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Abstract

In Visually-rich Document Understanding (VrDU), recent advances of incorporating layout and image features
into the pre-training language models have achieved significant progress. Existing methods usually developed
complicated dedicated architectures based on pre-trained models and fine-tuned them with costly high-quality data to
eliminate the inconsistency of knowledge distribution between the pre-training task and specialized downstream
tasks. However, due to their huge data demands, these methods are not suitable for few-shot settings, which
are essential for quick applications with limited resources but few previous works are presented. To solve these
problems, we propose a unified Knowledge-aware prompt-tuning framework for Visual-rich Document Understanding
(KnowVrDU) to enable broad utilization for diverse concrete applications and reduce data requirements. To model
heterogeneous VrDU structures without designing task-specific architectures, we propose to reformulate various
VrDU tasks into a single question-answering format with task-specific prompts and train the pre-trained model with
the parameter-efficient prompt tuning method. To bridge the knowledge gap between the pre-training task and
specialized VrDU tasks without additional annotations, we propose a prompt knowledge integration mechanism
to leverage external open-source knowledge bases. We conduct experiments on several benchmark datasets in
few-shot settings and the results validate the effectiveness of our method.
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1. Introduction

Visually-rich Document Understanding (VrDU)
seeks to automatically analyze and extract sig-
nificant factual texts from image or digital-born
documents, which is of immense academic and
commercial value. VrDU encompasses extensive
text-centric and image-centric tasks, notably docu-
ment information extraction, document visual ques-
tion answering, and document image classification,
etc (Cui et al., 2021).

In recent years, pre-training techniques have
been widely leveraged in the VrDU tasks to learn
the multi-modal interactions between text, image
and layout modalities. For example, Xu et al.
(2020b) first introduced spatial layout information
with 2-D position embeddings and integrated im-
age embeddings into original BERT architecture.
Peng et al. (2022) proposed to enhance the layout
knowledge through the arrangement of reading or-
der sequence. Huang et al. (2022) mitigated the
discrepancy between text and image multi-modal
representation learning with unified discrete token
reconstructive objectives.

Existing methods achieved considerable success
in capturing cross-modality information from digital
documents. However, they naturally relied on huge
demands of designing dedicated architectures and

annotating task-specific samples to fine-tune pre-
trained models. This is because the general knowl-
edge of pre-trained models cannot completely en-
compass sophisticated distinct expertise of various
specialized tasks, resulting in significant knowledge
distribution gaps between the pre-training task and
VrDU tasks, as shown in Figure 1 (a). Unfortu-
nately, the data requirements make these methods
typically expensive and difficult to achieve quick
applications in practice (Wang and Shang, 2022),
especially in few-shot scenarios with limited anno-
tated data. Furthermore, under few-shot settings,
limited annotations are insufficient and ineffective
in capturing refined task expertise, thus leading to
severe performance degradation on downstream
VrDU tasks.

Our work is motivated by several observations.
First, recent research of natural language process-
ing uniformly model various tasks, including in-
formation extraction (Li et al., 2019; Zhou et al.,
2022; Liu et al., 2022), document classification, and
etc., with Question Answering (QA) format, such
as extracting named entities from the text by ask-
ing what are the entities and answering the entity
spans. These methods used only one QA model
and distinguished different tasks with different ques-
tion and answer templates, avoiding task-specific
model design, which can be useful for VrDU. Sec-
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Figure 1: (a) illustrates knowledge distribution gaps
of the pre-training task and two specialized tasks.
(b) shows our unified knowledge integration frame-
work to bridge the knowledge gaps.

ond, the lack of task-specialized knowledge caused
by limited labeled data in few-shot scenarios can be
compensated with large-scale knowledge bases.
For example, Wikipedia as a knowledge base can
provide rich knowledge about rare named entities,
which are almost unlikely to occur in limited anno-
tated data like Attapeu (province in Laos) and Yak-
itori (Japanese skewered chicken), and enhance
the performance of named entity recognition.

