@inproceedings{amouzouvi-etal-2024-knowledge,
title = "Knowledge {G}eo{G}ebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion",
author = "Amouzouvi, Kossi and
Song, Bowen and
Vahdati, Sahar and
Lehmann, Jens",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.859",
pages = "9832--9842",
abstract = "Knowledge graph embedding (KGE) models provide a low-dimensional representation of knowledge graphs in continuous vector spaces. This representation learning enables different downstream AI tasks such as link prediction for graph completion. However, most embedding models are only designed considering the algebra and geometry of the entity embedding space, the algebra of the relation embedding space, and the interaction between relation and entity embeddings. Neglecting the geometry of relation embedding limits the optimization of entity and relation distribution leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a new perspective in the design of KGEs by looking into the geometry of relation embedding space. The proposed method and its variants are developed on top of an existing framework, RotatE, from which we leverage the geometry of the relation embeddings by mutating the unit circle to an ellipse, and further generalize it with the concept of a butterfly curve, consecutively. Besides the theoretical abilities of the model in preserving topological and relational patterns, the experiments on the WN18RR, FB15K-237 and YouTube benchmarks showed that this new family of KGEs can challenge or outperform state-of-the-art models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amouzouvi-etal-2024-knowledge">
<titleInfo>
<title>Knowledge GeoGebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kossi</namePart>
<namePart type="family">Amouzouvi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahar</namePart>
<namePart type="family">Vahdati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jens</namePart>
<namePart type="family">Lehmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge graph embedding (KGE) models provide a low-dimensional representation of knowledge graphs in continuous vector spaces. This representation learning enables different downstream AI tasks such as link prediction for graph completion. However, most embedding models are only designed considering the algebra and geometry of the entity embedding space, the algebra of the relation embedding space, and the interaction between relation and entity embeddings. Neglecting the geometry of relation embedding limits the optimization of entity and relation distribution leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a new perspective in the design of KGEs by looking into the geometry of relation embedding space. The proposed method and its variants are developed on top of an existing framework, RotatE, from which we leverage the geometry of the relation embeddings by mutating the unit circle to an ellipse, and further generalize it with the concept of a butterfly curve, consecutively. Besides the theoretical abilities of the model in preserving topological and relational patterns, the experiments on the WN18RR, FB15K-237 and YouTube benchmarks showed that this new family of KGEs can challenge or outperform state-of-the-art models.</abstract>
<identifier type="citekey">amouzouvi-etal-2024-knowledge</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.859</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>9832</start>
<end>9842</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge GeoGebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion
%A Amouzouvi, Kossi
%A Song, Bowen
%A Vahdati, Sahar
%A Lehmann, Jens
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F amouzouvi-etal-2024-knowledge
%X Knowledge graph embedding (KGE) models provide a low-dimensional representation of knowledge graphs in continuous vector spaces. This representation learning enables different downstream AI tasks such as link prediction for graph completion. However, most embedding models are only designed considering the algebra and geometry of the entity embedding space, the algebra of the relation embedding space, and the interaction between relation and entity embeddings. Neglecting the geometry of relation embedding limits the optimization of entity and relation distribution leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a new perspective in the design of KGEs by looking into the geometry of relation embedding space. The proposed method and its variants are developed on top of an existing framework, RotatE, from which we leverage the geometry of the relation embeddings by mutating the unit circle to an ellipse, and further generalize it with the concept of a butterfly curve, consecutively. Besides the theoretical abilities of the model in preserving topological and relational patterns, the experiments on the WN18RR, FB15K-237 and YouTube benchmarks showed that this new family of KGEs can challenge or outperform state-of-the-art models.
%U https://aclanthology.org/2024.lrec-main.859
%P 9832-9842
Markdown (Informal)
[Knowledge GeoGebra: Leveraging Geometry of Relation Embeddings in Knowledge Graph Completion](https://aclanthology.org/2024.lrec-main.859) (Amouzouvi et al., LREC-COLING 2024)
ACL