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Abstract
Due to the concise and structured nature of tables, the knowledge contained therein may be incomplete or missing,
posing a significant challenge for table question answering (TableQA) systems. However, most existing datasets
either overlook the challenge of missing knowledge in TableQA or only utilize unstructured text as supplementary
information for tables. In this paper, we propose to use a knowledge base (KB) as the external knowledge source for
TableQA and construct a dataset KET-QA with fine-grained gold evidence annotation. Each table in the dataset
corresponds to a sub-graph of the entire KB, and every question requires the integration of information from both the
table and the sub-graph to be answered. To extract pertinent information from the vast knowledge sub-graph and
apply it to TableQA, we design a retriever-reasoner structured pipeline model. Experimental results demonstrate that
our model consistently achieves remarkable relative performance improvements ranging from 1.9 to 6.5 times on EM
scores across three distinct settings (fine-tuning, zero-shot, and few-shot), in comparison with solely relying on table
information. However, even the best model achieves a 60.23% EM score, which still lags behind the human-level
performance, highlighting the challenging nature of KET-QA for the question-answering community.

Keywords: Table Question Answering, Knowledge Base

1. Introduction

As a kind of distinct information source, tables
are extensively researched for the task of table
question answering (TableQA) with numerous prac-
tical applications (Pasupat and Liang, 2015; Yu
et al., 2018; Chen et al., 2020). Its objective is
to answer questions by utilizing specific tables
as context. However, owing to the inherent con-
ciseness and organized structure of tables, the in-
formation they contain may be incomplete or ab-
sent. Consequently, humans, as well as question-
answering (QA) systems, may necessitate back-
ground knowledge to acquire comprehensive infor-
mation. These questions that are difficult to answer
due to missing information in the table have sparked
research interest in addressing the need for exter-
nal knowledge (Cheng et al., 2023). As is explored
in TaCube (Zhou et al., 2022), approximately 10%
of the samples in WTQ (Pasupat and Liang, 2015)
belong to this category. We define External Knowl-
edge as factual information required to answer a
given question beyond what is provided in the ta-
ble. For example, in Figure 1, to answer question
1 "What was the release date of the studio album
from the artist who signed to the record label GOOD
Music?", a QA system needs to know not only the
record label to which each artist belongs in the ta-
ble but also the release dates of each album, both
of which are missing from the table. We consider
handling external knowledge required samples a
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significant challenge for current TableQA systems.

As shown in Table 2, most existing TableQA
datasets do not explicitly emphasize the inclusion
of external knowledge required questions, although
annotators may introduce their prior knowledge
during the annotation process. While some ef-
forts have been made to incorporate textual infor-
mation as external knowledge (Chen et al., 2020;
Zhu et al., 2021a; Chen et al., 2021b), there has
been a significant oversight in leveraging knowl-
edge graphs, which are widely recognized as an
equally prevalent knowledge source. To address
this gap, we propose KET-QA, in which each table
is associated with a sub-graph from the Wikidata
knowledge base (Vrandecic and Krötzsch, 2014),
serving as supplementary information for question
answering. Each question in KET-QA requires ex-
ternal knowledge to answer, necessitating the inte-
gration of the table and knowledge base. To con-
struct KET-QA, we face two main challenges: (i)
Identifying tables that can be well augmented with
an external knowledge base is complex. We find
an inherent mapping relationship exists between
Wikipedia pages and Wikidata entities (Vrandecic
and Krötzsch, 2014), and cells in Wikipedia tables
are well linked with Wikipedia pages. These fac-
tors naturally connect Wikipedia tables to Wikidata.
(ii) Proposing natural external knowledge required
questions is labour-intensive. Alternatively, we
choose to re-annotate natural human-created ques-
tions in HybridQA, which leverages unstructured
passages in Wikipedia as an external knowledge



9706

source. We start by substituting the external knowl-
edge source in HybridQA with Wikidata, and cells
that initially corresponded to Wikipedia pages are
now replaced with entities from Wikidata. Then, we
extract a one-hop sub-graph for each table with its
corresponding entities. Subsequently, we employ
a two-stage annotation approach to re-annotate the
question-answer pairs. In the first stage, annotators
assess whether a sample is self-contained. That
is, to answer the question, it is necessary to incor-
porate information from the knowledge base, and
no additional data is required. In the second stage,
annotators annotate the fine-grained gold evidence
necessary to answer the given question from the
sub-graph. Finally, we collected 9,421 questions
and 5,721 tables. Each table corresponds to a
sub-graph with 1,696.7 triples on average. Also,
we believe that the annotation of fine-grained gold
evidence for each question can facilitate a more
in-depth exploration of external knowledge required
samples within the TableQA research community.
Examples from KET-QA are depicted in Figure 1.

Incorporating a knowledge base into the TableQA
process poses two challenges: (i) The amount of in-
formation contained within the grounded sub-graph
remains substantial and redundant for a specific
question; (ii) Integrating three different types of
data, namely questions (unstructured text), tables
(semi-structured), and a knowledge base (struc-
tured), for reasoning purposes. To address the
aforementioned challenges, we devise a retriever-
reasoner pipeline model, which consists of two
steps: first, retrieving relevant triples from the sub-
graph based on the given question, and then uti-
lizing a pre-trained language model (PLM) to in-
corporate the question, table, and retrieved triples,
ultimately producing the final answer. This pro-
cess is illustrated in Figure 3. Benefiting from the
fine-grained annotations of gold evidence in KET-
QA, we primarily focus on optimizing the retriever in
terms of both time efficiency and performance. The
resulting Multistage KB Retriever (MKBR) not only
demonstrated state-of-the-art performance with an
83.47 Recall@20 score but also achieved a re-
markable speed improvement of 9.3 times. In
the final question-answering experiments, incor-
porating the information from the knowledge graph
led to relative performance enhancements rang-
ing from 1.9 to 6.5 times and absolute improve-
ments of 11.66% to 44.64% in terms of EM scores
across different models and settings (fine-tuning,
few-shot, zero-shot), as compared to solely utilizing
table information for answering questions. More-
over, we conducted a comprehensive comparison
with two additional external sources of knowledge
(LLM-generated knowledge and unstructured text).
This extensive comparison further confirmed the
benefits and advantages of utilizing a knowledge