Based on the above observations, we propose a
novel framework to uniformly model various VrDU
tasks in few-shot scenarios. First, we propose to
convert different VrDU tasks into a single QA for-
mat through task-specific prompts. Concretely, we
adopt structural prompts (Zhong et al., 2022) to
transform the input document image and its Optical
Character Recognized (OCR) texts into template-
generated question queries, where different tem-
plates are applied for different tasks. We also intro-
duce continuous trainable prompt embeddings (Liu
et al., 2021) as storable task adapters to make
the model more flexible, and freeze the pre-trained
model to enable parameter-efficient prompt tun-
ing. Then, we propose a prompt knowledge injec-
tion mechanism to reduce the knowledge distribu-
tion gap between the general pre-training task and
downstream VrDU tasks. We incorporate open-
source knowledge bases for adequate task exper-
tise, as shown in Figure 1 (b), and select infor-
mative knowledge through attention mechanism.
We evaluate our Knowledge-aware prompt-tuning
framework for VrDU (KnowVrDU) with three tasks:

document information extraction, document classi-
fication and document question answering in few-
shot settings.

The main contributions of this paper are:
• We propose a unified KnowVrDU framework

to enable broad utilization for diverse concrete
applications.

• To model heterogeneous VrDU structures with-
out designing dedicated architectures, we pro-
pose to transform various VrDU tasks into a
uniform question answering format with task-
specific prompts and efficiently train the model
through prompt tuning.

• To bridge the knowledge gap between pre-
training and downstream tasks without addi-
tional annotations, we propose a prompt knowl-
edge integration mechanism to incorporate ex-
ternal open-source knowledge bases.

• Experimental results on several benchmark
datasets demonstrate the effectiveness of our
method.

2. Related Work

In the early work of document intelligence, VrDU
tasks were solved in feature-based approaches
(O’Gorman, 1993; Simon et al., 1997; Shilman
et al., 2005; Wei et al., 2013). For example,
O’Gorman (1993) proposed document spectrum
algorithm to analysis structural pages based on
bottom-up clustering of page components. Wei
et al. (2013) introduced statistical probabilistic mod-
els to learn the pixel features and detect physi-
cal structure of documents. However, these ap-
proaches were heavily restricted by hand-crafted
expert knowledge and insufficient supervised data.

In recent years, neural network-based ap-
proaches became the dominant paradigm of visual
document understanding, which focused on design-
ing suitable network architectures. For example,
Katti et al. (2018) represented the spatial structure
of the document as a sparse 2D grid of characters
and adopted CNN to perform semantic segmenta-
tion on 2D grids. Liu et al. (2019a) utilized graph
convolutional networks to integrate the textual se-
mantic information, layout of documents and rela-
tive positions of the individual segment. However,
these approaches relied on sufficient supervised
data and failed to model the joint representation of
visual, text and layout features.

To address these issues, more recent work in-
troduced pre-train-and-fine-tune paradigm to doc-
ument intelligence, which focused on designing
objectives used at both the pre-train and fine-tune
stages. Xu et al. (2020b) first pre-trained BERT (De-
vlin et al., 2018) with masked visual-language
model and multi-label document classification ob-
jectives to jointly model interactions between multi-
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modal information. Xu et al. (2020a) and Huang
et al. (2022) further improved the pre-training strate-
gies to strengthen the alignment among different
modalities. Moreover, Zhao et al. (2022) proposed
a cross-document semantic integration method to
collect more evidence across documents in visual
document NER. Besides, UDOP (Tang et al., 2023)
unified pretraining and multi-domain downstream
tasks into sequence generation scheme and pre-
trained on both large-scale unlabeled and labeled
data. However, the knowlegde gap between pre-
train and fine-tune process hinders the expression
of general knowledge in pre-trained models, result-
ing in the failure of existing models in few-shot sce-
narios. Though Wang and Shang (2022) proposed
to embed the label surface names for few-shot en-
tity recognition of document images, this method is
not suitable to other VrDU tasks such as document
question answering.

