from dif-
ferent participants in the summation.
We also consider a sentence-wise saliency vec-

tor and an FC vector in which the vector dimen-
sion corresponds to a sentence in the source text,
and its value denotes the sentence saliency or sen-
tence fixation counts. The vector values are cal-
culated by averaging the token values in the sen-
tence.

5.1. Discussion for RQ1
To answer RQ1, we calculate Spearman’s rank
correlation ρ between the saliency vector and FC
vector of each source text. We then take their aver-
age Spearman’s ρ across all source texts by trans-
forming the value into the Fisher’s z score and con-
verting it back to ρ value (Myers and Sirois, 2006).
Table 2 shows the correlation between the

model saliency and fixation counts averaged over
the source texts. Overall, the max aggregation
tends to provide higher correlations than the mean
aggregation except for Occ. The mean aggrega-
tion normalizes the total saliency score by the out-
put summary length. Therefore, it pushes down
the aggregated saliency score of words that are
highly salient in a few word generation steps. We
can conclude that the mean aggregation is inappro-
priate for the macroscopic analysis. We focus the
result by the max aggregation (colored rows) in the
following discussion.
Among the interpretation methods, Attn shows

stable high correlations, particularly on token-
based correlations, followed by the gradient-based
methods (Grad and IG). The Lead method shows
a significantly high sentence-based correlation for
CS19. This high correlation can be explained by
the domain bias, i.e. four out of six source texts in
CS19 are news articles. In the news domain, the
important information tends to be placed in the ear-
lier part of texts by the writing convention in jour-
nalism. This explanation is supported by the Lead
model’s low token-based correlation in CS19 and
the low correlation in IELTS33. The source texts

https://huggingface.co/models?pipeline_tag=summarization&language=en&sort=downloads
https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-large-xsum
https://huggingface.co/sshleifer/distilbart-xsum-6-6
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Dataset CS19 IELTS33

Model+Interp. Aggr. token sent. token sent.

Random .114 .292 .052 .143
Lead -.541 .762 -.319 .012

BART-PT Grad max .360 .307 .401 -.088
mean -.092 -.042 .003 -.066

BART-PT IG max .299 -.007 .329 .131
mean -.018 -.200 .012 .140

BART-PT Occ max .009 -.380 -.046 -.317
mean .059 .203 .014 -.202

BART-PT Attn max .420 .645 .338 .080
mean .477 .455 .289 .297

BART-FT Grad max .441 .282 .269 -.010
mean .227 .207 .050 -.127

BART-FT IG max .433 .644 .222 -.087
mean .238 -.002 .064 .044

BART-FT Occ max .219 -.360 .076 .236
mean -.029 .129 .102 .149

BART-FT Attn max .545 .251 .395 .058
mean .488 .659 .281 .004

DistilBART Grad max .319 .362 .222 -.105
mean .089 .172 -.009 -.391

DistilBART IG max .399 .204 .257 .108
mean .113 .045 .032 -.057

DistilBART Occ max .002 .513 -.049 NaN
mean .117 -.363 .088 .400

DistilBART Attn max .510 .546 .401 .020
mean .457 .423 .263 -.129

Table 2: Average rank correlation between model
saliency and fixation counts

of IELTS33 are scientific articles, which has a dif-
ferent writing style from news articles.
Comparing the two datasets, the correlations in

CS19 tend to be higher than those of IELTS33.
The difference in source text length, 141 vs 867
words on average, can explain this tendency. In
addition, the reduction rate of IELTS33 is four
times higher than that of CS19. In CS19, the re-
duction rate is 80%, which means summarization
removes about one sentence from the source text.
We expect that the source text and summaries will
be very similar, leading to high correlations in both
token and sentence-based metrics. On the con-
trary, the IELTS33 texts are lengthy, and the re-
duction rate is high, i.e., summaries are one-fourth
of the source texts in length. We expect more
various operations, such as paraphrasing, splitting
sentences, and deleting sentences, applied in the
IELTS33 summaries, which makes the alignment
between the source text and summaries more dif-
ficult. The low correlations of IELTS33, particu-
larly in the sentence-based metric, support this ex-

