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Abstract
Scientific Information Extraction (SciIE) is a vital task and is increasingly being adopted in domain-specific (e.g.,
Biomedical) data mining to conceptualize and epitomize knowledge triplets from scientific literature. Existing relation
extraction methods aim to extract explicit triplet knowledge from documents, however, they can hardly perceive
unobserved factual relations. Recent generative methods have more flexibility, but their generated relations will
encounter trustworthiness problems. In this paper, we propose a novel Extraction-Contextualization-Derivation
(ECD) strategy to generate a document-specific and entity-expanded dynamic graph from a shared static
knowledge graph. Then, we propose a novel Dual-Graph Resonance Network (DGRN) which can generate
richer explicit and implicit relations under the guidance of static and dynamic knowledge topologies. Experiments
conducted on a public PubMed corpus validate the superiority of our method against several state-of-the-art baselines.

Keywords: Graph Neural Network, Biomedical Triple Extraction.

1. Introduction

As scientific literature grows at an expeditious pace,
it becomes increasingly labor-intensive for schol-
ars to curate the massive information and consume
their interested knowledge. For example, PubMed,
as one of the most commonly used searching
biomedical publication databases, contains more
than 34 million publications1. Even with a focused
research interest, such as oncology, it is still very
laborious to locate useful information from noisy re-
trieval results. To address this challenge, SciIE ap-
proaches can be employed to extract structural in-
formation from scientific articles, which has drawn
great attentions from Natural Language Process-
ing (NLP) community (Gupta and Manning, 2011;
Viswanathan et al., 2021).

Recently, great efforts have been made regard-
ing SciIE tasks and obtained substantial achieve-
ments. Lee et al. (2020) and Beltagy et al. (2019)
trained pre-trained language models with biomed-
ical corpus for representation learning and down-
stream task fine-tuning. Based on these mod-
els, many extractive methods are proposed to ex-
tract triples explicitly present in the scientific docu-
ments(Ye et al., 2020; Nayak and Ng, 2020). De-
spite some success, extractive methods can only
obtain limited biomedical knowledge due to the
limited searching space. To enable implicit biomed-

∗ Corresponding Author
1https://pubmed.ncbi.nlm.nih.gov/about/

ical triple extraction, generative extraction methods
provide more flexibility, however they can not guar-
antee correctness of the generated knowledge and
may cause trustworthiness concerns (Zhang et al.,
2020). For example in Figure 1, the generative
method produces an incorrect triplet <skin, cancer-
ous, throat cancer> because there exists no direct
relation between entities “skin” and “throat can-
cer ”, while “throat cancer ” is generated based on
the trigger word “cancerous”. Recent graph-based
methods provide the possibility to produce trusted
and unobserved biomedical triplets via multi-hop
path-reasoning on graphs, such as <melanoma,
belongs to, skin cancer> can be derived from <skin,
cancerous, skin cancer> and <skin, cancerous,
melanoma>. However, such methods only alle-
viate the problem and their extracted triplets are
restricted by limited document entities.

High-quality and large-scale biomedical knowl-
edge graphs (BKG) have been studied extensively
and constructed (Wang et al., 2021), which provide
possibilities to expand limited document entities
and enable the generative methods to generate
more trusted and unobserved biomedical triplets2.
However, one may hesitate to adopt BKG directly
due to the potential of massive noise. In this study,
we propose a novel Extraction-Contextualization-
Derivation (ECD) strategy to address this prob-

2We resort to the biomedical domain since there ex-
ists rich data resources in both text and graph format.
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Biomedical document: The skin is … and causes cancerous
process, … that aggravates … skin cancer… .

Method: Extractive method
Triples: <skin, cancerous, skin cancer>
Method: Generative method
Triples: <skin, cancerous, skin cancer>

<skin, cancerous, throat cancer>
Method: Knowledge Graph (KG) method
Triples: <melanoma, belongs to, skin cancer>
Method: Generative method + KG
Triples: <skin, cancerous, skin cancer>

<skin, cancerous, melanoma>

✘
✓

✓

✓

✓
✓

Figure 1: Comparison among different methods.
Entities and relations observed in the document
are denoted in red color, and unobserved ones are
denoted in blue. Correct/wrong triplets are labeled
as check/cross marks.

lem - using large-scale BKG as the Static Graph
to encapsulate the biomedical domain knowledge
and the derived knowledge sub-BKG as Dynamic
Graph to characterize document-related knowl-
edge. The interactions between static and dynamic
graphs ensure the comprehensiveness and trust-
worthiness of the knowledge generation.

Prior SciIE studies rarely equip generative meth-
ods with domain knowledge in an end-to-end fash-
ion, and such investigation can be especially criti-
cal for biomedical knowledge mining which poses
several challenges. Firstly, the input document and
knowledge graph are information complementary
and should be fully interactively modeled in the en-
coding process. Secondly, multi-hop path reason-
ing on graphs should be utilized for guiding copy
mechanism to provide trusted biomedical triplets.
To this end, we propose a novel Dual-Graph Reso-
nance Network with a fourfold contribution:

• We propose an “Extraction-Contextualization-
Derivation (ECD)” strategy to derive a document-
related dynamic graph from a shared static graph
which can be used for implicit entity expansion.

