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Abstract
Recent advances in large language models (LLMs) have enabled users to generate fluent and seemingly convincing
text. However, these models have uneven performance in different languages, which is also associated with
undesirable societal biases toward marginalized populations. Specifically, there is relatively little work on Japanese
models, despite it being the thirteenth most widely spoken language. In this work, we first develop three Japanese
language prompts to probe LLMs’ understanding of Japanese names and their association between gender and
occupations. We then evaluate a variety of English, multilingual, and Japanese models, correlating the models’
outputs with occupation statistics from the Japanese Census Bureau from the last 100 years. Our findings indicate
that models can associate Japanese names with the correct gendered occupations when using constrained
decoding. However, with sampling or greedy decoding, Japanese language models have a preference for a small
set of stereotypically gendered occupations, and multilingual models, though trained on Japanese, are not always
able to understand Japanese prompts.
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1. Introduction

With the recent advances in language generation,
large language models (LLMs) are able to gener-
ate fluent and seemingly convincing text. However,
these models can also produce text containing un-
desirable societal biases toward marginalized pop-
ulations (Sheng et al., 2019; Wallace et al., 2019;
Sheng et al., 2021). These biases are in part a re-
sult of the data that these models are trained on
(Hovy and Prabhumoye, 2021; Gururangan et al.,
2022). While much of the NLP community has fo-
cused on removing the association between occu-
pation and gender (Blodgett et al., 2020), this ide-
alized approach may not reflect real-world gender
disparities (Touileb et al., 2022).

In this paper, we highlight the need for re-
searchers to take these biases into account when
working with Japanese language models, or more
generally, LLMs. Additionally, we hope to assess
how language-specific models reflect real-world
distributions such as occupation. Though it is the
13th most widely-spoken language in the world,
Japanese is relatively understudied in the NLP
community. Only very recently have there been
efforts to train and fine-tune LLMs for Japanese
(Itoh and Shinnou, 2021; Yamauchi et al., 2022;
Miyazaki et al., 2022; Ri et al., 2022).

We investigate the following research questions,
focusing specifically on Japanese: How are gen-

der and occupation represented in pre-trained lan-
guage models? How are these distributions cor-
related with real-world statistics? How do models
associate Japanese names with gender and oc-
cupation? To answer these questions, we probe
language models’ biases with respect to gender
and occupations by developing natural language
prompts in Japanese and measuring the differ-
ences in the LLMs’ generated outputs with exist-
ing occupation statistics from the Japanese Cen-
sus Bureau.

Japanese is an interesting language for inves-
tigation for several reasons. Models can be
sensitive to morphosyntactic alignment, where
word order and other grammatical features can
affect the representations (Papadimitriou et al.,
2021). As Japanese is a language with a Subject-
Object-Verb (SOV) word order, models cannot be
prompted the same way as more commonly stud-
ied languages with a Subject-Verb-Object (SVO)
word order, such as English. Another challenge
is that Japanese is a topic-prominent language,
which emphasizes the topic-comment structure of
a sentence, unlike English, which is a subject-
prominent language that emphasizes the subject-
predicate structure of a sentence (Li and Thomp-
son, 1976). In subject-prominent languages, the
subject (doer of the action) is placed first in a
sentence, but with topic-prominent languages, the
topic, which comes first in the sentence, may
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not necessarily be the sentence’s subject. Fi-
nally, considering the gender differences, Japan is
ranked 125th out of 146 nations by the World Eco-
nomic Forum’s global gender gap report.1 If the
Japanese models accurately represent Japan’s
cultural and societal aspects, we can expect sub-
stantial differences compared with multilingual and
English models.

We evaluate models spanning a range of archi-
tectures and trained on various English, Japanese,
or multilingual data. On name gender classifica-
tion experiments, we find that Japanese-specific
models trained with a masked language model-
ing objective performed most accurately. However,
varying the prompts can cause other multilingual
models to perform comparably to Japanese mod-
els. We additionally compare distributions of oc-
cupations from models and census statistics, and
conduct temporal analyses of popular names and
occupation statistics from the last 100 years, find-
ing that models trained on Japanese Wikipedia
tend to more closely match real-world occupation
distributions.

2. Related Work

There has been much recent work that investi-
gates bias in NLP models. For example, StereoSet
(Nadeem et al., 2021) is a dataset designed to eval-
uate stereotypes in language models with regard
to gender, profession, race, and religion. Dixon
et al. (2018) measure and mitigate biases in tox-
icity classification models. There have been nu-
merous metrics developed for measuring bias and
fairness in NLP. Czarnowska et al. (2021) surveys
these metrics. Sheng et al. (2021) is a survey of
bias in language generation tasks. However, ex-
isting work has not investigated bias differences in
models trained on Japanese.