planation. We also notice the difference in the
token-based correlation between the datasets is
larger in the fine-tuned models (BART-FT and Dis-
tilBART) than in the pre-trained model (BART-PT).
This difference can also be explained by the do-
main bias, as we mentioned above. Since the
news articles are dominant in the xsum dataset,
the former models successfully fine-tuned which
words in the source text to focus on when sum-
marising a news article, which is dominant in CS19
as well.
Regarding the models, we observe consistently

high token-based correlations by the BART-FT
model in CS19, regardless of the interpretation
method. However, we can not observe clear dif-
ferences among models in the other columns in
Table 2.
The answer to RQ1 is that we observe weak cor-

relations between word saliency from the interpre-
tation method and fixation counts on words under
some conditions. More concretely, the attention-
based interpretation method (Attn) is promising.

5.2. Discussion for RQ2

Rogue-1 Rogue-2 Rouge-L

CS19
BART-PT .450 .181 .273
BART-FT .299 .079 .192
DistilBART .303 .073 .191

IELTS33
BART-PT .395 .105 .191
BART-FT .287 .057 .163
DistilBART .267 .044 .153

Table 3: Average Rouge values of the models

To answer RQ2, we calculate the Rouge
scores (Lin, 2004) of the summaries generated by
the three summarization models. As there are mul-
tiple summaries for a single source text, a Rouge
score of the model output is calculated using each
human summary as a reference, and the average
of these values is used as the evaluation score of
the model. Table 3 shows the Rouge scores of the
three models. We can see that BART-PT shows
the best performance for both datasets. As far as
this macroscopic analysis, considering that BART-
FT showed notable superiority in CS19, we can
not observe the relationship that a well-correlated
model to human eye-gaze performs better in sum-
marization. These results lead us to conduct a mi-
croscopic analysis in the next section.
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Figure 1: Model saliency matrix (lowe-left) and Fixation count matrix (lower-right). Dense color repre-
sents high saliency and frequent fixation counts, respectively.

6. Microscopic Analysis

This section analyzes the relationship between
the model saliency and fixation counts on words
at each step of generating a word in summaries.
Also, we look at their relation and the quality of
summaries.
To investigate the relationship between model

saliency and fixation counts, we first need to align
these two values. Given a source text consisting
of n word tokens {x1, x2, . . . , xn}, we have a word
saliency vector from the interpretation method at
each step of generating a summary word yi, i.e.,
m vectors in total that constitute a saliency matrix
as shown in the lower-left of Figure 1. Likewise, we
would like to create a fixation count matrix. How-
ever, we must define a duration corresponding to
each word in a summary. To define a temporal seg-
ment for a word, we consider two methods: fixed-
number segmentation (Fix) and keystroke-based
segmentation (Key).
The fixed-number segmentation follows

the piecewise approximation aggregation
(PAA) (Keogh et al., 2001), which segments
a time series data by dividing them into temporally
equal-sized segments; the value of each segment
is calculated by averaging values in the segment.
In our case, we divide a sequence of fixation
counts for the entire summarization process into
m segments of equal duration and sum up the
fixation counts in each segment. In this method,
however, each segment is not guaranteed to align
with the generated word.
To realize a more precise alignment between a

temporal segment and a generated word, we intro-
duce keystroke-based segmentation. We define a
temporal segment for a generated word as a dura-

Dataset\Seg. Fix Key

Model+Interp. token sent. token sent.

CS19
Random -.0017 .0435 -.0015 .0636

BART-PT Grad .0381 .1549 .0672 .4267
BART-PT IG .0160 .0416 .0568 .2957
BART-PT Occ -.0021 .0113 .0366 -.0007
BART-PT Attn .1137 .2010 .1796 .4672

BART-FT Grad .0749 .2821 .1109 .5254
BART-FT IG .0539 .2800 .0737 .5056
BART-FT Occ .0160 .0601 .0299 .0941
BART-FT Attn .1146 .2970 .1836 .5529