• We propose a “Dual-Graph Resonance Net-
work (DGRN)” frame to generate both observed
and unobserved knowledge triplets by jointly mod-
eling the input document and the dual graphs.

• A new dataset (Bio-Sci), derived from open-
source biomedical domain corpus, which contains
32,330 publications and each of them equipped
with implicit and explicit triplets is released for
biomedical NLP research community.

• Extensive experiments conducted on Bio-Sci
show an average 4.91% improvement on F1 score
against the best SOTA method which validate the
effectiveness and superiority of our method.

2. Related Work

Existing SciIE works extract or generate knowledge
triplets from different parts of scientific publications,
such as content (Luan et al., 2019; Augenstein
et al., 2017), abstract, introduction and citation
sentences3 (Nakov et al., 2004). The mainstream
approaches can be concluded as follow.

Extractive models have been extensively stud-
ied. Wei et al. (2020); Beltagy et al. (2019) in-
tegrated pre-trained language models into an
encoder-decoder framework for performance im-
provements. Nayak and Ng (2020); Zhao et al.
(2021) introduced a joint learning framework to
model connections between relations and their cor-
responding entity pairs. Moreover, Takanobu et al.
(2019); Bai and Zhao (2018) utilized a hierarchi-
cal structure that featured connections among dif-
ferent content layers to find facts within the con-
tent summarization for relation extraction(Lu et al.,
2022). Further, with the emergence of powerful
large language models, zero-shot fashion can be
leveraged for triple extraction via chatting with such
models(Wei et al., 2023). However, these methods
ignore fine-grained entity-level information interac-
tion and integration.

Graph-based models can provide both depen-
dencies among entities and path reasoning poten-
tial for inference. Zeng et al. (2020b) proposed a
mention-to-entity graph aggregation model which
can capture the relation of entities across sen-
tences. Instead of integrating graph structure into
neural network models, Peng et al. (2017); Guo
et al. (2019); Xu et al. (2021); Huang et al. (2021b)
enhanced the mention-to-entity graph paradigm by
introducing multi-hop path reasoning and recon-
structing the graph based on the obtained path
information. Another fashion is to transform sen-
tences into a graph and perform multi-view GCN
to obtain the relation(Chen et al., 2022; Rabbani
et al., 2023; Zhang et al., 2023). Unfortunately,
existing graph-based models can not synthesize
new domain knowledge.

Generative models are recently proposed
to generate triplets flexibly from input docu-
ments. Zeng et al. (2018) proposed a CopyRE
model to select entities or relations via copy mech-
anism. Zeng et al. (2020a); Ye et al. (2020) fur-
ther improved this paradigm by introducing multi-
task learning and contrastive learning frameworks.
Other generative models utilized additional informa-
tion. For example, Zhang et al. (2021b) proposed
a Knowledge-Graph (KG)-enriched Abstract Mean-
ing Representation (AMR) framework which uses
external information to enrich the AMR graph ex-
tracted from scientific papers. Garg et al. (2021)
leveraged transformers to refine semantic embed-

3called citance in the following sections
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ding of a given text for better generation(Zhang
et al., 2022; Giorgi et al., 2022). However, Zhang
et al. (2020) claimed the factual correctness and
trustworthiness problems of these methods which
ignore prior knowledge to ensure that generated
knowledge triplets are more reliable.

While these studies have accomplished notable
advancements, our DGRN steps further by leverag-
ing the synergistic power of generative and graph-
based methods within a cohesive framework.

3. Dual-Graph Construction

Generative extraction methods may encounter
trustworthiness issues. To address this, we pro-
pose enhancing these methods with guidance
from biomedical knowledge. We first introduce a
static background knowledge graph (BKG), which
is built on public resources. We then generate a
document-specific dynamic BKG using a dynamic
graph generator, which enables the generation of
unobserved biomedical triplets. The detail con-
struction process is depicted in Figure 2.

3.1. Static Biomedical Knowledge Graph

Large-scale biomedical knowledge graphs are re-
cently constructed, and some have been made
publicly available. Wang et al. (2021) constructed
a public knowledge graph with 1.47 million triplets
and 96,397 entities from multiple sources, such as
PubMed, DrugCentral etc. Thus, the knowledge
graph owns massive biomedical knowledge, which
will expand document entities greatly. Given any
BKG as an external public resource, we formulate it
as a shared static graph GS =

{
(ei, ri,j , ej)|ei, ej ∈

E , ri,j ∈ R
}

, where E and R represent an entity
set and a relation set respectively. However, direct
application of GS may introduce noisy information
into generative models and pollute the SciIE re-
sults. Thus, we propose a dynamic biomedical
knowledge graph construction strategy.