Associations between occupations and gender
have been investigated in coreference resolution
(Rudinger et al., 2018; Zhao et al., 2018), language
modeling (Qian et al., 2019; Alnegheimish et al.,
2022), sentiment analysis (Bhaskaran and Bhal-
lamudi, 2019), and word embeddings (Caliskan
et al., 2017). However, prior work focuses on En-
glish text and models. Our work is most similar to
Touileb et al. (2022), who analyze occupations and
gender in Norwegian language models. However,
their work only investigates BERT-style masked
language models. We also experiment with mod-
ern autoregressive models and other commercial
LMs, and additionally conduct temporal analyses
of names and occupations representative of differ-
ent time periods.

1https://www.weforum.org/reports/
global-gender-gap-report-2023/

3. Methods

Bias. We adopt an established definition of bias
by Friedman and Nissenbaum (1996), who define
bias as “systematically and unfairly discriminat[ion]
against certain individuals or groups of individu-
als in favor of others.” In language models, this
bias may occur if skewed gender representations
are not taken into account in downstream appli-
cations. In our work, we focus on the system-
atic association between occupations and gender
(male/female) in language models. Rather than as-
suming that models should treat genders equally,
we investigate how these models reflect real-world
occupation-gender distributions in Japan, in order
to shed light on how models understand Japanese
culture. We believe that observing trends in these
distributions over time can provide a significant
lens into societal changes and transformations in
gender roles within the culture.

Data. For our analysis of gender bias in
Japanese language models, we first gather a list
of Japanese given names, and data for computing
a real-world reference distribution for Japanese
occupations by gender. Japanese given names
are interesting due to their sheer number of
possibilities. Given names are usually composed
of a sequence of one to three kanji (Chinese
characters) which must be chosen from two
Ministry-approved lists: the Jinmeiyō kanji (人
名用漢字), a list of 863 kanji used for personal
names, and the Jōyō kanji (常用漢字), a list
of 2,136 commonly used characters. For this
work, we scrape a list of the most popular male
and female Japanese given names from the last
100 years published online by Meiji Yasuda Life
Insurance Company, one of the largest insurance
companies in Japan.2 After removing duplicates,
this list contains 148 female and 131 male names.
We note that some of the more recent male
names, such as 凪 (Nagi) and 碧 (Aoi) could also
be used as female names. However, as these
names are not in the female names list and hence
are more commonly used as male names, we
evaluate them as male names.

We also download statistics for occupations by
gender from the Statistics Bureau of Japan.3 Most
of this data exists as low-quality scanned PDFs,
so we perform a combination of Optical Character
Recognition using Tesseract and manual transcrip-
tion to extract the occupation names and counts
of occupations per gender. We then remove du-
plicate occupations and occupations categorized
as “Other”, resulting in a total of 257 occupations.

2https://www.meijiyasuda.co.jp/enjoy/
ranking/index.html

3www.e-stat.go.jp

https://www.weforum.org/reports/global-gender-gap-report-2023/
https://www.weforum.org/reports/global-gender-gap-report-2023/
https://www.meijiyasuda.co.jp/enjoy/ranking/index.html
https://www.meijiyasuda.co.jp/enjoy/ranking/index.html
www.e-stat.go.jp
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Occupation Male% Female%

Railways line construction workers 100 0
Ships’ captains, navigation officers 99.7 0.3
Carpenters 98.5 1.5
Private tutors 52.3 47.7
Artists, designers, photographers 52.1 47.9
Teachers 47.8 52.2
Nutritionists 4.6 95.4
Childcare workers 3.1 96.9
Midwives 0 100

Table 1: A selection of occupations from the 2020
census (Statistics Bureau of Japan) and the gen-
der distributions by occupation. The occupations
presented here are either dominated (i.e. ≥ 95%)
by one gender, or have a more balanced distribu-
tion.

This data is used to compute the real-world distri-
bution of occupations by gender.

Table 1 shows some examples of occupations
dominated (i.e. ≥ 95%) by either gender and those
that have a more balanced distribution. We find
some occupations that fit traditional gender stereo-
types, such as most midwives are women and
most ship captains are males. On the other hand,
the distribution of genders is more balanced for
occupations like private tutors, artists, designers,
and teachers.