Different from previous work, we propose a uni-
fied framework for a wide applications of numerous
VrDU tasks in few-shot scenarios. We propose
to reformulate multiple VrDU tasks into a uniform
question answering format. We also propose to
leverage external open-source knowledge bases to
bridge the knowledge gap without additional anno-
tations. Experimental results in few-shot settings
demonstrate the effectiveness of our method on a
wide variety of downstream VrDU tasks.

3. Our Approach

3.1. Primilaries

The pre-train and fine-tune paradigm has already
been proved to promisingly successful in Visually-
rich Document Understanding. In this paradigm,
multi-modal transformers are pre-trained on large-
scale scanned document image datasets and fine-
tuned with additional downstream architectures
on specific tasks. However, in the few-shot sce-
narios, inadequate samples could not bridge the
knowledge gap between pre-train and fine-tune
stages, resulting in the inability to capture the spe-
cialized representations in other tasks. To tackle
this challenge, we first propose a series of struc-
tural prompts to convert varying types of document
understanding tasks to multi-span question answer-
ing. The structural prompts consist of fixed hard
prompts to indicate the specific task information as
well as tunable soft prompts to adjust with multi-
modal language models. Then, we employ the
knowledge attention network to enhance the repre-
sentations of input data. The overall framework of
our approach is shown in Figure 2.

3.2. Unified Structure Generation for
VrDU

Our knowledge-aware prompt-tuning framework
can be decomposed into two atomic operations:
uniform prompts generation and external knowl-
edge injection. This section describes how to trans-
form heterogeneous VrDU structures into a format-
ted input to the model.

3.2.1. Overall Prompt Structure

The formatted prompts are constructed with mul-
tiple key-value pairs. Each key locates the rel-
evant spans concerning to pre-defined descrip-
tion and each value contains the corresponding
mentions. Concretely, we adopt four fixed keys in
our prompts, including “Task”, “Question”, “Pas-
sage” and “Knowledge”, which are placed sequen-
tially in our structural prompts. Each key is sur-
rounded by square brackets and separated from
the value by a colon symbol. We introduce sev-
eral soft prompts (Liu et al., 2021) which are tun-
able and storable as the values of “Task” indica-
tor. There are two advantages of utilizing these
trainable soft prompts. First of all, trainable em-
bedddings enable us to find a better continuous
prompts beyond the original vocabulary that the
pre-trained model could express to make the model
adaptively accommodate the structural prompts.
Second, our model can discriminate different in-
put components by these flexible prompts embed-
ding and model the speciality of each task via
task-specific values. Considering the differences
in downstream tasks, distinct templates are lever-
aged to construct values of “Question”. Further-
more, we use the original OCR results and visual
features to initialize the values related to “Pas-
sage” key, as shown in Figure 2. Finally, we
use “[CLS] [Task]: <Soft Tokens>, [Question]:
<Question Templates>, [Passage]: <Image>
<OCR Tokens>, [Knowledge]:<Knowledge Con-
tents> [SEP]” as our final model input, as shown
in Figure 2.

3.2.2. Downstream Task Transformation

We mainly focus on three downstream tasks: docu-
ment information extraction, document visual ques-
tion answering and document image classification.
We modify the “<Question Templates>” to convert
them to (multi-span) extractive QA tasks. Extractive
QA involves identifying and recognizing (multiple)
answer spans from a given passage. Given a ques-
tionQ and the corresponding passage P , the model
is required to extract the answer spans S of P and
each instance in the QA dataset can be defined as
(Q,P, S). Therefore, our aim is to convert inputs
of heterogeneous structures into the form of ques-
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Figure 2: The overall framework of our approach. We decompose our knowledge-aware prompt-tuning
framework into two atomic operations. We illustrate the uniform prompts generation in the upper part and
the external knowl- edge attention injection process in the lower half part.

tion queries with assigned contexts from “Passage”
values.