3.2. Dynamic Sub-Graph

Inspired by Viswanathan et al. (2021); Neumann
et al. (2019), we let D = {Sabs, Sint, Scit} be a
biomedical document, which consists of three im-
portant sections, i.e., abstract, introduction and
citance. Each section S∗ = {wi}N∗

i=1 refers to a
sequence of words of length N∗. We aim to de-
rive a dynamic graph automatically by enriching
consisted document relations under the prior guid-
ance of the static graph GS . Note that we con-
sider the three sections together when construct-
ing the dynamic graph. Particularly, we propose
an Extraction-Contextualization-Derivation (ECD)
framework which consists of three key steps:

Extraction. We first resort to the tool of SciS-
pacy4(Neumann et al., 2019) (We detailed the us-
age in Appendix 9), which extracts all the biomed-
ical entities from the document D and obtain an
entity (i.e., node) set E◦. Then, we retrieve pre-
defined relations from the static graph GS and pro-
duce an edge set R◦. Finally, we construct an
initial dynamic graph G◦

D =
{
(ei, rij , ej)|ei, ej ∈

E◦, rij ∈ R◦}, where ei denotes a head entity, ej
is a tail entity, and rij denotes the relation. G◦

D

contains limited document entities and it should be
expanded to cover richer biomedical knowledge.

Contextualization. Intuitively, we can choose
k-hop expansion (we use one-hop in our experi-
ments) for contextualization because the directly
connected entities are always similar. However,
such a simple expansion will bring ungovernable
noisy entities and relations, which can pollute
the dynamic graph generation quality. Instead,
we propose a Dynamic Graph Generator (DGG)
which produces triplets and expands G◦

D as GD ={
(ei, ri,j , ej)|ei, ej ∈ ED, ri,j ∈ RD

}
, where ED and

RD denote the expanded entity set and relation
set respectively, E◦ ⊆ ED and R◦ ⊆ RD.

Inspired by the masked language model (Devlin
et al., 2018), we can randomly mask entities in the
graph G◦

D and train a DGG to recover the original
topology. The trained generator, then, can detect
the unobserved triplets while avoiding introducing
noise. The training procedure is detailed below:

We mask 10% entities randomly from G◦
D and

label the masked entities E◦
+ as positive instances,

and label the remaining unmasked entities E◦
− as

negative instances, and E◦ = E◦
+ ∪ E◦

−.
Then, we let ei be the representation of any en-

tity ei ∈ E◦
− and ej be the representation of any

entity ej ∈ E◦
+. The initial entity representations

are obtained based on pre-trained language mod-
els, like BERT and its variants (Devlin et al., 2018;
Lee et al., 2020) as can be seen in Section 4.2.
For each entity ej to be recovered, we can calcu-
late the selected probability based on an attention
mechanism as below:

p(ej |E◦
−) = δ

(
Dense

( ∑
ei∈E◦

−

αiei

))
αi = σ

(
[ei; ej ]W0

) (1)

where δ(·) is a sigmoid function, Dense(·) is a fully-
connected layer, [ ; ] denotes a vector concatena-
tion operation, σ(·) denotes the ReLU function and
W0 represents a trainable weight matrix.

To train the DGG, we use the cross-entropy func-
tion to minimize the loss between the masked enti-

4https://allenai.github.io/scispacy/
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Figure 2: The DGRN architecture and ECD strategy. Given any biomedical publication, a pretrained
language model and the ECD strategy can be used for content information modeling and dynamic graph
generation. Then, both content and expanded entity-level information (denoted in red alphabets) can be
used for decoder to generate observed and unobserved under the guidance of dual-graph.

ties and their corresponding recovered ones:

LDGG =
1

|E◦
+|

∑
ej∈E◦

+

−log
(
p
(
ej |E◦

−
))

(2)

Derivation In the derivation step, we feed the
initial dynamic graph G◦

D to the trained DGG which
considers one-hop entities as positive instances
and the initial entities E◦ as negative instances.
Then, we choose those entities with high probabil-
ities and produce the expanded entity set ED =
E◦ ∪ {ej}≥Threshold and the expanded dynamic
graph GD.

4. Dual-Graph Resonance Network

In this section, we propose an innovative Dual-
Graph Resonance Network (DGRN) which com-
bines the dual graphs and generative method into
a unified framework. The method is depicted in
Figure 2, which consists of three modules: Text
Encoder, Graph Encoder and Triplet Decoder.

4.1. Text Encoder Module

Given any document D, its constituent section
S∗ is fed into a BioBERT (Lee et al., 2020)
to produce token-level representations (Habs =
{habs

i }, Hint = {hint
i } and Hcit = {hcit

i }) and
section-level representations (habs

CLS , hint
CLS and

hcit
CLS). Viswanathan et al. (2021) found that cita-

tion sentences are more relevant to the document
topics in comparison with abstract and introduction.
Based on this, we opt for abstract-aware attention
to measure the importance of each token repre-
sentation hcit

i through a scoring function using a
feed-forward neural network:

αabs
i = softmax

(
(habs

CLS)
Tσ(W1h

cit
i + b1)

)
pabs−cit =

∑
i∈[1,Ncit]

αabs
i × hcit

i
(3)

Similarly, we also use introduction-aware atten-
tion to measure the importance of each token rep-
resentation hcit

i through a scoring function as be-
low:

αint
i = softmax

(
(hint

CLS)
Tσ(W2h

cit
i + b2)

)
pint−cit =

∑
i∈[1,Ncit]

αint
i × hcit

i
(4)

where W∗ and b∗ are trainable model parameters,
pabs−cit and pint−cit represent the abstract-aware
citance representation and introduction-aware ci-
tance representation, respectively. Finally, we take
the average of the sum of the two vectors and
obtain the document representation pdoc as below:

pdoc =
1

2
(pabs−cit + pint−cit) (5)
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4.2. Graph Encoder Module

We apply multi-layer Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) on the dynamic
graph GD to aggregate the features from neighbors
to obtain node representation. For any entity ei at
the l-th layer, the graph convolutional operation
can be applied by the formula as below:

e
(l+1)
i = σ

( ∑
ej∈Nei

W
(l)
3 e

(l)
j + b

(l)
3

)
(6)

where Nei denotes the neighbors for the node ei,
W

(l)
3 and b

(l)
3 are trainable model parameters. In

the initial stage, the e
(0)
i = 1

t−s+1

∑
i∈[s,t] h

∗
i indi-

cates entity i ranges from t-th token to s-th token
in any section S∗. Intuitively, the GCN layers can
encapsulate rich topological information.