graph. Despite the substantial performance boost
achieved by incorporating the information stored
in the knowledge graph into TableQA, its perfor-
mance still falls short compared to human-level
performance, with the highest 60.23% EM score.
Consequently, we consider KET-QA a challenging
problem for the question-answering community. To
analyze further the bottlenecks of the current model,
we conducted a manual error analysis, revealing
potential areas for further improvement in both the
retriever and the reasoner.

2. Task Definition

A table T is a structured arrangement of data that
is organized into rows, i.e., T = {cij} = {ri},
where i and j represent the coordinates of rows and
columns, respectively. A knowledge base G (KB) is
a collection of factual information that is formalized
as a set of statements that can be categorized into
two types, i.e., G = {(e1, p, e2)} ∪ {(e, a, v)}. The
first type represents relational triples, where entities
e1 and e2 are related by a relation p. The second
type represents attribute triples, where an entity e
has an attribute a with a value v. The set of all pos-
sible entities, relations, and attributes is denoted by
E, R, and A, respectively. In KET-QA, a cell in the
table may be linked to some entities in the KB. For
example, each underlined cell in Figure 1 is linked
to an entity in Wikidata (Vrandecic and Krötzsch,
2014). We denote this relation between cells and
entities as function f . E′ =

⋃
f(cij) represents the

union of entities corresponding to all cells in the
table. We retrieve a sub-graph by taking E′ and
their one-hop neighbours. That is, each table corre-
sponds to a sub-graph G from the entire KB, which
serves as supplementary information for TableQA.

The process of KET-QA is as follows: given a ta-
ble T , the grounded knowledge sub-graph G, and a
natural language question q, output a that answers
the question according to the context. The source
of a could be divided into three categories: (i) In-
KB: an entity or attribute value in the knowledge
base; (ii) In-Table: a cell in the table; (iii) Calcu-
lated: a value that was calculated on the table and
knowledge base by using numerical operations like
"count", "sum", "difference", etc. Example inputs
and outputs are shown in Figure 1.

3. Dataset Construction

3.1. Table Collection
According to the data model of Wikidata (Vrande-
cic and Krötzsch, 2014) there exists alignments
between Wikipedia pages and Wikidata entities.
Therefore, in order to incorporate knowledge from
Wikidata, our collected table should include hyper-
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1st-week salesArtistAlbum

544,000D12D12 World

441,000Kanye WestThe College Dropout

396,000NellySuit

360,000Beastie BoysTo the 5 Boroughs

342,000NellySweat

Kanye West
instance of: human
date of birth: June
08 , 1977

Nelly
instance of: human
date of birth: Nov.
02 , 1974

D12
instance of:
musical group
inception: 1996

Beastie Boys
instance of:
musical group
inception: 1981

Q1: What was the release date of
the studio album from the artist
who signed to the record label
GOOD Music ?
A1: February 10 , 2004

Q3: Of the musical groups listed ,
which one had the lowest number
on the 2004 hip hop list ?
A3: Beastie Boys

Q2: What is the total 1st-week
sales for the albums of the singers
born in November, as indicated in
the table?
A2: 738,000

Good Music
instance of: record
label
inception: 2004

The College
Dropout
publication date:
February 10 , 2004

record
label

founded
by

performer

Entity with
attribute triples

Relational triples

Links between
entities and cells

Question-Answer
examples

Figure 1: Overview of KET-QA. Only a partial table and knowledge graph are displayed for better
visualization. The examples of red, green, and yellow respectively represent three distinct sources of
answers: In-KB, Calculated, and In-Table. Corresponding gold evidence for each question is highlighted
using the respective colours. Each underlined cell is linked to an entity in Wikidata.

links pointing to Wikipedia pages. With a similar
purpose, Chen et al. (2020) has collected 13,000
tables, and 35% of the cells have hyperlinks, thus
we took the collection as the table set. Then, we
mapped the hyperlinked Wikipedia pages to Wiki-
data entities by creating an index from a Wikipedia
SQL dump with WikiMapper and each table is
mapped to 44.3 entities in Wikidata on average.1

3.2. Knowledge Base Construction
Following the definition in Section 2, for each table,
we took all linked entities for each table and ex-
tracted a one-hop Wikidata sub-graph. 2 Then,
we performed post-processing on the obtained
knowledge sub-graph, discarding attributes such
as "globe-coordinate" and "URL" that are not likely
to be used.