Prompts. Prompts, also known as templates,
have been developed to probe language models’
biases (Solaiman et al., 2019; Touileb et al., 2022).
We devise several Japanese prompts to probe
the models’ understanding of Japanese names
and their associations between occupation and
gender. One challenge for developing effective
prompts is the Japanese SOV word order. Exist-
ing work has largely focused on SVO language like
English, where an autoregressive model can take
a prompt such as “[NAME] works as” and gener-
ate an occupation directly after the prompt. How-
ever, in Japanese, the phrase “works as” (とし
て働く, toshite hataraku) comes after the occu-
pation. Thus, to have a complete sentence, we
craft the prompt [NAME]は[MASK]として働いてい
ます ([NAME] wa [MASK] toshite hataraite imasu)
“[NAME] works as [MASK]”; this type of prompt is
suitable for masked language models. For autore-
gressive language models, we first state a ques-
tion of what [NAME] is working as, and then end
the prompt with [NAME]は (はwa is a topic marker),
which prompts the model to complete the sentence
in the present progressive tense. This allows for a
fair comparison of similar prompts for both masked
and autoregressive LMs. After designing and con-
ducting preliminary experiments with many differ-
ent prompts, we select three prompts for each lan-
guage model type, listed in Table 2. The prompts

are designed so that they are semantically similar
but differ syntactically, and can probe the occupa-
tions directly.

Models. To identify how the choice of train-
ing data as well as model training objective af-
fects the generation of biased language, we com-
pare several recent language models on various
dimensions including English, multilingual, and
Japanese language models, and masked vs. au-
toregressive language models. We experiment
with a variety of models listed in Table 3. We in-
clude English models because previous work has
shown that models trained on English data are
able to produce multilingual generations (Radford
et al., 2019). Note that the Japanese models are
trained from scratch on Japanese text, not fine-
tuned existing models. For models available from
HuggingFace, we experiment with greedy decod-
ing and constrained decoding. Constrained decod-
ing is a method in which we can guide the gen-
eration to a specific output. In our case, we con-
strain the model to output occupations by forcing
the model (using the force_words_ids parame-
ter in HuggingFace) to output specific tokens when
it encounters the [MASK] token (for masked mod-
els) or is at the end of the prompt (for autoregres-
sive models), and we calculate the probability of
that specific occupation. When the occupation is
represented with multiple subwords, the prediction
is performed based on the full occupation name.
We repeat this process for every occupation to cre-
ate a probability distribution over all occupations
for a given Japanese name. For Bard and Chat-
GPT, we take the output as given by the model,
limited to 5 characters.

Evaluation. Using the above prompts, we gen-
erate text completions from the various models.
From the generated output, we identify the occu-
pation by extracting the first noun that appears
in the generated output. We take the first noun
because the model output often begins with non-
noun characters, including: a comma, the un-
known token ([UNK]), various (様々 samazama,さ
まざま samazama, and 多様 tayō), you (あなた
anata), job (仕事 shigoto), unknown (不明 fumei),
myriad (多彩 tasai), and same (同じ onaji).

We identify bias in these models by framing
the generation as the task of gender classifica-
tion, where the model is given a Japanese name
and predicts gender based on the majority gen-
der of the outputted occupation. While generat-
ing the probabilities, we consider each name sep-
arately, but at evaluation, it is performed per occu-
pation, and not per name. Specifically, we follow
Touileb et al. (2022) and report F1 scores for our
models with the output generated with constrained
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# Japanese English Translation
M

as
ke

d 1 [NAME]の職業は[MASK]です。 [NAME]’s profession is [MASK].
2 [NAME]の職種は[MASK]です。 [NAME]’s type of occupation (job category) is [MASK].
3 [NAME]は何の仕事をしていますか？ What is [NAME]’s job? [NAME] works as [MASK].

[NAME]は[MASK]として働いています。

Au
to

re
g 1 [NAME]の職業は [NAME]’s profession is

2 [NAME]の職種は [NAME]’s type of occupation (job category) is
3 [NAME]は何の仕事をしていますか？ [NAME]は What is [NAME]’s job? [NAME]

Table 2: Prompts for the masked and autoregressive language models.

Model Language Size

mBERT Multilingual 110M
BERT-J Japanese 110M

GPT-2 English 355M
mGPT Multilingual 1.3B
GPT-2-J Japanese 336M
GPT-NeoX-J Japanese 3.6B
GPT-NeoX English 20B

Bard Multilingual 137B
ChatGPT Multilingual 175B

Table 3: List of masked, autoregressive, and com-
mercial LMs we experimented with.

decoding, where the highest probability occupa-
tion is counted as correct if its majority gender
from the census data matches the gender of the
given name. For example, if a model outputs大工
(daiku) carpenter for the male name正一 (Shoichi),
this would be a correct classification because ac-
cording to the Japanese census data, more car-
penters are male than female. A higher F1 score
indicates that the model output aligns more with
the census data.