4.3. Triplet Decoder Module

A decoder is adopted to generate knowledge
triplets. Given training data, the decoder can copy
an entity from the graph GD as the head entity
of the triplet, and then generate a relation for the
triplet. Then, it can copy the tail entity from GD.
Repeating this process, the decoder could gener-
ate multiple triplets. In time step t (1 ≤ t), we can
calculate the decoder output ot and hidden state
h′
t as follows:

ot,h′
t = f(xt,h′

t−1) (7)

where f(·) represents the RNN-based decoder
function, h′

t−1 indicates the hidden state of time
step t − 1, and xt is the input representation of
time step t and defined as below:

xt = [ot−1;ct]W4 (8)

where ot−1 denotes the entity or relation represen-
tation copied from dynamic graph in time step t−1,
ct is the attention vector (Bahdanau et al., 2014)
and W4 is a trainable weight matrix. In the initial
step, input representation x0 = pdoc (see Eq. 5).

Attention Vector Entities and relations are gen-
erated and treated differently based on their dif-
ferent positions. In the time step t (t%3 = 0, 1)
(generating head or tail), the attention vector ct is
calculated by copying entities from the entity set
ED by the following formula:

ct =
∑

ei∈ED

βi × ei

βi = softmax
(
σ
(
[h′

t−1; ei]W5

)) (9)

where h′
t−1 is the hidden state of the decoder in the

t− 1 time step, and W5 are trainable parameters.

In the time step t (t%3 = 2) (generating relation),
ct can be calculated by copying relations from re-
lation set RD by the following formula:

ct =
∑

rij∈RD

γi,j × ri,j

γi,j = softmax
(
σ
(
[h′

t−1; ri,j ;pi,j ]W6

)) (10)

where W6 are trainable parameters, ri,j is the re-
lation representation, pi,j is the representation of
edge between entity ei and ej via path reasoning.

Path Reasoning In the dynamic graph GD, the
head entity and tail entity in a triplet are not always
directly connected. Thus, we introduce a path rea-
soning method that can model dependency among
entities with multi-hop distances in the graph. Sim-
ilar to (Zeng et al., 2020b), given the head entity
and tail entity, we can define the representation of
directed edge from entity ei to entity ej as below:

eij = σ(W7[ei; ej ] + b7) (11)

where W7 and b7 are trainable parameters, ei and
ej denote representations of entity ei and entity ej
respectively (see Eq. 6).

Based on the vectorized edge representation,
the path between head entity ei and tail entity ej
passing through entity eo is represented as follow:

pi,j = [ei,o;eo,j ;ej,o;eo,i] (12)

For computation efficiency, we choose one-hop
path, while it can be extended to multi-hop paths.

Entity Prediction To copy a head/tail entity, we
calculate the confidence vector q = [q1, ..., q|ED|]
for all the entities in ED. We also apply a softmax
on q to obtain the probability distribution pentity =
[pentity1 , ..., pentity|ED| ] by the formulas as below:

qt = σ(otW8 + b8)

pentity = softmax(q)
(13)

where W8 and b8 are trainable parameters. We
select the entity with the highest probability as the
predicted entity and use its embedding to produce
the next time step input ct+1. Note that the tail
entity can not be the same as the head entity.

Relation Prediction We now use a fully con-
nected layer to calculate a confidence vector q′ =
[q′1, ..., q

′
|RD|] of all the valid relations. Specifically,

we apply a softmax on q′ to obtain the probabil-
ity distribution prelation = [prelation1 , ..., prelation|RD| ] by
the formulas as below:

q′ = σ(otW9 + b9)

prelation = softmax(q′)
(14)

where W9 and b9 are trainable parameters. We
select the relation with the highest probability as
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the prediction relation and use its embedding to
produce input ct+1 in the next time step.

Objective Function Our DGRN is trained with
the negative log-likelihood loss function. Suppose
Y = {y1, y2, ..., yT } is the target result for triplets
generation, the loss function is defined as:

LSEQ =
1

T

T∑
t=1

−log
(
p(yt|y<t)

)
(15)

where T is the maximum steps of the decoder,
p(yt|y<t) denotes the conditional probability of tar-
get yt given previous output sequence y<t.

There are two negative log-likelihood loss func-
tions used for training our DGRN; one is DGG
loss (see Eq. 2) and one is the seq2seq loss (see
Eq. 15). We optimize LDGG and LSEQ iteratively.
We use backpropagation to calculate the gradients
of all the trainable parameters and update them
with Adam optimizer (Loshchilov and Hutter, 2019).