For document information extraction, we re-
formulate the original tasks as span-based extrac-
tion problem. Our model locates the start and
end positions of the entity span by predicting the
start/end scores of each tokens, which is essen-
tially the same as original document named entity
recognition task. Because each pair of start/end
classifiers could only extract one type of entity,
we adopt m templates for m entity types. As Liu
et al. (2022) suggests, we choose the question
templates like “What is the [E] ?”, where “[E] ”is a
placeholder which can be replaced by the name
of any entity type. For example, in the case of the
FUNSD (Jaume et al., 2019) dataset, “What is the
Document Header ?” could be used to identity the
“Header” entity type defined in the dataset.

For document image classification, we first
transform the classification tasks into the extrac-
tive QA tasks by adopting the question template
“What type is the Document or Receipt ? <Question
Options> ”. The question options are initialized

with document labels and each a letter followed by
a colon. Then we spot the start/end positions of
document labels in our question template as new
labels for the extractive QA task. For example, the
question template utilized in categorizing the docu-
ments in RVl-CDIP (Rawat and Wang, 2017) could
be “What type is the Document or Receipt ? A:
letter, B:memo, ...”.

For document visual question answering, we
directly introduce the extractive QA tasks and use
the original questions and passages without any
modification.

In summary, our proposed prompts can effec-
tively model different VrDU tasks as a uniform ex-
tractive QA task and discriminate different compo-
nents with the four key indicators. Besides, the
unified prompt structure provides the basis for task-
specific knowledge injection in a unified form.

3.3. Knowledge Integration
In this section, we introduce our knowledge integra-
tion mechanism in detail, which begins with describ-
ing the representations of our structural prompts.
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Then we propose the knowledge attention mecha-
nism to incorporate external knowledge based into
our prompts.

3.3.1. Prompt Representation

We utilize a multi-modal transformer to encode our
structural prompts and learn cross-modal interac-
tions. Given a structural prompt instance, we de-
note the representations of each key-value pair
as Pi, where i ∈ [1, 2, 3, 4]. Concretely, the key-
value pair can further be represented as Pi =
Embedding([Di;Vi]). Di is the i-dx text description
of key indicator and Vi is the i-dx corresponding
value. Since we introduce the soft prompts as the
value of P1 and P4, the pseudo tokens are adopted
as placeholders to initialize the trainable embed-
ding:

V1 = [e1, . . . , en], V4 = [e1, . . . , em] (1)

where n and m are the length of pseudo tokens
in “Task” and “Knowledge” values. Besides, V2

stands for the tokens in question templates and
V3 is the concatenation of original text tokens and
image tokens sequence. Finally, the final model
input EP can be formed through concatenating all
the key-value pairs Pi:

EP=Embedding([D1;V1;D2;V2;D3;V3;D4;V4]) (2)

Note that during tuning process we fix the
parameters of key indicator Embedding(Di) and
the hard tokens embedding Embedding(V2) and
Embedding(V3). We only train the soft prompts
embedding Embedding(V1) and Embedding(V4) to
learn the semantics of the structural prompts. Then
the soft prompts can be saved to store the cus-
tomized task-specific characteristics.

3.3.2. Knowledge Integration

Based on the OCR results, we employ the entity
linker to perform entity linking with external world-
wide knowledge base. The entity linking toolkit
works by matching potential entity mentions in sen-
tences to entity aliases from the knowledge base.
We identify the semantic category for each detected
entity and extract the entity description as supple-
mentary expressions which usually contain the nec-
essary task-specialized knowledge. These knowl-
edge items help the model understand the given
question and passage better.

