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Abstract
In this paper, we investigate and evaluate large language models’ capability in location prediction. We present
experimental results with four models—FLAN-T5, FLAN-UL2, FLAN-Alpaca, and ChatGPT—in various instruction
finetuning and exemplar settings. We analyze whether taking into account the context—tweets published before
and after the tweet mentioning a location—is beneficial. Additionally, we conduct an ablation study to explore
whether instruction modification is beneficial. Lastly, our qualitative analysis sheds light on the errors made by the
best-performing model.
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1. Introduction

X1 (formally Twitter) is a social media platform
where users publish short messages called tweets.
According to a recent report, it ranks as the 14th
most widely used social network globally, with 237.8
million daily active users as of 2023 (Shewale,
2024). X users can share their locations when
posting tweets, although this feature is disabled by
default. Due to the sparsity of geotagged tweets,
there is a growing body of research trying to de-
termine people’s location based on their posted
tweets (Doudagiri et al., 2018; Xiao and Blanco,
2022; Lamsal et al., 2022).

Large language models (LLMs) have made huge
progress and gained popularity since 2022 (Chowd-
hery et al., 2022; Touvron et al., 2023a; Le et al.,
2022), but remain underutilized in the field of loca-
tion prediction. Because LLMs are not trained to
predict locations, it is not clear if LLMs treat loca-
tions mentioned in a tweet simply as text or could
understand the context and use it to decide if a
user is physically located there. This paper seeks
to bridge this gap by utilizing LLMs to tackle the
problem of location prediction with tweets.

The work in this paper plays an important role
in many applications, such as public health and
epidemiology (Delmelle et al., 2022), emergency
responses, and urban planning (Casali et al., 2022).
For example, the location information available on
social media platforms can be utilized to offer per-
sonalized recommendations in the hospitality and
tourism industry (Mirzaalian and Halpenny, 2019)
and to prevent crimes (Monika and Bhat, 2022).

The main contributions of this paper are (a) we
show that LLMs can perform the new task of decid-
ing whether a user is located in the location men-
tioned in tweets; (b) we demonstrate that (b.1) in-

1http://twitter.com

struction finetuning is not consistently beneficial
in location prediction, (b.2) providing exemplars is
generally helpful, and (b.3) taking into account the
tweets published before and after the tweet men-
tioning the location is not always beneficial in the
context of LLMs; (c) we conduct an ablation study to
show that two strategies of instruction modification,
tweet preprocessing (i.e., remove special charac-
ters from tweet text) and confidence enhancement
(i.e., add the sentence in the instruction to force
LLMs to be more confident), are beneficial; and (d)
we perform a qualitative analysis to provide insights
into the errors made by the best-performing LLM.

2. Related Works

Most previous works on noisy user-generated con-
tent and spatial information focus on: a) named
entity recognition (Shen et al., 2018; Ushio et al.,
2022) and disambiguation (Inkpen et al., 2017; Hu
et al., 2023), and b) location prediction (Li and Lim,
2022). The former identifies, among others, loca-
tion named entities and links them to a knowledge
base without specifying who is there. The latter,
where our work falls into, aims to assign a location
to the user.

Previous works targeting location prediction us-
ing X data are generally divided into two categories:
a) home location prediction (Simanjuntak et al.,
2022; Mostafa et al., 2022), where the objective
is to predict long-term residential addresses of X
users, and b) real-time location prediction (Lutsai
and Lampert, 2023; Julie et al., 2023), whose goal
is to predict the location where a tweet is posted in
real-time as it gets published.

LLMs have excelled in various NLP tasks such as
sentiment analysis (Bang et al., 2023), natural lan-
guage inference (Lee et al., 2023), machine transla-
tion (Lyu et al., 2023), and question answering (Bai
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et al., 2023). More related to our work, Wang et al.
(2023) use LLMs with prompts designed to incor-
porate mobility data, such as historical stays and
contextual stays, to predict human movements. Our
research differs in two aspects. Firstly, we aim to
determine whether the author of the tweet was lo-
cated at the mentioned location. Secondly, we do
not rely on user’s past precise locations. Instead,
we solely rely on the tweet text. To the best of our
knowledge, we are the first to use LLMs and tweet
text for location prediction.