3.3. Question/Answer Annotation
The collection of question-answer pairs is built on
HybridQA, where each question requires the in-
tegration of information from Wikipedia passages
and tables to be answered. By simply removing
the Wikipedia passages, these questions become
naturally categorized as external knowledge re-
quired samples as defined in Section 1. We hired
43 graduate crowd-sourced workers to manually
re-annotate the question-answer pairs. The an-
notation process consists of two stages. In the
first stage, annotators are required to determine
whether one given question can be answered by
incorporating a knowledge graph and table, which
means no additional information sources will be re-
quired. In the second stage, annotators are tasked

1https://github.com/jcklie/wikimapper
2The data was collected in September 2022 via

https://www.wikidata.org/w/api.php

with annotating the fine-grained gold evidence re-
quired to answer a specific question from the sub-
graph corresponding to the current table. One
item of gold evidence should include two compo-
nents: (i) the question-relevant triple; (ii) the corre-
sponding cell. For convenience, we represent it as
((i, j), t), where i and j denote the row and column
coordinates of the cell (starting from zero), and
t represents a triple. Each question-answer pair
would possess multiple pieces of gold evidence.
Take the first question in Figure 1 as an example,
the gold evidence for this instance would be {((2,
1), (Kanye West, record label, Good Music)), ((2,
0), (The College Dropout, publication date, Febru-
ary 10, 2004))}. Additionally, when there is a mis-
match in the answer format or issues arise with the
original annotations, the annotators will modify the
question-answer pair.

#Words/Ques. #Words/Answer #Rows/Table

17.2 3.3 15.8

#Columns/Table #Entities/Table #Triples/Table

4.5 41.9 1696.7

Answer in KB Answer in Table Calculated Answer

5197 4131 93

Table 1: Core statistics of KET-QA.

3.4. Final Review and Quality Control
Prior to the final review, we assessed the agree-
ment among annotators on a random set of 245
samples. The results indicated "almost perfect
agreement" with Fleiss Kappa (Landis and Koch,
1977) scores of 0.89 for the first annotation stage
and 0.82 for the second annotation stage. Next,
two experienced experts conducted a final review
of all annotations, ensuring that any errors or incon-
sistencies in the annotations were corrected. Then,

https://github.com/jcklie/wikimapper
https://www.wikidata.org/w/api.php
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we applied several rules to filter invalid annotations
and obtained 9,421 high-quality annotations. Fi-
nally, the data is randomly split into train/dev/test
sets with 80%/10%/10% respectively.

3.5. Dataset Analysis

Dataset
Size External Knowledge

#Ques. #Tables Type Source GE

WTQ 22,033 2,108 - - -
WikiSQL 80,654 26,521 - - -
Spider 10,181 1,020 - - -
HiTab 10,672 3,597 - - -
FeTaQA 10,330 10,330 - - -
HybridQA 69,611 13,000 Text Wikipedia No
TAT-QA 16,552 2,757 Text Financial reports Yes
FinQA 8,281 2,776 Text Financial reports Yes
KET-QA 9,421 5,721 KB Wikidata Yes

Table 2: Comparison between datasets. GE stands
for the annotation of Gold Evidence. Datasets:
WTQ (Pasupat and Liang, 2015), WikiSQL (Zhong
et al., 2017), Spider (Yu et al., 2018), HiTab (Cheng
et al., 2022), FeTaQA (Nan et al., 2022), Hy-
bridQA (Chen et al., 2020), TAT-QA (Zhu et al.,
2021a), FinQA (Chen et al., 2021b).

Basic Statistics Table 2 shows a comparison of
KET-QA with existing table question answering
datasets, and Table 1 shows comprehensive statis-
tics. Despite not being one of the largest datasets,
KET-QA still has several advantages: (i) It is the
first TableQA dataset that utilizes a knowledge base
as an external knowledge source; (ii) It provides
alignment between Wikipedia tables and Wikidata
entities; (iii) It includes fine-grained gold evidence
annotations from external knowledge sources, en-
abling more in-depth analyses.
Question Types As is shown in Figure 2, we ana-
lyzed the question types comprehensively and visu-
alized them using the heuristic method proposed by
HotpotQA Yang et al. (2018). It is noteworthy that,
compared to the original HybridQA (Chen et al.,
2020), there is a higher proportion of Who ques-
tions in KET-QA, accounting for 12.6% as opposed
to 9.8% in HybridQA. Who questions are typically
associated with human entities in Wikidata.

4. Model

4.1. Overview
We propose a retriever-reasoner pipeline model
to address the challenges of integrating informa-
tion from the knowledge graph into TableQA as
discussed in Section 1. As shown in Figure 3, our
model initially employs a Multistage KB Retriever to
retrieve triples from the knowledge sub-graph rele-
vant to the current question. Subsequently, a rea-
soner (specifically a pre-trained language model) is

employed to integrate the table and retrieved triples
to answer the current question. The retriever con-
sists of two sub-modules: the Retrieval Bi-Encoder
and the Re-Rank Cross-Encoder. These compo-
nents will be elaborated upon in detail in Section 4.4.
The paradigm of incorporating external knowledge
into question-answering through a two-stage pro-
cess has also been studied in the field of Open
Domain Question Answering (Zhu et al., 2021b;
Chen et al., 2017).

4.2. Probabilistic Formalization

As discussed in Section 2, the task aims to max-
imize the probability distribution p(a|T,G, q). The
whole G is computationally expensive to process
and may contain unrelated related to the specific
question. So we retrieve a sub-KB G′ as the evi-
dence for answering the question instead of directly
reasoning on G. Considering G′ as latent variables,
we rewrite p(a|T,G, q) as follows:

p(a|T,G, q) =
∑
G′

pθ(a|T,G′, q)pβ(G′|T, q)

As is indicated in the above equation, the target
distribution is jointly modeled by a knowledge base
retriever pβ(G′|T, q), and a reasoner conditioned
on the table and retrieved triples pθ(a|T,G′, q). The
goal of training is to find the optimal parameters β
and θ which can maximize the log-likelihood.