In addition, constrained decoding allows us
to compute a distribution over all occupations
for a given name, and analyze this distribu-
tion against historical occupation statistics using
Kullback-Leibler (KL) divergence, a measure of
how one probability distribution is different from an-
other distribution. We compare all models against
the 2020 census data, then conduct temporal
analyses by comparing the KL divergence values
across each decade from 1920 to 2020, then com-
pare the values across each decade for names
from different decades to study how models are
representative of occupational biases from differ-
ent time periods.

1920 1940 1960 1980 2000 2020
Year

0

5

10

15

20

25

30

BERT-J
GPT-2
GPT-2-J
NeoX
NeoX-J
mBERT
mGPT

Figure 1: The mean and standard deviation of the
Kullback–Leibler divergence (relative entropy) for
each model for Prompt 1 ([NAME]’s profession is),
compared to the census data from 1920 to 2020.
Prompt 2 and Prompt 3 show similar patterns.

4. Results and Analyses

4.1. Constrained Decoding

We first evaluate the gender classification exper-
iments with constrained decoding on all occupa-
tions combined, where the majority gender (ac-
cording to the census data) of the occupation with
the highest model probability is taken to be the
prediction. Results broken down by gender of the
name are summarized in Table 4. Out of the mod-
els we tested, BERT-Japanese achieves the high-
est performance, which we believe is because it
was trained specifically on Japanese text, and also
because its masked language modeling is well-
suited to the SOV word order of Japanese. We
find that Prompt 1 seems to be most effective for
masked language models, while Prompt 3 is more
effective for autoregressive models. We analyze
the specific prompts in the following sections and
then follow with a temporal analysis comparing
against the real-world distribution of occupations.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/gpt2-medium
https://huggingface.co/ai-forever/mGPT
https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt-neox-3.6b
https://huggingface.co/docs/transformers/model_doc/gpt_neox
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Prompt mBERT BERT-J GPT-2 mGPT GPT-2-J GPT-NeoX-J GPT-NeoX

F M T F M T F M T F M T F M T F M T F M T

1 .31 .79 .54 .37 .87 .61 .61 .46 .54 .50 .33 .42 .68 .13 .42 .29 .72 .49 .12 .76 .42
2 .42 .56 .49 .94 .12 .56 .68 .40 .55 .57 .54 .56 .27 .78 .51 .38 .56 .46 .49 .50 .49
3 .33 .53 .42 .79 .23 .53 .23 .58 .46 .27 .66 .45 .61 .66 .64 .16 .87 .49 .60 .41 .51

Table 4: F1 scores of models on the three prompts, compared to the actual occupation distribution for all
257 occupations. Overall, BERT-Japanese performed the best, due to being trained on Japanese text
and the masked language modeling matching the SOV order of Japanese. F, M, and T indicate the set
of names used: female, male, and a combined set (total, through micro-averaging), respectively.

Prompt mBERT BERT-J GPT-2 mGPT GPT-2-J GPT-NeoX-J GPT-NeoX

1 4.39 ± 0.599 4.54 ± 0.939 10.6 ± 0.670 6.91 ± 1.44 5.31 ± 0.643 5.40 ± 0.181 17.8 ± 2.20
2 4.42 ± 0.628 4.12 ± 0.722 10.3 ± 0.802 7.14 ± 1.89 4.48 ± 0.543 5.28 ± 0.110 19.7 ± 1.76
3 3.13 ± 0.328 5.68 ± 0.916 9.86 ± 0.137 4.93 ± 0.387 4.83 ± 0.640 5.32 ± 0.230 15.2 ± 0.688

Table 5: The mean and standard deviation of KL divergence between the model distribution and 2020
census data, averaged over all names. A smaller value indicates that the model’s distribution is more
similar to the census data; mBERT, GPT-2-Japanese, and GPT-NeoX-Japanese had notably small diver-
gences.

Prompt 1 (profession). The first prompt asks
for [NAME]’s 職業 (shokugyō), which translates
to profession or occupation. As shown in Ta-
ble 4, BERT-Japanese and GPT-2-Japanese per-
form best overall. For the first prompt, mBERT,
BERT-Japanese, GPT-NeoX-Japanese, and GPT-
NeoX achieve high F1 scores for the male names
with substantially lower scores for the female
names, with BERT-Japanese achieving the high-
est score of 0.87. The remaining three mod-
els perform better for female names, with GPT-
2-Japanese achieving the highest score of 0.68.
Most models perform significantly better on one
gender than the other, though which gender de-
pends on the model, in contrast to Touileb et al.
(2022) who found that models consistently per-
formed better on male-leaning Norwegian occupa-
tions.

Examining the KL divergence between the dis-
tribution of predicted occupations and the real-
world gender distribution in Table 5, we find that
BERT-Japanese shows the smallest divergence,
followed by mBERT and GPT-2-Japanese. Again,
we believe that the combination of training on
Japanese data, as well as the structure of the task
better suiting the masked language models, allows
the models to better capture the real-world distribu-
tion of occupations and genders.