3. Definitions and Background

3.1. Problem Definition
Given a pair of (t, l), where t is a tweet, and l is a
location mentioned in t, the objective is to predict
the spatial relationship between the author of t and
l. Specifically, we assign yes to (t, l) if the author
of t was located at l when t was published and no
if it is not possible to determine whether the author
of t was located at l when t was published.

3.2. Dataset Description
To analyze the capability of LLMs in location pre-
diction, we conduct experiments on an existing cor-
pus (Xiao et al., 2023) with spatial annotations. This
dataset consists of 3,494 instances, with each in-
stance containing seven tweets that were published
in chronological order. We denote the first three
tweets, the middle tweet, and the last three tweets
as earlier tweets, target tweet, and later tweets,
respectively. We denote context tweets as the com-
bination of earlier tweets and later tweets. A city
from a predefined set is mentioned in the target
tweet, but may or may not be mentioned in earlier
tweets and later tweets. Most instances are an-
notated yes (67.7%), indicating that the author of
the tweets was located at the city mentioned in the
target tweet when it was published. The remain-
ing one-third are annotated no (32.3%), indicating
that it is not possible to determine whether the au-
thor of tweets was located at the city mentioned
in the target tweet when the target tweet was pub-
lished. The annotations are collected via Amazon
Mechanical Turk and then filtered by MACE (Hovy
et al., 2013), a tool designed to identify unreliable
annotators and remove their annotations.

This dataset has a broad coverage, with a di-
verse range of cities in terms of population and
geographical locations. Among the 94 cities men-
tioned in the 3,494 target tweets, 82.1% are large
cities (e.g., Chicago and Miami), while 17.9% are
smaller cities (e.g., Reno and Toledo).2 This dis-

2Note that small and large cities refer to cities with a
population of less than 300,000 and equal to or larger

tribution is consistent with our intuition, as most
cities discussed in tweets are large cities. Addi-
tionally, this dataset not only considers population
diversity but also spans cities located in various
regions of the United States. Specifically, 10.4%
of target tweets mention 7 cities in the northeast-
ern states (e.g., Massachusetts), 15.5% mention
18 cities in the Midwestern states (e.g., Missouri),
54.9% mention 33 cities in the southern states (e.g.,
Texas), and 19.2% mention 36 cities in the west-
ern states (e.g., California). Consequently, diverse
geographical and cultural contexts, as reflected in
the language used in tweets, are incorporated to
ensure geographical generalizability.

3.3. LLM Selection

To analyze LLMs’ capability in location prediction,
we choose publicly available LLMs from two main
categories based on their architectures. The first
category comprises encoder-decoder-based mod-
els, which are built on the vanilla Transformer
model (Vaswani et al., 2017), consisting of two
stacks of Transformer blocks as the encoder and
decoder, respectively. We select T5 (Raffel et al.,
2020a) and UL2 (Tay et al., 2023a) in this cate-
gory. The second category consists of decoder-
based models, leveraging unidirectional attention
masks to ensure each input token attends only
to past tokens. In this category, we choose to
work with Alpaca (Rishi et al., 2021), a LLaMA-
based model. Previous work shows that instruc-
tion finetuning can boost LLMs’ performance in
downstream tasks (Chung et al., 2022). Hence,
we work with enhanced versions of these models,
specifically FLAN-T5, FLAN-UL2 (Tay, 2023), and
FLAN-Alpaca (Chia et al., 2023). All models have
undergone instruction finetuning on the FLAN Col-
lection (Longpre et al., 2023), which consists of 473
datasets used in 1,836 NLP tasks, where each task
is manually rephrased as instructions for instruc-
tion finetuning. Besides open-sourced LLMs, we
also include ChatGPT3 in our evaluation to assess
how a closed (and commercial) LLM performs in
location prediction.