5. Experiments

5.1. Datasets

Motivation One of our contributions in this work
is that we construct a new dataset, Bio-Sci, that
derived from open-source PubMed corpus. The
motivation behind Bio-Sci is that existing datasets
rarely contain implicit relation triples and most re-
lations are derived from sentence level(Luo et al.,
2022). Our assumption is that some applications
such as paper recommendation reason generation
requires not only knowledge from query words but
also from cross-sentence/document relations and
thus we propose to inject both explicit and implicit
triples for PubMed publications for a further inves-
tigation towards real-world applications such as
paper recommendation.

Construction Following Wang et al. (2021),
we use their public triplet dataset built from multi-
ple public datasets5 as the bases to construct our
static biomedical knowledge graph. This dataset
consists of 1,426,025 triplets, 41,078 entities, and
27 relation types. Besides, we also construct a
dataset with 32,330 biomedical publications col-
lected from PubMed Central6, and split the dataset
into training, development and testing sets with a
split of 22,330/5,000/5,000. "To generate knowl-
edge triplets for every training/development docu-
ment, we draw inspiration from the work of Xing
et al. (2020) and Luo et al. (2022) and employ
the pubmed_parser(Achakulvisut et al., 2020) to
extract biomedical concepts for establishing con-
nections between the entities in the Static Graph
and each document. Subsequently, we annotate

5https://synlethdb.sist.shanghaitech.edu.cn/#/download
6https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_comm

the respective triples for each document. In the
case of the testing set, we deliberately omit 10%
of the entities and their corresponding sentences
from each document, allowing us to assess the
model’s capability in entity recovery.

Human Agreement Test To evaluate the qual-
ity of our dataset, we conduct human agreement
tests on a randomly selected small-scale and
human-annotated testing set. Specifically, we first
randomly selected 50 documents and provide 8
triplets as label candidates for each document. Two
annotators with professional biomedical knowledge
participated in the annotation task and chose the
most appropriate triplets. The Kappa value of the
manual annotation is 0.88. Besides, we conduct a
paired t-test between the best performance base-
line and our DGRN, the p-value is less than 0.05.

5.2. Experimental Settings

Since our experiments are conducted on biomed-
ical data, we choose BioBert as our text en-
coder and implement DGRN with Pytorch and
DGL (Wang et al., 2019). The hyper-parameter
settings are detailed in Table 1. We follow the com-
monly used precision, recall and F1-score as the
evaluation metrics7(Yao et al., 2019). All the meth-
ods run on a server configured with 4 Tesla P100
GPUs, 16 CPUs, and 512G memory.

Baselines In Table 2, we compare our DGRN
with several state-of-the-art baselines:

HRL is a hierarchical extraction paradigm which
approaches relation extraction via hierarchical re-
inforcement learning (Takanobu et al., 2019).

CASREL is a cascade binary tagging framework,
which models relations as functions that map sub-
jects to objects in a sentence (Wei et al., 2020).

CopyRE is a Seq2Seq model which leverages
copy mechanism through textual similarity for rela-
tion copy. (Zeng et al., 2018).

CopyMTL is a multi-task learning framework
equipped with copy mechanism to allow the model
to predict multi-token entities (Zeng et al., 2020a).

GAIN is a double graph reasoning network that
aggregates mentions and their paths for better
triplets extraction. (Zeng et al., 2020b).

AGGCN is a soft-pruning approach which auto-
matically selects the relevant sub-structures of text
for the relation extraction. (Guo et al., 2019).

For fair comparisons, we also utilize some state-
of-the-art works that use pre-trained models:

KECI is an end-to-end model which utilizes ex-
ternal domain knowledge graph for joint entity and
relation extraction(Lai et al., 2021).

TEMPGEN is a a cross-attention guided model
for triplet template generation(Huang et al., 2021a).

7Explainations are detailed in 9
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GCN for Dual-Graph DGRN Training

Parameter Value Parameter Value

Number of layers 1, 2, 3 learning rate 10−3, 10−5

emb size 100 dropout 0.2, 0.5, 0.8
hidden size 808 batch_size 10, 20, 50

weight decay 10−3

Table 1: The experimental settings of our method.
The best parameter settings are highlighted.

Model Model Type P R F1

HRL Extractive 61.17 21.81 32.16
CASREL Extractive 71.12 32.94 45.03

CopyRE Generative 54.73 25.72 34.99
CopyMTL Generative 56.91 29.64 38.98

GAIN Graph 56.01 21.43 31.00
AGGCN Graph 61.43 33.91 43.70

KeBioLM KG 61.18 32.88 42.77
UmlsBert KG 59.61 29.17 39.17

KECI-BioBert Extractive 61.93 40.81 49.20
TEMPGEN-BioBert Generative 63.13 33.71 43.95
GAIN-BioBert Graph 56.61 21.87 31.55

DGRN Generative+Graph 73.77∗ 39.69∗ 51.61∗

Table 2: Comparison among different models. Mod-
els above the double line do not use pre-trained
model. Superscript * indicates statistical signifi-
cance at p < 0.05 level compared to the best per-
formance of baselines.

KeBioLM is a biomedical pretrained language
model which uses external knowledge graph for
relation extraction(Yuan et al., 2021).