Figure 2 displays the normalized maximum prob-
abilities for each occupation category found in the
2020 census data for Prompt 1. Most notable
are the probabilities for professional and techni-
cal occupations, 0.781 and 0.832 (compared to
the real-world distribution is 0.199 and 0.170), for
female names and male names respectively, for
GPT-2-Japanese. This is due to the high cor-
relation between nurse and private tutor for fe-

male names and writer/editor and judge/lawyer
for male names. We also see a high probabil-
ity for haulage/packaging/cleaning-related occupa-
tions in both genders using GPT-NeoX-Japanese.
Our results indicate that these two Japanese mod-
els have a preference for a small set of occupa-
tions, resulting in skewed probabilities.

Prompt 2 (job category). The second prompt
asks for the [NAME]’s 職種 (shokushu), the type
of occupation or job category. BERT-Japanese
and GPT-2-Japanese are the best performing for
this prompt as well, although for different genders.
Except for mGPT and GPT-NeoX, the models
are again skewed toward one gender. However,
BERT-Japanese and GPT-2-Japanese switch their
high-scoring classes, with BERT-Japanese achiev-
ing 0.94 for female names and GPT-2-Japanese
achieving 0.78 for male names. These results sug-
gest that the two Japanese models may not be
skewed toward either gender but rather have a ten-
dency to output a certain occupation depending
on the wording of the prompt. Again, the KL di-
vergence with the real-world distribution is much
lower for mBERT, BERT-Japanese, and GPT-2-
Japanese, which we believe is due to similar rea-
sons as for Prompt 1.

Examining the normalized probabilities by oc-
cupation category, most distributions are sim-
ilar for both genders, except for transporta-
tion/mechanical-related occupations for BERT-
Japanese, which shows a high percentage (.432)
for female names compared to male names (.239).
This does not correlate with the real-world distri-
butions of each gender nor with the total distribu-
tion across both genders. Analyzing the individual
probabilities for occupations within this category,
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Names mBERT BERT-J GPT-2 mGPT GPT-2-J

正一 (Shoichi) father* carpenter - teacher police
豊 (Yutaka) Yutaka* carpenter - medical technologist doctor
歩夢 (Ayumu) voice* singer human* caregiver detective

キヨ (Kiyo) voice* housewife - designer -
千尋 (Chihiro) voice* secretary - pirate* Chihiro*
芽依 (Mei) girl* model fire* nurse nurse

Names GPT-NeoX-J GPT-NeoX Bard ChatGPT

正一 (Shoichi) director teacher construction doctor
豊 (Yutaka) bartender handmade* farmer farmer
歩夢 (Ayumu) singer wizard* singer actor

キヨ (Kiyo) Kiyo* handmade* nursery teacher florist
千尋 (Chihiro) scientist wizard* translator lawyer
芽依 (Mei) nurse food processing nurse paralegal

Table 6: Example output sampled from the models. Shoichi, Yutaka, and Ayumu are common male
names, and Kiyo, Chihiro, and Mei are common female names. A hyphen - indicates either that the
generation was not in Japanese or that the generated text consisted of random characters. An asterisk
* indicates Japanese text was generated but was not an occupation. The Japanese models as well as
Bard and ChatGPT tended to produce better output.

such as captain/navigator or automobile driver,
male names are actually more likely to be asso-
ciated with these occupations than female names.
However, other occupation categories also have
high probability for male names, so normalizing
across occupation categories results in a flatter dis-
tribution compared to female names.

Prompt 3 (works as). Prompt 3 asks what
[NAME] is doing (している shite iru) as their
job. BERT-Japanese and GPT-2-Japanese are
still strong-performing models. However, for male
names, GPT-NeoX-Japanese has the highest F1
score of 0.87, which is the highest of all scores
for this prompt. This suggests that this longer
prompt helps boost the performance of GPT-NeoX-
Japanese, while showing a small decline for BERT-
Japanese and GPT-2-Japanese. Adding a com-
plete sentence within the prompt may have helped
guide the larger autoregressive model to generate
an occupation, instead of a different continuation
of the prompt.

Analyzing the KL divergence for this prompt, we
observe that mBERT, GPT-2-Japanese, and GPT-
NeoX-Japanese still most closely match real-world
distributions, but are now followed by mGPT. This
suggests that the change in prompt wording also
affects the generation with multilingual models as
well. When focusing on the performance of GPT-
NeoX-Japanese, the F1 score suggests a possible
improvement, while KL divergence suggests mini-
mal change. We note that for all multilingual and
English models, Prompt 3 had a lower KL diver-
gence. However, for the three Japanese models,
it did not improve the divergence and for BERT-

Japanese had a slight decline. Thus, the struc-
ture of this prompt may have indicated to non-
Japanese models that an occupation is to be gen-
erated, while for Japanese models, this did not pro-
vide any new information over Prompts 1 and 2.