IELTS33
Random -.0038 -.0068 -.0002 .0184

BART-PT Grad -.0086 .0780 .0058 .2056
BART-PT IG -.0020 .0576 .0091 .1897
BART-PT Occ -.0032 -.0063 .0100 .0183
BART-PT Attn .0324 -.0495 .0515 .0536

BART-FT Grad -.0082 .0744 .0059 .1757
BART-FT IG -.0053 .0448 .0084 .1460
BART-FT Occ -.0053 -.0313 .0142 .0288
BART-FT Attn .0242 -.0117 .0407 .0634

Table 4: Average rank correlation at each word
generation

tion between the first and last key input time points
of the word. Participants might edit the word until
they finalize it; we include editing time to the tem-
poral segment.

The fixation counts are summed up in each
segment. The right of Figure 1 illustrates the
keystroke-based segmentation and the resultant
fixation count matrix.
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Figure 2: Ablation analysis for CS19

6.1. Discussion for RQ1

We calculate the rank correlation between model
saliency and human fixation counts at each step
of generating a word. Given a source text, we
obtain a saliency vector (a column vector in the
left bottom matrix in Figure 1) at each step of gen-
erating each human summary by force decoding.
For a human summary ofm word tokens, we have
m saliency vectors to construct a saliency matrix
shown in the left bottom of Figure 1. Unlike the
macroscopic analysis, we can not aggregate the
saliency matrices across the participants because
the summary length (m) is different depending on
each participant. Therefore, we calculate Spear-
man’s rank correlation between each pair of indi-
vidual saliency vectors (a column in the left bottom
of Figure 1) and the corresponding fixation vector
(a column in the right bottom). They are averaged
overm words in a summary, and further averaged
over the participants and source texts. Similar to
the macroscopic analysis, we transform the value
into the Fisher’s z score and convert it back to ρ
value (Myers and Sirois, 2006) to calculate the av-
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Figure 3: Ablation analysis for IELTS33

eraged rank correlation.
Table 46 shows the average rank correlation be-

tween model saliency and fixation counts. Similar
to the macroscopic analysis, Attn shows a stable
and slightly higher correlation compared to other
interpretation methods at the sentence level. How-
ever, compared with the result of the macroscopic
analysis (Table 2), the correlation coefficients are
significantly low, particularly at the token level.
We suspect a single word is too small to cap-

ture a relationship between themodel saliency and
fixation counts. Some larger linguistic units, such
as phrases, clauses, and sentences, should have
been considered for aggregation.
In most cases, model correlations have a higher

correlation to the keystroke-based segmentation
(Key) compared to the fixed-number segmentation
(Fix). These results show that the model genera-
tion process aligns better with keystrokes than the
fixed-size duration, which assumes humans write
linearly in time without backtracking.

6Due to the space limitation, we show only a part of
the results. The results of other conditions are similar.
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The answer to RQ1 is that we observe weak cor-
relations between word saliency from the interpre-
tation method and fixation counts on the source
text sentences under some conditions. Similar
to macroscopic analysis, the attention-based inter-
pretation method (Attn) is promising.

6.2. Discussion for RQ2
We apply the input ablation method, which was
used to evaluate model faithfulness in NLP
tasks (Jacovi and Goldberg, 2020). The method
is also applied for evaluating saliency in NLP mod-
els (DeYoung et al., 2020; Xu and Durrett, 2021).
Xu and Durrett (2021) used the model loss val-
ues against adding or removing salient parts of
the input, such as token(s) or sentence(s), to in-
vestigate the relationship between model saliency
and model performance. We use the Rouge score
of the generated summaries instead of the model
loss because Rouge scores indicate the summary
quality more directly. We calculate the Rouge
scores the same as in 5.2, i.e. using human sum-
maries as the reference summary.
Following Xu and Durrett (2021), we replace

the top k salient words with a special mask to-
ken at each step of generating a word, and cal-
culate the Rouge score of the resultant summary.
We also conduct the word ablation based on the
fixation count and compare the change of Rouge
scores between model saliency and human fixa-
tion counts. In addition, we conduct sentence ab-
lation, where top k salient sentences are simply
removed from the input.
Figure 2 and 3 show the Rouge score (y-axis)

against the number of removed words/sentences
at each generation step (x-axis). To avoid the di-
agrams becoming complicated, we show the re-
sults of themodel saliency-based ablation (Attn), a
baseline (Random), and the fixation-based ablation
(Key and Fix). Between the datasets, we notice the
ablation impacts the Rouge scores more mildly in
IETLS33 than CS19. Particularly, the difference is
significant in the sentence ablation. This happens
due to longer source texts in the IELTS33 dataset.