UmlsBert integrates domain knowledge during
the pre-training process for knowledge augmenta-
tion(Michalopoulos et al., 2021).

Note that for fair comparisons, we retain their
best performance settings reported in their paper
and use BioBert as the base for all the baselines
that use pre-trained model8.

5.3. Comparative Study

Table 2 provides the main experiment results. One
can witness the DGRN superiority compared with
the best-performed baseline (KECI) with 4.90% im-
provement in F1. Interestingly, we find that genera-
tive methods can not compete with extractive ap-
proaches since generative methods require more
searching space in the decoding stage than extrac-
tive models which only need to select target tokens
among candidates. Meanwhile, the graph-based
models achieve convincing performance, which
indicates that graphs can provide essential topo-
logical information for knowledge extraction. We
further investigate the performance of other state-
of-the-art works using pre-trained model (BioBert).
As can be observed in Table 2, DGRN achieves a
3.95% F1 improvement than TEMPGEN-BioBert

8The dataset and implementation can be found at
https://github.com/MatthewKKai/DGRN

Model ECD Step P R F1

Extract 1 47.07 23.02 30.92
Extract+Text 1 59.03 38.21 46.39
Extract+Context+Text 1,2 41.17 20.81 27.65
DGRN (Full) 1,2,3 73.77 39.69 51.61

Table 3: Ablation study on DGRN components.

and a 14.42% improvement in precision. However,
we notice that KECI-BioBert gets the highest re-
call among all models. This can be explained by
the fact that KECI-BioBert first constructs a span
graph to filter the noisy tokens before encoding
the input while our method first encodes the sen-
tence and can only process 1024 tokens in each
iteration. However, our DGRN still performs the
best which can be attributed to the aggregation of
interactions between two graph. Moreover, we also
compared our DGRN with knowledge-based meth-
ods of which KeBioLM achieves a 42.77 score on
F1. We attributed the incomparable results to the
fact that KeBioLM is designed for sentence-level
relation extraction. Overall, DGRN outperforms
all baselines because it utilizes topology informa-
tion with dual-graph resonance to guide knowledge
triplet generation while avoids disturbance from
noisy information, which assures its effectiveness.

5.4. Ablation Study

We also explored how different configurations can
impact our model’s performance. Extract only
uses the initial graph. Extract+Text considers text
modeling additionally. Extract+Context+Text con-
siders one-hop path expansion by adding up to 20
entities. DGRN is our fully configured model. The
experimental results are displayed in Table 3.

As can be seen from Table 3, Extract+Text out-
performs Extract due to the semantic richness
provided by text content. However, interestingly,
Extract+Context+Text performs the worst which
we attribute to the fact that a simple expansion
strategy will introduce noisy entities/relations from
the static knowledge graph. Beyond the encoder
part, we also conduct experiments on by removing
the Path Reasoning within the decoder. The results
are 67.83, 38.87, 49.61 for precision, recall and
f1, respectively. Our fully configured DGRN con-
siders all the necessary components and achieves
the best result, which again validates the effective-
ness of our Extraction-Contextualization-Derivation
strategy and the complete DGRN frame.

5.5. Robustness Study

In contrast to shorter documents, intricate and
lengthy documents present a greater challenge for
SciIE. Furthermore, the number of triplets within
each document significantly influences the model’s
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Figure 3: The exemplar generation results of baseline models (CASREL, CopyMTL, AGGCN) and DGRN.

Model ECD Step P R F1

Extract 1 45.61 19.97 27.78
Extract+Text 1 51.53 37.62 43.49
Extract+Context+Text 1,2 39.01 19.22 25.75
DGRN (Full) 1,2,3 73.77 39.69 51.61

Table 4: Robustness study on dynamic graph gen-
eration with training instances containing more
than 10 triplets.

Model Mask Precision Recall F1-score

DGRN (Full)

5% 64.03 33.91 44.34
10% 73.77 39.69 51.61
15% 70.91 38.02 49.50
20% 69.21 37.17 48.37
25% 60.71 32.03 41.94

Table 5: Results on different percent of masked
entities.

performance. Consequently, we have established
an additional training set comprising instances with
more than 10 triplets. The results in Table 4 clearly
illustrate that complex documents have a detrimen-
tal impact on the performance of less sophisticated
models. Nevertheless, the fully configured DGRN
remains largely unaffected due to the synergistic
relationship between the document content and
the dynamically generated graph. This observation
underscores the robustness of our model.

5.6. Masking Study

To validate the masking efficiency, we mask differ-
ent percentages of nodes for DGG training. The

experimental results are presented in Table 5.
Table 5 reveals a notable trend: as the percent-

age of masked entities in the dynamic graph in-
creases, the model’s performance experiences a
decline. This phenomenon is rooted in the dynamic
graph’s initiation process, which starts from a sin-
gle document. As a result, the graphs constructed
are typically rather small in scale, consisting of
merely 10 to 20 nodes. Consequently, a higher
masking percentage introduces more unseen enti-
ties, thereby amplifying the challenge of successful
recovery. Further, the results of 5% masking set-
ting are not comparable with the results of 10%
setting. We attribute this to the fact that by 5%
masking, only 0-1 nodes will be masked which
leads to a performance degradation. In summary,
masking approximately 10% of nodes proves ben-
eficial in augmenting the DGG’s ability to acquire
valuable ontological information.