L(β, θ) = max
β,θ

∑
D

log
∑
G′

pθ(a|T,G′, q)pβ(G′|T, q)

We decouple the two models and train them sep-
arately, i.e., first train the retriever pβ and then train
the reasoner pθ on the sub-graph sampled by the
retriever (Zhang et al., 2022a; Sachan et al., 2021).
The above equation can be approximated as:

L(β, θ) = max
β,θ

∑
D

log pθ(a|T,G′, q) + log pβ(G′|T, q)

4.3. Preliminary

Triple Serialization To enable PLMs to handle
structured information from a knowledge base,
we devised a straightforward approach to trans-
form triples t1 and t2 into textual sequence t∗1 =

[HEAD], ℓ(e1),[REL], ℓ(r),[TAIL], ℓ(e2) and t∗2 =

[HEAD], ℓ(e),[REL], ℓ(a),[TAIL], v. Here, [HEAD],
[RELATION], [TAIL] are special tokens represent-
ing distinct components of triples. The function
ℓ(e) retrieves the label of e from KB, with the same
functionality for r and a.
Table Serialization With a similar purpose, we
adopt the same serialization method in Liu et al.
(2022c) to flatten a table T into a sequence T ∗.
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Figure 2: Distribution of question types in KET-QA.
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396,000NellySuit
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What was the release date
of the studio album from
the artist who signed to the
record label GOOD Music ?

Pre-trained Language Models
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Retrieval Bi-Encoder Re-Rank
Cross-Encoder

Entity: The College
Dropout
Attribute: publication date
Value: February 10 , 2004

Head Entity: Suit
Relation: performer
Tail Entity: Nelly

Entity: Kanye West
Attribute: date of birth
Value: June 08 , 1977

Figure 3: Overview of the retriever-reasoner model.

4.4. Multistage Knowledge Base
Retriever

Motivation The retriever we designed draws in-
spiration from the field of text semantic match-
ing (Giunchiglia and Shvaiko, 2003), among which
bi-encoder and cross-encoder are two commonly
employed model architectures, as is shown in Fig-
ure 4. Cross-encoders can perform better due to
their fine-grained cross-attention inside the PLM.
However, they tend to have lower efficiency, which
can be problematic for real-world TableQA appli-
cations. The other model bi-encoders are gener-
ally faster and more efficient since they only re-
quires one pass through the input sequence. There-
fore, we propose Multistage KB Retriever (MKBR),
which first utilizes a Retrieval Bi-Encoder to retrieve
the top N triple candidates and then employ a Re-
Ranker Cross-Encoder for more precise scoring.
Retrieval Dataset The i-th instance contains one
question qi , one table T , m relevant (positive)
triples t+i,j and n irrelevant (negative) triples t−i,j .
The positive triples are annotated manually. The
negative triples are sampled from non-positive
triples within the sub-graph G since considering
all negatives would result in an unbearable com-
putational cost. Rather than simply sampling uni-
formly, we develop a strategy called kNN Negative
Sampling (kNS). Firstly, the question and all triples
are encoded into vectors with a pre-trained sen-
tence embedding model. Then, we take n non-
positive triples closest to the question in the vector
space as negatives. kNS aims to choose infor-
mative negative samples, which are also studied
in (Robinson et al., 2021; Kumar et al., 2019; Zhang
and Stratos, 2021; Xiong et al., 2021).
Retrieval Bi-Encoder consists of a question en-
coder Eq and a context encoder Ec. The concate-

Dot-Product

Pooling Pooling

Transformer
Encoder

Transformer
Encoder

Classifier

Transformer
Encoder

Question
Tabular
Sequence

Triple
Sequence

Re-Rank
Cross-Encoder

Retrieval Bi-Encoder

Figure 4: Diagrams of two retrievers. The symbol
⊕ denotes the concatenation of text sequences.

nation of the serialized table and triple form the
context. Eq and Ec are two independent BERT-
style networks (Vaswani et al., 2017), and we take
the representation at the [CLS] token as the out-
put vector. We define the relevance score using
the dot product of the two vectors, i.e., s(t, q, T ) =
Eq(q)

⊤Ec(T
∗ ⊕ t∗). Where ⊕ is the concatenation

operator. The bi-encoder is optimized with a con-
trastive loss similar to Karpukhin et al. (2020).

L(qi, Ti, t
+
i,1, · · · , t

+
i,p, t

−
i,1, · · · , t

−
i,n) =

−
m∑
j=1

log
es(t

+
i,j ,qi,Ti)

es(t
+
i,j ,qi,Ti) +

∑n
k=1 e

s(t−i,k,qi,Ti)

Re-Ranker Cross-Encoder directly takes the con-
catenation of question q, serialized table T ∗, and
serialized triple t∗ as a joint input to the PLM and
generate a relevance score ranging from 0 to 1,
i.e., s(t, q, T ) = E(q ⊕ T ∗ ⊕ t∗). Specifically, we take
the output logits as the relevance score. The train-
ing process of the cross-encoder is modeled as a
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binary classification problem. Positive triples and
negative triples are assigned as 1 and 0, respec-
tively.
Triple-Related Sub-Table The information within
the entire table may be redundant for retrieval and
could exceed the length limitations of the trans-
former model. We assume that each row in the
table is independent, and the relevance score of
a triple t is determined solely by the rows with a
mapping relationship with the head entity. There-
fore, we propose to improve the performance of
the retriever via extracting a triple-related sub-table
T = {ri ∈ T | ∃ cij ∈ ri, e ∈ f(cij)} and take T as
the input of retriever. In Section 5.3, we showcase
the efficacy of this approach.