We observe that for BERT-Japanese, GPT-
2-Japanese, and GPT-NeoX-Japanese, high-
probability occupation categories for Prompts 1
and 2 show similar trends with Prompt 3. How-
ever, we see that unlike Prompts 1 and 2, here
mGPT heavily favors professional and technical
occupations: 0.798 and 0.832 for female and
male names respectively, which are the highest
across all models and all categories. In addition
to the occupations covered by GPT-2-Japanese,
mGPT predicts high probabilities for occupations
such as accountant, therapist, and social worker.
The high probabilities are consistent across the
two genders.

4.2. Bard and ChatGPT
As we do not have local access to these models,
we do not have probabilities associated with their
output. Thus, we conduct a more qualitative analy-
sis of these models’ output. Overall, these models
generate fluent output, often much lengthier than
the other models we experimented with. They can
also handle both the masked and autoregressive
prompts.

Bard. Given the masked LM prompts and lim-
ited to five-character generations, Bard sometimes
explains why it generated a certain output. For
Prompt 2 (type of occupation), it explained how the
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Figure 2: Normalized maximum probabilities of an occupation in each occupation category, provided
in the 2020 census data, averaged over all male names and all female names for each model. As the
probabilities were generated per name, and evaluated per occupation, they do not sum to one across
the occupations, and thus required normalization across the occupations. The rightmost column in each
heatmap is the real-world distribution of occupations for each gender, from the 2020 census. This distri-
bution is for Prompt 1.

generated occupations were associated with the
names’ meanings or sounds. For example, Bard
noted that the name 蒼空 (Sora) contained char-
acters related to the sky, and thus suggested that
Sora’s occupation was a pilot or astronaut.

Bard did not give any explanations for Prompts
1 and 3, but in some cases, we found that Bard
may have associated the name with an occupa-
tion based on some real-world knowledge. For ex-
ample, Bard associated the name 翔平 (Shohei)
with professional baseball player, likely due to
Shohei Ohtani, and the name 博之 (Hiroyuki)
with businessman/entrepreneur, likely due to Hi-
royuki Nishimura, an internet entrepreneur. These
names exist in Wikipedia, which Bard was trained
on, and we see that Bard is able to make use of
this knowledge.

ChatGPT. For some prompts, ChatGPT re-
turned that it was unable to determine the
[NAME]’s occupation and asked for additional in-
formation. In other cases, it replied that it was
unable to give a definitive or deterministic answer
but still provided possible occupations while noting
that these were typical occupations and not spe-
cific to the given name. This occurred for all three
prompts.

Manually examining the generated text, we were
not able to identify any unique occupations related
to public figures, but we saw some connections
between the names’ characters and occupations.
For example, for the name Takumi (拓海), which
uses the character for sea (海), ChatGPT gener-
ated occupation fisherman. Thus, ChatGPT may
(erroneously) use its knowledge of the meaning of

characters in the name to output an occupation.

4.3. Temporal Analysis
Names fluctuate in popularity over time. In this
section, we examine whether the associations be-
tween occupation and gender in language mod-
els are more representative of a certain time pe-
riod. Comparing the seven models against the oc-
cupation data of the last 100 years, we compute
the average KL divergence between names from
each decade and the real-world distribution from
that decade. We did not observe a significant dif-
ference in the KL divergence across occupation
statistics from given years, or for different prompts
as shown in Figure 1. The KL divergence for GPT-
NeoX and GPT-2 was the largest throughout the
entire century, with GPT-NeoX showing a slight de-
crease throughout time. For the other five models,
the KL divergence scores were relatively stable,
suggesting that the trends seen in the generated
text were not representative of a certain time pe-
riod but rather constant throughout.

When examining the Japanese models,
BERT-Japanese, which is trained on Japanese
Wikipedia, shows the lowest KL divergence, com-
pared to GPT-2-Japanese, trained on Japanese
CC-100 and Japanese Wikipedia, and NeoX-
Japanese, trained on Japanese Wikipedia,
Japanese CC-100, and Japanese C4. This
suggests that the occupation and gender asso-
ciations in text from Japanese Wikipedia most
closely match the real-world data distribution. On
the other hand, the Japanese models consistently
showed lower KL divergence than the English and
multilingual models, indicating that these models
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may have picked up gender and occupation
associations from other cultures that differ from
those of Japan.