4. Experiments and Analyses

4.1. Experimental Setup

Prompt design is important to elicit LLMs’ ability
to understand language (Liu et al., 2023). Table 2
presents our prompt for location prediction, includ-
ing the instruction, tweet text, and options, which
are shown in order. Note that we remove “#” and

than 300,000, respectively.
3https://chat.openai.com/
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Model 0-shot 1-shot 5-shot 10-shot
Majority baseline 0.55

Without
instruction
finetuning

ChatGPT 0.48 0.57 0.57 0.57
FLAN-T5 0.38 0.44 0.48 0.50
FLAN-Alpaca 0.17 0.40 0.47 0.48
FLAN-UL2 0.59 0.60 0.62 0.61

With
instruction
finetuning

ChatGPT 0.58 0.59 0.61 0.60
FLAN-T5 0.55 0.55 0.59 0.59
FLAN-Alpaca 0.27 0.33 0.50 0.55
FLAN-UL2 0.58 0.57 0.54 0.53

Table 1: Weighted average F1 scores of various LLMs, obtained with different numbers of exemplars and
finetuning settings.

Read the tweet and determine if the author of the tweet
was located at <loc> when the tweet was published. The
’#’ in the hashtags and ’@’ in the mentions are removed.
If the tweet is associated with advertisements or news
reports, then you can be more confident in selecting yes.
<tweet_text>
1. yes, the author of the tweet was located at <loc>
when the tweet was published.
2. no, I cannot determine if the author of the tweet was
located at <loc> when the tweet was published.

Table 2: Our prompt for location prediction. <loc>
and <tweet_text> are the mentioned location and
the text of the tweet, respectively.

“@” from the tweet’s content and provide the corre-
sponding message in the instruction as we find out
that LLMs often struggle to understand hashtags
and mentions unless we remove those characters.
We also add the clue related to the ads and news
(i.e., “If the tweet is associated with advertisements
or news reports, then you can be more confident in
selecting yes.”) to enhance models’ confidence be-
cause in our preliminary experiments, we observe
that LLMs tend to be too conservative in predicting
yes even when the tweet’s content is related to
local ads or news.

We create stratified train and test splits (70% and
30%) and use LoRA (Hu et al., 2022) to perform in-
struction finetuning for all LLMs except ChatGPT.4
LoRA is a technique that freezes LLMs’ weights
while introducing trainable rank decomposition ma-
trices into each layer of LLMs, greatly reducing the
number of trainable parameters. The attention di-
mension of LoRA and dropout probability for LoRA
layers are set as 4 and 0.1, respectively. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
for instruction finetuning, with initial learning rate,
β1, β2 as 1e-05, 0.9, 0.999, respectively, categori-
cal cross entropy as loss function, and batch size

4We finetune ChatGPT using its official API. The hy-
perparameters of finetuning are not accessible to us.

4. We conduct all experiments using 4 NVIDIA
A100-80GB GPUs, which take a total of 4 days.

4.2. Instruction Finetuning is not
Consistently Beneficial

Table 1 presents the weighted average F1 scores
for different numbers of exemplars and instruction
finetuning settings. We observe that instruction
finetuning consistently enhances ChatGPT and
FLAN-T5, although the improvement brought by
instruction finetuning becomes smaller as the num-
ber of provided exemplars increases. Taking Chat-
GPT as an example, it gains 0.1 increase in F1 in
the 0-shot setting, while it only gains 0.03 in the 10-
shot setting. For FLAN-T5, instruction finetuning
enables it to gain 0.17 F1 without being provided
any exemplar, while gaining only around 0.1 F1
when being provided 1/5/10 exemplars. FLAN-
Alpaca also benefits from instruction finetuning
across most settings, except in the 1-shot setting.
The only “outlier” is FLAN-UL2, in which instruction
finetuning even leads to a decline in performance,
regardless of the number of exemplars provided.
This discrepancy shows that the effect of instruction
finetuning is tailor to specific LLMs, as some LLMs
experience substantial improvements while others
do not.

4.3. Providing Exemplars Helps in Most
Cases

We observe that providing more exemplars can
improve model performance in most cases. Specif-
ically, prior to instruction finetuning, all LLMs show
improvements with more exemplars, as F1 score
increases from 0.48 to 0.57 for ChatGPT, from 0.38
to 0.50 for FLAN-T5, from 0.17 to 0.48 for FLAN-
Alpaca, and from 0.59 to 0.62 for FLAN-UL2. We
also find out that the degree of the improvement
decreases. In fact, negative effects emerge when
providing more than 5 exemplars. In contrast, after
instruction finetuning, most LLMs, with the excep-
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Model Target Earlier+Target Target+Later All

ChatGPT 0.57 0.59 0.61 0.61
FLAN-T5 0.48 0.41 0.41 0.42
FLAN-Alpaca 0.47 0.39 0.40 0.39
FLAN-UL2 0.62 0.58 0.59 0.59

Table 3: Weighted average F1 scores of various LLMs under the 5-shot setting, obtained by providing
different context tweets.