4.5. Reasoner
The reasoner aims to answer the question with
the information from the table and the retrieved
triples. For this phase, we follow the trend of di-
rectly generating answers using auto-regressive
PLMs in question answering area (Raffel et al.,
2020; Lewis et al., 2020). Meanwhile, PLMs are
also powerful for fusing and reasoning on heteroge-
neous data (Zhou et al., 2022; Chen, 2023). Specif-
ically, we concatenate the retrieved information with
serialized table and question as the input sequence
of PLMs and take the output as the final answer, i.e.,
a′ = Er(q⊕T ∗⊕ t∗0 ⊕· · ·⊕ t∗k). Where a′ is the pre-
dicted answer. Er stands for the reasoner model.
T ∗ is the serialized table and {t∗0, · · · t∗k} is the set
of serialized triples obtained from the retriever.

5. Experiments: Evidence Retrieval

5.1. Experimental Setup
Evaluation Metrics: We introduce a modified ver-
sion of Recall@k (R@k) to evaluate the retrieval
performance in the context of KET-QA. The pur-
pose of R@k is to measure the percentage of items
of gold evidence that the retriever retrieves:

R@k =
1

N

N∑
i=1

|evidence retrieved|i
|gold evidence|i

In this equation, the numerator counts the relevant
items retrieved up to the k-th position for the i-th
instance, while the denominator represents the total
number of relevant items for the i-th instance.
Baseline Methods: (i) String Match: Triples are
retrieved based on whether the label of the r or
the e2 for relational triples and a or v for attribute
triples matches the words in the question; (ii) Bi-
Encoder and Cross-Encoder are used to compare
the performance of a single retriever with MKBR.
Implementation Details: We use two indepen-
dent BERT networks (Devlin et al., 2019) (base, un-
cased) for bi-encoder and a single RoBERTa (Liu

et al., 2019) model for cross-encoder. During the
training process, we applied kNS for Bi-Encoder
with n = 25, but random sampling for Cross-
Encoder with n = 50. We chose not to apply kNS
to the Cross-Encoder because we observed that
training it using kNS is highly time-consuming, and
the model tends to overfit. We also conducted a
hyper-parameter search for n ∈ {25, 50, 100} on the
dev set to find the optimal n. The optimal MKBR
model is obtained by selecting the best Retrieval Bi-
Encoder and Re-Rank Cross-Encoder separately,
based on their performance on the dev set. Dur-
ing the inference process, we set the number of
triples retrieved by the Retrieval Cross-Encoder to
N = 200. We report the R@K of different methods
for all experiments on the test set.

5.2. Main Results

Method Top-1 Top-5 Top-20 Top-100

Random 0.05 0.27 2.94 12.49
String Match 5.87 14.65 28.24 43.66
Cross-Encoder 37.83 63.84 82.14 94.44
Bi-Encoder 29.17 51.95 72.12 89.62
MKBR 38.77 66.04 83.47 93.51

Table 3: Comparison between retrieval methods on
KET-QA test set using R@k (k ∈ {1, 5, 20, 100}).

From Table 3, we can conclude that in scenar-
ios where k is small (k ≤ 20), MKBR consistently
outperforms any single retriever model. We at-
tribute this performance improvement primarily to
the complementary nature of the bi-encoder and
cross-encoder. The Retrieval Bi-Encoder aids the
Re-Rank Cross-Encoder in filtering out a subset of
triples that are difficult to distinguish, thus enhanc-
ing the overall performance.

5.3. Ablation Study
In Section 4.4, we propose to utilize the triple-
related sub-table as the final input for the retriever.
However, there are two other approaches for table
representation: (i) Full Table: taking the complete
table as input; (ii) No Table: not including the table
as input. As is shown in Table 4, the table represen-
tation method using the triple-related sub-table is
superior to the other two approaches. We believe
this is because such a representation preserves
the relevant information in the table that can aid in
retrieval while minimizing redundant information.

5.4. Run-time Efficiency
We conducted run-time tests for MKBR on a re-
mote server with four 16G V100 GPUs. When
exclusively utilizing a Cross-Encoder, the retrieval
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Table Rep. Top-1 Top-5 Top-20 Top-100
Bi-Encoder

FT 25.81 49.89 71.75 88.91
NT 24.05 48.67 71.89 89.13
TT 29.17 51.95 72.12 89.62

Cross-Encoder
FT 28.59 58.94 78.32 94.42
NT 12.27 34.41 59.78 85.04
TT 37.83 63.84 82.14 94.44

Table 4: Results with different table representations,
which can be chosen from {FT(Full Table), NT(No
Table), TT(Triple-Related Sub-Table)}.

would take 4.92 seconds per question. However,
by incorporating MKBR, the retrieval process is op-
timized to 0.53 seconds. On the other hand, the
Retrieval Bi-Encoder requires a longer time for the
offline generation of knowledge base embeddings.
It takes approximately 27.9 seconds per table.

6. Experiments: Question Answering

6.1. Experimental Setup

Evaluation Metrics: We applied two widely-used
metrics in the question-answering area: (i) Exact
Match (EM) is a strict all-or-nothing metric, which
represents the percentage of predictions that ex-
actly match the ground truth. (ii) F1 is another
widely-used metric in QA (Chen et al., 2020; Zhu
et al., 2021a), which measures the token overlap
between the predicted answer and ground truth.
Baseline Methods: We take table-only models as
baselines to explore whether the question can be
answered based solely on the table information in
the traditional TableQA manner. Specifically, table
only models take the concatenation of a question
and a table as the input of PLMs and take the output
as the predicted answer to the question.
Implementation Details: We selected TaPEx, T5,
BART, GPT-3, and ChatGPT as the reasoner mod-
els for conducting experiments in fine-tuning, few-
shot, and zero-shot settings. The experimental
settings for fine-tuning models include using the
AdamW optimizer with an initial learning rate of 5e-
5, training for 20 epochs, and using a batch size of
24. The few-shot model utilized the KATE (Liu et al.,
2022a) method, where five in-context examples
were retrieved from the train set for each sample.
For zero-shot and few-shot models, we employed a
greedy decoding strategy to obtain the final answer.
We also performed a hyper-parameter search for
the number of retrieved triples k in {5, 10, 20, 30} us-
ing TaPEX-Large on the dev set. Finally, we chose
k = 20 based on the F1 score.