To examine the association between names and
time period, we also compared the KL divergence
for subsets of names, grouping the names by ev-
ery two decades, shown in Figure 3. Each curve
represents the divergence for the names that were
popular within a certain two-decade time period. If
the model changes its distribution of outputted oc-
cupations based on when the name was popular,
then we should see five different curves with min-
ima at each vicennial. For example, for the curve
representing 1920 to 1940, if the models had an
accurate association of names at the time and oc-
cupations at the time, the divergence for the curve
would be the smallest in the 1920-1940 range. We
do not see this phenomenon, and thus conclude
that these models associate gender and occupa-
tion regardless of the time period.

4.4. Comparison with Greedy Decoding
Initially, we experimented with using greedy de-
coding to obtain the most likely text after the topic
marker は in the prompts. After extracting the oc-
cupations from the generated text, if it exists, we
compare the edit distance with all of the occupa-
tions from the census data and deem them as a
match only when the edit distance is zero. Unlike
languages that use the alphabet, in Japanese, one
character can encompass a lot of information and
in some cases, the occupation titles are three char-
acters long; thus, allowing an edit distance of one
as a match would yield incorrect counts for each
occupation.

Using greedy decoding did not work as in-
tended, due to two reasons. First, the multilin-
gual models had difficulty producing occupation
titles, while Japanese models, especially BERT-
Japanese, were able to generate them, albeit with
a small set of occupations. The multilingual mod-
els often generated characters such as男 (otoko)
man and 女 (onna) woman, the name of the per-
son in the prompt, or something that was not an oc-
cupation. For the Japanese models, although the
masked language models generally produce the
expected occupations, the autoregressive GPT-
NeoX-Japanese model produces text that contin-
ues the prompt but does not include an occupa-
tion. Second, the Japanese language models are
able to generate complete sentences or tokens,
but in most cases, still fail to generate an occupa-
tion that matches the census data. The range of
occupations that did match was limited: for male
names, almost all generated occupations were po-
lice officer, detective, or carpenter, and for female
names, almost all were hairdresser or nurse. This
reinforces our findings that models tend to prefer

a small range of occupations. Table 6 contains a
sample of occupations generated by the models.
Because of these challenges, and to understand
the entire distribution over occupations, we evalu-
ated the models’ output using constrained decod-
ing to force models to output all occupations.

5. Conclusion

We have investigated how gender and occupa-
tions are represented in pre-trained language mod-
els, and how these distributions correlate with real-
world statistics, focusing on how models associate
Japanese names with gender and occupations.
From our three prompts combining names and
occupations tailored to both masked and autore-
gressive LMs, we find that models trained solely
on Japanese text generate distributions of occupa-
tions that are closer to the real-world distribution
than non-Japanese models. With some prompts,
multilingual models can achieve comparable re-
sults. Although models can perform well with con-
strained decoding, when performing sampling or
greedy decoding, multilingual models (that have
seen Japanese) are not able to understand the
prompt and generate occupations, and Japanese-
specific models resort to a limited set of stereotyp-
ically gendered occupations. These findings high-
light the need for researchers to take these biases
into account in downstream tasks, even for high-
resource languages like Japanese. In future work,
we plan to investigate occupational distributions
from other countries and examine the extent to
which language-specific language models reflect
real-world distributions.

Ethics Statement

It is critical to study the potential biases in lan-
guage models so that biases are not amplified in
downstream tasks (Bender et al., 2021). We ex-
pect that language models include bias from their
training corpora, and it is a fact that not all occu-
pational distributions are evenly split between fe-
male and male workers. However, we must ac-
knowledge that disparities exist in real-world distri-
butions, and that this can be reflected in language
models. Our work is uncovering such disparities,
and we urge researchers to design future experi-
ments and applications carefully with this in mind,
so as to not amplify any bias included.

Limitations

A limitation of our work is that we are only able to
evaluate the correlation between the binary gender
categories of female/male with occupations due to
the availability of statistics for these genders. We
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Figure 3: The mean and standard error of the Kullback–Leibler divergence (relative entropy) for all seven
models for Prompt 1, compared to the census data from 1920 to 2020. The horizontal axis labels indicate
the census data, while the line colors represent the subset of names popular within a certain two-decade
period. The plot shows that the period when a certain name was common did not correlate with the
occupational distribution at that period.

acknowledge that gender includes a wider spec-
trum than this. Furthermore, we are not able to test
with the latest models such as GPT-4. However,
ethical restrictions built into these models, such as
we have seen with ChatGPT, may prevent some
of this analysis.

Additionally, we acknowledge that gender bias
is not the only type of bias that language models
may exhibit. However, considering the nuances
and intricacies inherent in the Japanese language
and the lack of in-depth research exploring this
particular area, a focused investigation was nec-
essary. In the future, we aim to extend our re-
search to study other forms of bias, such as racial
or socio-economic bias, building on the foundation
provided by our current work.