However, integrating the external knowledge with
the prompts immediately suffers from abundant
noise of excessive irrelevant contents. Therefore,
we propose to eliminate the noise and to refine task-
specialized knowledge with the attention mecha-
nism. We denote N as the length of retrieved
knowledge contents and dh as the dimension of

transformer hidden states, the representation of
extracted knowledge as EK ∈ RN×dh . We adopt
the dot-product attention (Vaswani et al., 2017a) to
learn the fused representations of knowledge. Let
the representation of OCR results be ET ∈ RL×d,
we compute the attention query, key and value ma-
trix:

Q = ETW
Q,K = EKW

V ,V = EKW
V (3)

The WQ,WV ∈ Rdh×dk are the trainable weight
matrices. Then we introduce our attention layer as:

H=Attention(Q,K,V)=softmax
(
QKT

√
dk

)
V (4)

We perform the max-pooling and linear transforma-
tion operations H

′
= MaxPooling(Linear(H)) and

substitute the embedding of pseudo tokens V4 in
E:

E=[Embedding([D1;V1;D2;V2;D3;V3;D4]);H
′
] (5)

Finally, we adopt the representation E as the input
of multi-modal transformers.

4. Experiments

4.1. Datasets
We conduct experiments on 4 publicly benchmarks
across 3 well-representative VrDU tasks, including
document information extraction, document visual
question answering, and document image classi-
fication. Specifically, the datasets involve FUNSD
(Jaume et al., 2019), CORD (Park et al., 2019),
RVL-CDIP (Rawat and Wang, 2017) and DocVQA
(Mathew et al., 2021). The details and statistics
(Table 1) of these datasets are as follows:

• FUNSD: FUNSD is a fundamentally document
information recognition dataset which contains
4 entity types and 199 fully annotated forms,
widely ranging from marketing, advertising and
scientific reports. The forms are all one-page
and rendered in a rasterized format with low
resolution.

• CORD: CORD is a consolidated receipt
dataset with box-level text and parsing class
annotations. CORD consists of about 1000 re-
ceipts and the parsing word labels are divided
into 30 different laebls.

• RVl-CDIP: RVL-CDIP is a large scale docu-
ment image classification dataset sampled
from IIT-CDIP (Lewis et al., 2006a) collection
of tobacco litigation documents, containing
400,000 document images across 16 cate-
gories.
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• DocVQA: We evaluate our approach on the
DocVQA dataset for the document question
answering. The dataset includes 12,767 docu-
ment images of varied types and content, over
50,000 questions and answers.

Dataset Field Train Vaild Test
FUNSD 4 149 - 50
CORD 30 800 100 100
RVL-CDIP 16 320k 40k 40k
DocVQA - 10,104 1,286 1,287

Table 1: Statistics of evaluation datasets.

4.2. Experiment Settings
We conduct our experiments in the few-shot set-
tings. For each score in all experiments, we report
the mean obtained with randomly seeds across the
5 different runs. For a fair comparison with previous
work (Wang and Shang, 2022; ?), we report the
results of 2, 4, 6,and 8 shots for FUNSD and CORD
and we then compute the standard micro precision,
recall and F1 scores on both datasets. We evaluate
our results under 1%, 5%, 10% and 20% of training
samples for RVL-CDIP and DocVQA and report the
accuracy and ANLS score respectively.

We adopt the state-of-art
LayoutLMv3LARGE (Huang et al., 2022) as
our backbone model and freeze the parameters
of pre-trained model with only tuning the soft
prompt embeddings and downstream classi-
fiers. We also conduct and report the scores
with LayoutLMv3BASE for a fair comparison with
previous methods. We utilize the Spacy Entity
Linker1 to perform entity linking with one of the
most popular and widely accessible knowledge
bases, Wikidata2. Following previous work, the
max length of total inputs is 512. We set the length
of task soft prompts as 3 and knowledge soft
prompts as 4. AdamW optimizer (Loshchilov and
Hutter, 2017) is utilized to tune the parameters.
For the prompt-tuning on the FUNSD dataset, we
use a batch size of 2 and the learning rate of 1e-5.
For the CORD dataset, we use a batch size of 2
and the learning rate of 1e-5. When tuning on the
RVL-CDIP dataset, we set the batch size to 32 and
the learning rate to 3e-5. Finally, on the DocVQA
dataset, we use a batch size of 16 and the learning
rate of 2e-5 for tuning our structural prompts and
classifiers. We select the hyperparameters of
each model via grid search on the validation sets.
We choose the model with the best validation
performance and report the scores on the test set.