BART-FT shows consistently higher Rouge
scores than BART-PT, which is the opposite result
of the summary generation without force decoding
(Table 3). However, this result conforms with the
higher correlation of BART-FT than BART-PT in
the macroscopic analysis.
We do not observemuch difference between the

temporal segmentation methods: fixed-number
segmentation (Fix) and keystroke-based segmen-
tation (Key) in these graphs. Surprisingly, Random
often shows lower Rouge scores than the fixation-
based ablation.
The saliency-based ablation (Attn) shows much

lower Rouge scores than Random. This observa-

tion suggests the summarization models look at
different parts of the input than humans do when
generating a summary. To summarize, our tenta-
tive answer to RQ2 in this microscopic analysis is
negative.

7. Conclusion and Future Work

In this paper, we proposed a novel framework
for analyzing summarization models by comparing
them to the human summarization process with
eye movement as a proxy. Our framework com-
prises macroscopic and microscopic analysis be-
tween model saliency and human gaze data. In
macroscopic analysis, we compared the model
saliency and eye-gaze at the input level. In micro-
scopic analysis, we compared the model saliency
and eye-gaze at each output token. To alignmodel
saliency and eye-gaze information at every token
generation, we introduced the keystroke-based
segmentation for the time series of fixations.
We answered two key research questions us-

ing the framework. RQ1: Does the input word
saliency from interpretation methods in summa-
rization models conform with human eye-gaze fea-
tures during summarization? RQ2: How do the
model saliency and human visual attention from
eye movement affect model performance?.
According to the correlations between model

saliency scores and human fixation counts in the
macroscopic and microscopic analyses, our an-
swer to RQ1 is partially yes, particularly for the
attention-based saliency scores. Our ablation
analysis showed that removing important words
according to the human gaze did not degrade per-
formance as much as the removal by the model
saliency. Thus, the answer to RQ2 is that the sum-
marization models look at different input words
than humans in generating summaries.
Our experiments compared a limited number

of interpretation methods; other methods should
be also considered. For instance, a recent study
by Eberle et al. (2022) reported the attention flow
method shows higher correlations to human eye
movements in sentiment analysis and relation ex-
traction tasks, although they do not have a writ-
ing phase. In addition, we could consider more
varied configurations for text generation, in terms
of different architectures, e.g. encoder-decoder
models vs. decoder-based models, different gen-
eration approaches, e.g. autoregressive vs. non-
autoregressive, and different decoding strategies,
e.g. greedy vs beam-search.
Last but not least, collectingmore eye-gaze data

in the summarization task is indispensable. How-
ever, it is more time-consuming and expensive
than that for reading tasks. Participants have to
spend more time and effort to read and produce
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a decent summary. Using synthesized eye-gaze
data (Sood et al., 2020b) will be a reasonable op-
tion for scaling up the eye-gaze data and analyzing
the writing behavior of humans and machines.
Our approach can be applied to other text gen-

eration tasks such as paraphrasing and machine
translation. The main difference between these
tasks and text summarization is that the source
and target texts are aligned in their length. There
have already been studies on eye movement anal-
ysis during human translation (Carl et al., 2008;
Jakobsen, 2011; Carl and Kay, 2012). Our method
can help in comparing the attention of humans and
machines in translation.

8. Ethical Statement

The data collection experiments for IELTS33 were
reviewed and approved by the Ethical Review
Committee of the author’s university in advance.
Prior to the experiment, the purpose and method
of data collection, and usage of the collected data
were explained to the participants, and their con-
sent to participate in the experiment was obtained.
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