5.7. Case Study

As displayed in Figure 3, while other baselines
successfully produce correct triplets, they can
not compete with DGRN since they can’t learn
well from both rich BKG and the latent content.
DGRN also shows its inference ability by gen-
erating "<GPX1, RESEMBLES_GiG, ENPP1>"
"<GPX1, INTERACTS_GiG, Insulin>" based on
the evidence derived from BKG. We further lever-
age in-context learning to let ChatGPT, one of the
current most powerful AI tools, tackle this task.
Despite the wrong relations it predicts for "insulin
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secretion", it still surprises us by knowing the "RE-
SEMABLE_GrG" relation between "GPX1" and
"ENPP1" since this requires inference from exter-
nal BKG. However, the better results of DGRN
again support the superiority of our model.

6. Conclusions & Future Work

In this paper, we discuss the challenges of exist-
ing extractive and generative methods and make
two efforts to deal with them. First, we propose
a novel Extraction-Contextualization-Derivation
(ECD) strategy to generate a document-specific
dynamic graph. Then, we propose a novel Dual-
Graph Resonance Network (DGRN) to generate
richer triplets under the guidance of dual-graph.
Extensive experiments validate the effectiveness
of our proposed method. We also release a new
dataset comes from Biomedical domain to encour-
age the community further explore this task.

In the future, we will integrate heterogeneous
graph simplification (Wu et al., 2019) and sub-
graph mining (Jiang et al., 2020) into our frame
for better performance. Also, along with the repre-
sentation learned from each paper and its citation
network, we could use the triple extracted by our
DGRN as backbone for paper recommendation
reasons generation.

7. Ethics Statement

After carefully reviewing the COLING Ethics Policy,
we sincerely show our respect and obey to consent
all. To reproduce the experiment outcomes, we will
make our dataset and code publicly available.

8. Acknowledgements

We gratefully acknowledge support from NSF,
Award # 2122232 - SCISIPBIO: Constructing Het-
erogeneous Scholarly Graphs to Examine Social
Capital DuringMentored K Awardees Transition to
Research Independence: Explicating a Matthew
Mechanism.

9. Bibliographical References

Bilal Abu-Salih. 2021. Domain-specific knowl-
edge graphs: A survey. Journal of Network and
Computer Applications, 185:103076.

Titipat Achakulvisut, Daniel Acuna, and Konrad Ko-
rding. 2020. Pubmed parser: A python parser
for pubmed open-access xml subset and med-
line xml dataset xml dataset. Journal of Open
Source Software, 5(46):1979.

Rie Kubota Ando and Tong Zhang. 2005. A
framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of
Machine Learning Research, 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scal-
able training of L1-regularized log-linear mod-
els. In Proceedings of the 24th International
Conference on Machine Learning, pages 33–
40.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum.
2017. SemEval 2017 task 10: ScienceIE - ex-
tracting keyphrases and relations from scien-
tific publications. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 546–555, Vancouver,
Canada. Association for Computational Linguis-
tics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Hongxiao Bai and Hai Zhao. 2018. Deep en-
hanced representation for implicit discourse re-
lation recognition. In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 571–583, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text.
In EMNLP.

BSI. 1973a. Natural Fibre Twines, 3rd edition.
British Standards Institution, London. BS 2570.

BSI. 1973b. Natural fibre twines. BS 2570, British
Standards Institution, London. 3rd. edn.

A. Castor and L. E. Pollux. 1992. The use of
user modelling to guide inference and learning.
Applied Intelligence, 2(1):37–53.

Hao Chen, Zepeng Zhai, Fangxiang Feng, Ruifan
Li, and Xiaojie Wang. 2022. Enhanced multi-
channel graph convolutional network for aspect
sentiment triplet extraction. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2974–2985.

J.L. Chercheur. 1994. Case-Based Reasoning,
2nd edition. Morgan Kaufman Publishers, San
Mateo, CA.

N. Chomsky. 1973. Conditions on transformations.
In A festschrift for Morris Halle, New York. Holt,
Rinehart & Winston.

https://doi.org/10.21105/joss.01979
https://doi.org/10.21105/joss.01979
https://doi.org/10.21105/joss.01979
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://aclanthology.org/C18-1048
https://aclanthology.org/C18-1048
https://aclanthology.org/C18-1048
http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/arXiv:1903.10676


9874

James W. Cooley and John W. Tukey. 1965. An
algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation,
19(90):297–301.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Umberto Eco. 1990. The Limits of Interpretation.
Indian University Press.

Krishna Garg, Jishnu Ray Chowdhury, and Cor-
nelia Caragea. 2021. Keyphrase generation be-
yond the boundaries of title and abstract. arXiv
preprint arXiv:2112.06776.

John Giorgi, Gary D Bader, and Bo Wang.
2022. A sequence-to-sequence approach for
document-level relation extraction. arXiv preprint
arXiv:2204.01098.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Atten-
tion guided graph convolutional networks for rela-
tion extraction. arXiv preprint arXiv:1906.07510.