Concerning the ethical implications of bias in
language models, our intention was to shed light
on the existence of bias in Japanese language
models and kick-start the conversation within the
scientific community. An in-depth discussion of
specific ethical concerns and potential solutions

would have added critical insight, but such analysis
would easily expand beyond the scope of our cur-
rent paper and require expert input from fields like
ethics and sociology. As we continue and expand
our research, we plan to seek interdisciplinary col-
laborations to engage these important topics more
thoroughly.
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Appendix

Appendix A. Language Models Used
Table 7 is the complete version of Table 1, with the
full model names provided on Hugging Face, along
with how we referred to the models within the pa-
per. For the masked and autoregressive models,
links are provided to the respective Hugging Face
pages.

Below are the training data sources for all seven
masked and autoregressive models.

• bert-base-multilingual-cased is trained on 104
languages with the largest Wikipedias; the list
of languages can be found here

• bert-base-japanese is trained on Japanese
Wikipedia

• gpt2-medium is trained on WebText, a dataset
created by scraping all web pages from out-
bound links on Reddit which received at least
3 karma

• mGPT is trained on 61 languages from 25 lan-
guage families using Wikipedia and Colossal
Clean Crawled Corpus (C4)

• japanese-gpt-medium is trained on Japanese
CC-100 and Japanese Wikipedia

• japanese-gpt-neox-3.6b is trained on
Japanese CC-100, Japanese C4, and
Japanese Wikipedia

• GPT-NeoX is trained on the Pile
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Model Name Used in Paper Language Size

google-bert/bert-base-multilingual-cased mBERT Multilingual 110M
tohoku-nlp/bert-base-japanese BERT-J Japanese 110M

openai-community/gpt2-medium GPT-2 English 355M
ai-forever/mGPT mGPT Multilingual 1.3B
rinna/japanese-gpt2-medium GPT-2-J Japanese 336M
rinna/japanese-gpt-neox-3.6b GPT-NeoX-J Japanese 3.6B
GPT-NeoX GPT-NeoX English 20B

Bard Bard Multilingual 137B
ChatGPT ChatGPT Multilingual 175B

Table 7: List of masked, autoregressive, and commercial LMs we experimented with.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/gpt2-medium
https://huggingface.co/ai-forever/mGPT
https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt-neox-3.6b
https://huggingface.co/docs/transformers/model_doc/gpt_neox
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Appendix B. Kullback-Leibler Divergence
for All Prompts

Below are the KL divergence for each model, for
all three prompts.
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Figure 4: The mean and standard deviation of the
Kullback–Leibler divergence (relative entropy) for
each model for Prompt 1 ([NAME]’s profession is),
compared to the census data from 1920 to 2020.
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Figure 5: The mean and standard deviation of the
Kullback–Leibler divergence (relative entropy) for
each model for Prompt 2 ([NAME]’s type of occu-
pation (job category) is), compared to the census
data from 1920 to 2020.
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Figure 6: The mean and standard deviation of the
Kullback–Leibler divergence (relative entropy) for
each model for Prompt 3 (What is [NAME]’s job?
[NAME] works as), compared to the census data
from 1920 to 2020.

Appendix C. Normalized Maximum
Probabilities for All Prompts
Below are the normalized maximum probabilities
of an occupation, for all three prompts.
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Figure 7: Normalized maximum probabilities of an occupation in each occupation category, provided
in the 2020 census data, averaged over all male names and all female names for each model. As the
probabilities were generated per name, and evaluated per occupation, they do not sum to one across
the occupations, and thus required normalization across the occupations. The rightmost column in each
heatmap is the real-world distribution of occupations for each gender, from the 2020 census. This distri-
bution is for Prompt 1 ([NAME]’s profession is).
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Figure 8: Normalized maximum probabilities of an occupation in each occupation category, provided
in the 2020 census data, averaged over all male names and all female names for each model. As the
probabilities were generated per name, and evaluated per occupation, they do not sum to one across
the occupations, and thus required normalization across the occupations. The rightmost column in each
heatmap is the real-world distribution of occupations for each gender, from the 2020 census. This distri-
bution is for Prompt 2 ([NAME]’s type of occupation (job category) is).
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Figure 9: Normalized maximum probabilities of an occupation in each occupation category, provided
in the 2020 census data, averaged over all male names and all female names for each model. As the
probabilities were generated per name, and evaluated per occupation, they do not sum to one across
the occupations, and thus required normalization across the occupations. The rightmost column in each
heatmap is the real-world distribution of occupations for each gender, from the 2020 census. This distri-
bution is for Prompt 3 (What is [NAME]’s job? [NAME] works as).
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