6.2. Main Results
As is shown in Table 5, the inclusion of the knowl-
edge base consistently and significantly enhanced
the performance across all experimental settings
and model types, as reflected by relative improve-
ments of 1.9 to 6.5 times in EM scores and 1.8 to
4.6 times in F1 scores. These findings highlight
the effectiveness of leveraging a knowledge base
for question-answering tasks and its potential for
improving the accuracy and capability of reasoning
systems. We also observed that in the table-only
scenario, few-shot GPT-3 outperformed the fine-
tuned models, indicating that the LLM itself might
possess some stored external knowledge. This
issue will be further investigated in Section 6.3.

6.3. Comparison of Knowledge Sources
We performed in-depth experiments to compare
two distinct external knowledge sources with KB:
(i) LLM-generated Knowledge: We employed the
prompt "Generate some knowledge about the given
question and table" to instruct an LLM (text-davinci-
003) to generate relevant knowledge for answering
questions; (ii) Wikipedia Passages: We employed
the same passage retriever as in Chen et al. (2020)
to retrieve relevant knowledge from Wikipedia pas-
sages. Note that since KET-QA is built on top of
HybridQA. Therefore, each question can be an-
swered by combining information from Wikipedia
passages and tables. However, incorporating a KB
can still significantly surpass the other two meth-
ods regarding EM and F1 scores. We perceive a
structured KB to possess several advantages over
other forms of knowledge sources: (i) It provides
structured data and semantic relationships, yield-
ing more precise and consistent knowledge. (ii)
The semantic relationships between entities can
aid the model in comprehending the structure of
the table. Furthermore, as KET-QA includes fine-
grained gold evidence annotations, we are able to
evaluate and optimize the retrieval process.

6.4. Error Analysis
We manually analyzed 100 randomly selected er-
ror cases of the few-shot GPT-3 model from the
dev set. Errors are categorized into: (1) Knowl-
edge Uncovered (39%): The provided knowledge
does not include the required information. (2) Erro-
neous Knowledge (1%): The provided knowledge
is detrimental or is factually incorrect. (3) Reason-
ing Error (42%): The reasoner failed to provide the
correct response even with useful knowledge. (4)
False Negative (18%): Misjudged by the evaluator.
The results indicate that the majority of errors are
attributed to the inability of the retriever to collect
helpful knowledge, as well as the insufficient ability
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Model

Table Only Knowledge Enhanced ∆

Dev Test Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Fine-Tuning
TaPExlarge 14.44 18.52 12.83 17.1 60.62 63.22 56.63 58.75 46.18 44.7 43.8 41.65
BARTlarge 9.34 13.41 8.17 12.17 51.7 54.49 52.81 56.16 42.36 41.08 44.64 43.99
BARTbase 7.64 11.57 8.38 11.56 45.65 48.89 46.87 50.28 38.01 37.32 38.49 38.72
T5base 9.77 14.05 9.12 12.97 45.54 48.94 46.02 49 35.77 34.89 36.9 36.03

Zero-Shot
GPT-3 8.07 17.85 10.07 20.11 33.55 45.04 36.69 47.76 25.48 27.19 26.62 27.65
ChatGPT 3.82 7.65 4.03 7.31 17.73 27.53 15.69 26.79 13.91 19.88 11.66 19.48

Few-Shot
GPT-3 33.86 39.58 31.81 37.06 57.86 63.04 60.23 64.89 24 23.46 28.42 27.83
ChatGPT 20.7 23.95 19.72 23.92 45.01 49.51 43.26 49.53 24.31 25.56 23.54 25.61

Table 5: Performance of different reasoners on KET-QA. Block ∆ represents the increase in performance
after incorporating knowledge base as an additional source of information. We employ the text-davinci-003
version for GPT-3 and the gpt-3.5-turbo version for ChatGPT.

Knowledge Source
Dev Test

EM F1 EM F1

Table Only 14.44 18.52 12.83 17.1
LLM 29.62 34.23 26.51 30.58
Wikipedia Passages 32.27 36.69 28.31 32.24
Knowledge Base 60.62 63.22 56.63 58.75

Table 6: Experimental results with various external
knowledge sources. We employed TaPExlarge as a
representative reasoner.

of the reasoner to process knowledge.

7. Related Work

Knowledge Enhanced Models A flurry of QA
systems involves using multiple sources of knowl-
edge to answer a wider range of questions (Oguz
et al., 2022; He et al., 2023; Zhen et al., 2022;
Lan et al., 2021). Available knowledge sources
can be divided into: (i) unstructured text; (ii) struc-
tured knowledge bases; (iii) semi-structured ta-
bles. KG-FiD (Yu et al., 2022) infuses knowledge
graph in FiD (Izacard and Grave, 2021) model for
Open Domain Question Answering(ODQA) via con-
structing a graph structure with KB triples and pas-
sages. Chen et al. (2020); Zhu et al. (2021a); Chen
et al. (2021a) propose to integrate both tabular
and textual content to answer questions. Unik-
QA (Oguz et al., 2022) unifies representations of
KB triples and semi-structured tables into unstruc-
tured text and performs standard ODQA tasks.
Based on previous works, this paper proposes a
retriever-reasoner pipeline model, which shares
some similarities with the retriever-reader pipeline
in ODQA (Chen et al., 2017). However, our work
focuses explicitly on the integration of both table

and text data into the knowledge base retrieval pro-
cess, which presents unique challenges. While our
model may not introduce significant innovations,
the primary contribution of this paper lies in the
creation of a valuable language resource KET-QA.