Sonal Gupta and Christopher Manning. 2011. An-
alyzing the dynamics of research by extracting
key aspects of scientific papers. In Proceedings
of 5th International Joint Conference on Natural
Language Processing, pages 1–9, Chiang Mai,
Thailand. Asian Federation of Natural Language
Processing.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press,
Cambridge, UK.

Paul Gerhard Hoel. 1971a. Elementary Statistics,
3rd edition. Wiley series in probability and math-
ematical statistics. Wiley, New York, Chichester.
ISBN 0 471 40300.

Paul Gerhard Hoel. 1971b. Elementary Statistics,
3rd edition, Wiley series in probability and mathe-
matical statistics, pages 19–33. Wiley, New York,
Chichester. ISBN 0 471 40300.

Kung-Hsiang Huang, Sam Tang, and Nanyun Peng.
2021a. Document-level entity-based extrac-
tion as template generation. In Proceedings
of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 5257–
5269, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguis-
tics.

Quzhe Huang, Shengqi Zhu, Yansong Feng, Yuan
Ye, Yuxuan Lai, and Dongyan Zhao. 2021b.
Three sentences are all you need: Local path
enhanced document relation extraction. arXiv
preprint arXiv:2106.01793.

Zhuoren Jiang, Zheng Gao, Jinjiong Lan, Hongxia
Yang, Yao Lu, and Xiaozhong Liu. 2020. Task-
oriented genetic activation for large-scale com-
plex heterogeneous graph embedding. In
Proceedings of The Web Conference 2020,
pages 1581–1591.

Vani Kanjirangat and Fabio Rinaldi. 2021. En-
hancing biomedical relation extraction with trans-
former models using shortest dependency path
features and triplet information. Journal of
Biomedical Informatics, 122:103893.

Thomas N Kipf and Max Welling. 2016.
Semi-supervised classification with graph
convolutional networks. arXiv preprint
arXiv:1609.02907.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolu-
tional networks. In International Conference on
Learning Representations (ICLR).

Tuan Lai, Heng Ji, ChengXiang Zhai, and
Quan Hung Tran. 2021. Joint biomedical
entity and relation extraction with knowledge-
enhanced collective inference. In Proceedings
of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 6248–6260, Online. Association for Com-
putational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. Biobert: a pre-
trained biomedical language representation
model for biomedical text mining. Bioinformatics,
36(4):1234–1240.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In International
Conference on Learning Representations.

Keming Lu, I Hsu, Wenxuan Zhou, Mingyu Derek
Ma, Muhao Chen, et al. 2022. Summarization as
indirect supervision for relation extraction. arXiv
preprint arXiv:2205.09837.

Yi Luan, Luheng He, Mari Ostendorf, and
Hannaneh Hajishirzi. 2018. Multi-task iden-
tification of entities, relations, and corefer-
ence for scientific knowledge graph construc-
tion. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Bel-
gium. Association for Computational Linguistics.

Yi Luan, Dave Wadden, Luheng He, Amy Shah,
Mari Ostendorf, and Hannaneh Hajishirzi. 2019.
A general framework for information extraction

https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://aclanthology.org/I11-1001
https://aclanthology.org/I11-1001
https://aclanthology.org/I11-1001
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://doi.org/10.18653/v1/2021.acl-long.488
https://doi.org/10.18653/v1/2021.acl-long.488
https://doi.org/10.18653/v1/2021.acl-long.488
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/N19-1308


9875

using dynamic span graphs. In Proceedings
of the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages
3036–3046, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Ling Luo, Po-Ting Lai, Chih-Hsuan Wei, Cecilia N
Arighi, and Zhiyong Lu. 2022. Biored: a rich
biomedical relation extraction dataset. Briefings
in Bioinformatics, 23(5):bbac282.

George Michalopoulos, Yuanxin Wang, Hussam
Kaka, Helen Chen, and Alexander Wong. 2021.
UmlsBERT: Clinical domain knowledge augmen-
tation of contextual embeddings using the Uni-
fied Medical Language System Metathesaurus.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 1744–1753, Online. Asso-
ciation for Computational Linguistics.

Preslav I Nakov, Ariel S Schwartz, Marti Hearst,
et al. 2004. Citances: Citation sentences
for semantic analysis of bioscience text. In
Proceedings of the SIGIR, volume 4, pages 81–
88. Citeseer.

Guoshun Nan, Zhijiang Guo, Ivan Sekulić, and
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Appendix A. SciSpacy Details

For SciSpacy usage, we use them to ob-
tain the entities with “en_core_sci_sm” and
“en_ner_bionlp13cg_md” corpus because these
two settings are trained in large-scale biomedical
domain corpus. The f1 score is 70.87% on the
entity extraction task for “en_core_sci_sm”, and
86.75% for “en_ner_bionlp13cg_md”. We mainly
leverage “en_ner_bionlp13cg_md” in our experi-
ments. What we do for linking entities is we first
extract the entities and retrieve the BKG to see if
there are matches for them.

Appendix B. Metrics

Following the partial match strategy, a generated
triple is regarded as correct if the predicted relation
and both the subject and object entity are correct.
In this context, TP is the number of correctly gen-
erated/extracted triples, FN is the number of triples
that the model failed to generate/extract, and FP
is the number of incorrectly generated/extracted
triples.
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