Earlier tweet: I’m in Denver for spring break. Saw this
walking to lunch. It’s at a restaurant called Pride and
Swagger. #SaLuna #SamandLunaForever
Target tweet: @GuyFieri I’m in Denver for my spring
break. I went to Steuben’s for lunch today. I had the blt,
and it was incredible!
Later tweet: @MLB_PR @MLB @AtlanticLg I don’t get
why they don’t try this in their affiliated leagues.

Table 4: Example showing that taking into account
context tweets is not beneficial.

tion of FLAN-Alpaca, cannot gain much from being
provided exemplars. For instance, the F1 score
increases from 0.58 to 0.61 for ChatGPT, and from
0.55 to 0.59 for FLAN-T5. For FLAN-Alpaca, its
F1 score sees a significant increase with the inclu-
sion of more exemplars, going from 0.27 to 0.55.
Regarding FLAN-UL2, we find out that with instruc-
tion finetuning, its performance gets worse as more
exemplars are provided.

4.4. Context is not Always Beneficial
with LLMs

To investigate whether considering context tweets is
helpful in location prediction in the context of LLMs,
we conduct experiments with LLMs using different
context tweets. Specifically, we consider four set-
tings: a) only use target tweets, b) use earlier and
target tweets, c) use target and later tweets, and
d) use all tweets. We also modify the instructions
and tweets so that LLMs understand the temporal
relationship among these tweets. Specifically, we
a) explicitly state in the instructions that tweets are
published chronologically, and b) add indicators
(e.g., Tweet 1, Tweet 2, etc.) before each tweet to
indicate its order.

Table 3 shows the results obtained by various
LLMs with 5 exemplars using different context
tweets, as the best result in Table 1 is achieved
in the 5-shot setting. We find out that incorporat-
ing context tweets is not always beneficial. More
specifically, including later tweets alongside target
tweets boosts ChatGPT’s F1 score from 0.57 to
0.61, although using additional earlier tweets does
not lead to further improvements. On the contrary,
the other LLMs (i.e., FLAN-T5, FLAN-Alpaca, and

FLAN-UL2 w/ both strategies 0.62
FLAN-UL2 w/o preprocess 0.60
FLAN-UL2 w/o enhance 0.60

Table 5: Weighted average F1 scores of different
strategies for instruction modifications. Note that
all results are obtained by FLAN-UL2 using only
target tweets in the 5-shot setting, as this setting
yields the best results in Table 1 and Table 3.

FLAN-UL2) cannot benefit from any type of con-
text tweets, indicating the variations in the models’
ability to leverage context tweets.

Table 4 provides an example illustrating why con-
sidering context tweets is not beneficial. The target
tweet is in the middle, while one tweet selected
from the earlier and later tweets is shown at the top
and bottom, respectively. We only show the most
informative tweets in earlier and later tweets, as the
others do not contain much information that can be
leveraged to determine people’s location. The spa-
tiotemporal information contained within the target
tweet (“I’m in Denver ... I went to ... today”) is suffi-
cient for the model to predict yes, as the context
tweets either do not contain spatial information (“I
don’t get ...”) or are partially duplicated to the target
tweet (“I’m in Denver for my spring break”).