QA over Heterogeneous Information Reasoning
over heterogeneous information poses significant
challenges. Recent works have demonstrated the
potential of a single transformer-based model to
fuse heterogeneous information (Xie et al., 2022;
Liu et al., 2023, 2022d). These works often unify
the representation of different types of information
by reducing them to text. Another line of work in-
volves using different models to process data from
different structures, e.g., graph neural network for
knowledge graph (Yu et al., 2022; Gao et al., 2019).
However, the intricate nature of the diverse de-
signs renders it less convenient compared to a
transformer-based approach. This paper follows
the first line of work, which employs a single trans-
former model to handle heterogeneous data.

Multistage Retriever Some other works have also
utilized a two-stage retriever consisting of retrieval
and reranking (Gao et al., 2021; Glass et al., 2022;
Zhang et al., 2022b). However, these works typi-
cally focus on passage retrieval rather than knowl-
edge base retrieval. While some other works re-
trieve from a knowledge base with multistage re-
triever (Baek et al., 2023; Wang et al., 2021), they
mainly focus on standard KGQA tasks, without ad-
dressing the challenges posed by the tabular data
structure. For example, we propose a novel ta-
ble representation method to address the issue of
redundant information in table-based retrievals.
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8. Conclusion

We present KET-QA, the first TableQA dataset
that incorporates a knowledge base as supplemen-
tary information to tables. Significantly, we pro-
vide fine-grained gold evidence annotations to facil-
itate deeper research into the missing knowledge
problem of tables resulting from the highly con-
densed structure. In our experiments, we devise
a retriever-reasoner framework to effectively inte-
grate the knowledge base into TableQA. We firmly
believe that KET-QA presents an intriguing and
demanding challenge for the community to tackle.

9. Limitations

As is shown in Table 2, KET-QA is not large-scale
enough compared to other existing datasets due
to the complexity of the labeling task. Furthermore,
we only considered one-hop connections when ex-
tracting the sub-graph from Wikidata. However,
suppose we extract sub-graphs with more hops.
In that case, it not only provides a broader range
of external knowledge for tables but also presents
more significant challenges for the reasoner due
to the inclusion of more complex structures. We
consider the aforementioned limitations to be ar-
eas for future improvement and development of
the KET-QA. In experiments, we have not provided
experiment results of more advanced versions of
GPT such as GPT4 due to the access and API
frequency limitations.

10. Ethics Statement

This paper introduces KET-QA, an openly acces-
sible English dataset designed for the research
community to investigate table question-answering.
The annotators we employ possess bachelor’s de-
grees in computer science and are compensated
at an hourly wage of $9, which exceeds the local
average salary of similar jobs. KET-QA is built on
HybridQA (Chen et al., 2020), which is under the
MIT license. The knowledge base is constructed
on Wikidata (Vrandecic and Krötzsch, 2014), which
is under the CC0 public domain license. Both allow
us to modify and create new datasets.
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A. More Experimental Results

A.1. Validation Results of Retrievers
The corresponding validation results of comparison
between different retrieval methods are shown in
Table 7.

Top-1 Top-5 Top-20 Top-100
Random 0.00 0.61 2.38 13.50
String Match 5.65 15.93 26.49 40.83
Cross-Encoder 36.73 60.89 80.39 93.10
Bi-Encoder 25.98 48.74 70.89 88.55
MKBR 37.58 63.10 80.99 91.66

Table 7: Corresponding validation results of Table 3

A.2. Results over Answer Distribution
We divided the dataset based on the answer source
and reported the results on the dev set of KET-
QA for each subset in Table 8. After incorporat-
ing knowledge, the model’s performance shows
the greatest improvement in the subset where the
answer source is In-KB. However, even after in-
corporating knowledge, the model’s performance
on calculated answers remains lower compared to
the other two categories. This indicates that the
model’s ability to perform calculations on heteroge-
neous data still needs improvement.

B. More Details on Dataset

B.1. Dataset Preprocessing
Due to the post-create question-answer annotation
approach used in HybridQA, which involves collect-
ing tables and Wikipedia passages and then hav-
ing annotators label question-answer pairs, there
is a significant overlap between some of the ques-
tions and the passages from Wikipedia. We con-
sider such examples to be lacking in naturalness.
Therefore, we have designed the following rules
for filtering: (i) We eliminated questions with an
LCS Similarity of 0.7 or higher, which was calcu-
lated by dividing the length of the Longest Common
Sub-sequence (LCS) between the question and its
corresponding Wikipedia passage by the length of
the question. (ii) We employed a fuzzy matching
technique to filter and retain question-answer pairs
that have corresponding words in the knowledge
base but are not found in the table.

B.2. Low-Quality Annotation Filtering
Rules

We applied several rules to filter low-quality an-
notations: (i) The source of the answer is invalid.

As mentioned in Section 3.3, the answer can only
originate from three valid sources. During the an-
notation process, we instructed the annotators to
manually indicate the answer source. In the final
review, we employ rule-based methods to trace
back the answers and verify their sources as a
double-checking measure; (ii) Gold evidence was
not explicitly marked; (iii) The annotated evidence
is invalid. For example, the index exceeds the range
of the table or there is no corresponding triple in
the sub-graph.

C. More Details on Retrievers

C.1. Training of Bi-Encoder
The training process of Bi-Encoder is similar to that
in (Karpukhin et al., 2020). We optimize the model
using a contrastive learning loss function:

L(qi, Ti, t
+
i,1, · · · , t

+
i,p, t

−
i,1, · · · , t

−
i,n) =

−
m∑
j=1

log
es(t

+
i,j ,qi,Ti)

es(t
+
i,j ,qi,Ti) +

∑n
k=1 e

s(t−i,k,qi,Ti)

C.2. Implementation Details
We use two independent BERT networks (Devlin
et al., 2019) (base, uncased) for retrieval bi-encoder
and a single RoBERTa (Liu et al., 2019) model
for re-ranker cross-encoder. During the training
process, both models are trained on the train set of
KET-QA with a learning rate of 10-5 using Adam,
linear scheduling with warm-up and dropout rate
0.1. Bi-encoder is trained up to 20 epochs with a
batch size of 16, while cross-encoder is trained up
to 5 epochs with a batch size of 32.

C.3. Negative Sampling
According to Table 9, we conducted experiments
with varying numbers of negative examples (N ∈
{25, 50, 100}). We observed that increasing the
number of negative examples does not necessar-
ily lead to improved model performance. For the
cross-encoder, the model achieves its highest per-
formance at N = 50, while for the bi-encoder, it is
at N = 25.

D. More Details on Reasoners

D.1. Introduction
TaPEx (Liu et al., 2022c) guides the language
model to mimic a SQL executor on the synthetic
corpus, resulting in groundbreaking results on four
table-related datasets. We take TaPEx as a repre-
sentative of tabular language models.
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Model

Table Only Knowledge Enhanced
In Table In-KB Calculated In-Table In-KB Calculated

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Fine-Tuning
TaPExlarge 22.47 27.38 8.04 11.59 36.36 36.36 55.56 60.47 59.81 61.36 45.45 45.45
BARTlarge 15.91 19.72 4.11 8.46 27.27 27.27 49.24 53.46 54.02 56.11 36.36 42.42
BARTbase 11.62 15.77 4.3 8.13 27.27 27.27 40.15 44.68 50.09 52.42 27.27 27.27
T5base 15.91 21.9 4.86 7.98 27.27 27.27 45.71 50.83 45.61 47.68 36.36 42.42
Zero-Shot
GPT-3 13.38 23.93 4.3 13.62 0 4.48 23.48 38.56 44.68 50.53 0 11.89
ChatGPT 7.83 14.14 0.93 2.88 0 5.58 18.69 31.05 17.38 25.42 0 3.21
Few-Shot
GPT-3 32.83 40.43 35.14 39.53 9.09 12.73 57.32 64.38 58.88 62.75 27.27 28.93
ChatGPT 22.22 26.83 20 22.12 0 9.7 46.97 53.89 44.49 47.11 0 8.33

Table 8: Experimental results based on answer distribution on dev set of KET-QA.

#N Top-1 Top-5 Top-20 Top-100
Bi-Encoder
25 29.17 51.95 72.12 89.62
50 25.68 48.17 68.11 87.94
100 22.42 39.47 62.51 85.03
Cross-Encoder
25 27.53 54.32 73.76 91.63
50 37.83 63.84 82.14 94.44
100 12.49 28.63 44.76 70.22

Table 9: Ablation study on the number of negative
numbers (#N). Gray represents the final model se-
lection for MKBR

BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020) are representatives of general pre-trained
encoder-decoder language models, and have per-
formed exceptionally well on a wide range of NLP
tasks.
GPT-3 (Brown et al., 2020) is one of the top-
performing models among the large language mod-
els with a decoder architecture. It exhibits strong
question answering capabilities in both zero-shot
and few-shot settings.
ChatGPT is a variant of GPT-3, which is trained us-
ing Reinforcement Learning from Human Feedback
(RLHF). It excels in natural language conversations
and exhibits human-like responses.

Table 10 shows the comparison of parameters
of different models.

D.2. Evaluation Metrics
Exact Match The EM score is a strict all-or-nothing
metric, which represents the percentage of predic-
tions that exactly match the ground truth.
F1 Score is another widely-used metric in
QA (Chen et al., 2020; Zhu et al., 2021a), which

measures the token overlap between the predicted
answer and ground truth.

D.3. Implementation Details
The experimental settings for fine-tuning models
include using the AdamW optimizer with an initial
learning rate of 5e-5, training for 20 epochs, and
using a batch size of 24. The training process takes
about 7.8 hours for BART-Large/TaPEX-Large and
5.2 hours for BART-Base/T5-Base with 4 16G V100
GPUs. The few-shot model utilized the KATE (Liu
et al., 2022a) method, where for each sample, five
examples were retrieved from the training set. For
both the zero-shot model and the few-shot, we em-
ployed a greedy decoding strategy (t = 0) to obtain
the final answer. The inference process typically
takes approximately 5.5 seconds per question with
OpenAI API.

Model #Parameter
TaPExlarge 400 million
BARTlarge 400 million
BARTbase 140 million
T5base 220 million
GPT-3 175 billion

Table 10: Parameter of reasoners

E. Other External Knowledge Sources

LLM-generated Knowledge Numerous studies
have proposed utilizing Large Language Models
(LLMs) as databases (Liu et al., 2022b; Yu et al.,
2023). We employed the prompt "Generate some
knowledge about the given question and table" to
instruct the LLM (text-davinci-003 in our case) to
generate knowledge that is beneficial for answer-
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ing the current question with a greedy decoding
strategy.
Wikipedia Passage As discussed in (Chen et al.,
2020), hyperlinked Wikipedia passages can pro-
vide additional information that complements the
table. Following the methodology outlined in (Chen
et al., 2020), we employed the same passage re-
triever to retrieve relevant knowledge for the current
question.

We concatenated the question, the serialized
table, and the external knowledge as the input of
PLMs and take the output as the final answer, which
is the same as in Section 4.5.
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