4.5. Ablation Study

To explore whether instruction modification is bene-
ficial, we conduct an ablation study. Figure 5 shows
the results of the experiments with different strate-
gies of instruction modification. We denote prepro-
cess and enhance as the strategies of tweet pre-
processing (i.e., remove “@” and “#” from tweets
and provide corresponding message in the instruc-
tion) and confidence enhancement (i.e., add the
clue—“If the tweet is associated with ... in selecting
yes.” in the instruction), respectively. We observe
that the F1 score of FLAN-UL2 decreases from
0.62 to 0.60 when either tweet preprocessing or
confidence enhancement is absent. This shows
that both strategies of instruction modification are
essential to obtain the best result.
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Error Type Example

Ads/News content
(48%)

The Ashland University Band performed over spring break among dinosaurs and
elephants at the Field Museum during their Chicago tours! Let’s show our hospitality as
the host. Come and join us!!! #Tour #LocalBusiness
Mentioned location: Chicago, Ground truth: Yes, Prediction: No

Irrelevant discussion
(23%)

y’all coming back from Miami and Mexico after thottin and boppin all spring break with
this rona outbreak
Mentioned location: Miami, Ground truth: No, Prediction: Yes

Short text
(14%)

Happy Thanksgiving to my #HeatNation @Shesk305 @Bballilluminous
@dionwebster10 @HeatLoco @miaheatbeat @MiamiHEAT #Thanksgiving
Mentioned location: Miami, Ground truth: Yes, Prediction: No

Table 6: Most common errors made by FLAN-UL2 using target tweets.

5. Qualitative Analysis

To better understand the errors made by the best-
performing model, we conduct a qualitative analy-
sis. We randomly select 100 errors made by FLAN-
UL2 with 5 exemplars, using only target tweets, as
the best results are yielded with this setting.

The most common error (48%) occurs when the
tweet is associated with news or advertisements.
The tweet at the top of Table 6 exemplifies this sce-
nario. Sharing news about the local concert perfor-
mance in Chicago (“Chicago tours”, “our hospital-
ity as the host”, and “#LocalBusiness”) provides a
strong clue showing that the author of the tweet was
in Chicago when the tweet was published. How-
ever, the model is too conservative to interpret this
event as a local event and assign yes to this tweet.

The second most common error (23%) occurs
when the discussion in the tweet is irrelevant to
the tweet’s author. The middle tweet in Table 6
illustrates this situation. Although mentioning Mi-
ami, the author is referring to other people (“y’all”).
The model incorrectly identifies the tweet’s subject,
assuming that the author is still in Miami (“coming
back from Miami”) and predicts yes.

The third most common error (14%) takes place
when the tweet text is too short. The “pure text”
(text without hashtags and mentions, i.e., “Happy
Thanksgiving to my”) is too short to contain any spa-
tial information. Additionally, the LLM also struggles
to understand mentions, even without the character
"@" (e.g., “Bballilluminous” and “dionwebster10”).
Hence, it predicts yes as it mistakenly assumes
that the author of the tweet was in Miami since
Miami-related terms are frequently mentioned (“mi-
aheatbeat” and “MiamiHEAT”).

6. Conclusion

We have conducted extensive experiments to an-
alyze LLMs’ capability in location prediction. Our
experimental results show that although providing
exemplars generally help, instruction finetuning is

not consistently beneficial, and the best results are
achieved by FLAN-UL2 in the 5-shot setting without
instruction finetuning. Our results and examples
also show that in the context of LLMs, considering
context tweets is not beneficial in most cases. The
ablation study shows that both strategies for instruc-
tion modification, tweet preprocessing and confi-
dence enhancement, are needed to obtain the best
results. Lastly, our qualitative analysis provides in-
sights into the errors made by the best-performing
model.

7. Ethical Considerations

Location prediction has the potential for misuse,
such as malicious tracking and surveillance. Ap-
plications that collect location data could sell that
data to third parties, which can have serious impli-
cations for privacy. However, location prediction
also provides multiple advantages, including en-
hanced user experiences, efficient marketing, re-
source management, safety improvements, and
navigation enhancements.

We do not aim at tracking or surveillance. In-
stead, we focus on analyzing the LLMs’ capability in
location prediction. To address potential concerns,
we have implemented the following safeguards:

1. The corpus we use contains only seven tweets
per user published, making tracking and
surveillance impossible. Additionally, neither
user information nor any metadata is included
in it.

2. Our experiments and analyses only take into
account the tweet text. Additionally, in terms of
LLMs’ outputs, generating malicious content
is also impossible because our carefully de-
signed prompt constrains LLMs’ output spaces
(i.e., only select from the provided options).
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