1https://github.com/egerber/spaCy-entity-linker
2https://www.wikidata.org/wiki/Wikidata

4.3. Performance Evaluation

4.3.1. Document Information Extraction

The evaluation results on the FUNSD and CORD
are shown in Table 2. We compare our methods
with several state-of-the-art approaches:

• RoBERTa (Liu et al., 2019c) is a text-only pre-
training language model which dynamically
changes the masking pattern applied to the
training samples with larger batches and more
data.

• LASER (Wang and Shang, 2022) proposes a
label-aware sequence-to-sequence framework
with a novel labeling scheme to strengthen the
label-region correlation.

• LayoutLMv3 (Huang et al., 2022) firstly rep-
resent document images with linear projec-
tion features of image patches and proposes
to facilitate cross-modal alignment learning
through Word-Patch Alignment objectives.
Without any special explanation, we adopt the
LayoutLmv3BASE as the model backbones.

• LAGER (Krishnan et al., 2023) is based on
LayoutLMv3 and utilizes the graph neural net-
works to capture the topological adjacency
structures constructed from k-nearest bound-
ing boxes to solve the image manipulations
such as scaling, shifting or rotating the docu-
ment images. LAGER introduce two heuris-
tics to construct the node topology graph:
k-nearest neighbors in space and k-nearest
neighbors at multiple angles. Overall, the for-
mer heuristic is superior to latter and We re-
port the scores of the model with the k-nearest
neighbors in space rule.

From Table 2 we have several observations. First
of all, our KnowVrDUBASE model achieves signif-
icant performance improvements compared with
previous best results on both FUNSD and CORD
datasets. It indicates that the model effectively in-
corporates the external task-specialized knowledge
with our proposed unified structural prompts in doc-
ument information extraction tasks. Moreover, it is
worth mentioning that our KnowVrDULARGE further
outperforms the KnowVrDUBASE and other baseline
methods, which we see the similar improvements
on the precision and recall scores. It indicates that
the more powerful pre-trained multi-modal trans-
former contains more prior general knowledge and
factual descriptive information, which helps the
model refine comprehension of our knowledge-
aware prompts.
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N Method
FUNSD CORD

Precision Recall F1 Precision Recall F1

2

RoBERTa 21.64±1.64 33.43±4.24 26.68±1.76 34.96±6.73 45.70±7.17 39.59±7.03
LASER 30.40±4.89 35.20±7.20 32.36±5.14 - - -
LayoutLMv3BASE 44.29±6.14 58.96±7.20 50.43±6.03 47.21±6.25 58.99±4.94 52.41±5.85
†LAGERBASE 49.82±6.06 59.55±8.91 54.09±6.54 48.68±5.72 60.19±4.23 53.79±5.24
KnowVrDUBASE 50.37±5.85 59.61±6.26 54.42±6.13 49.36±5.96 59.84±3.28 54.29±4.75
KnowVrDULARGE 54.28±4.77 64.09±6.34 58.67±5.82 52.27±5.31 66.15±4.53 57.73±4.97

4

RoBERTa 27.53±2.92 42.83±2.68 33.48±2.83 45.89±7.84 55.04±8.69 50.05±8.25
LASER 44.91±2.42 50.25±3.26 47.36±2.18 - - -
LayoutLMv3 65.32±3.89 77.97±2.26 71.06±3.04 54.18±5.01 64.92±3.76 59.04±4.53
†LAGERBASE 67.86±3.30 78.73±2.57 72.86±2.69 56.28±4.24 66.47±3.29 60.94±3.86
KnowVrDUBASE 69.20±3.03 78.51±2.64 73.67±2.31 56.69±4.13 68.16±4.05 62.24±5.01
KnowVrDULARGE 72.87±4.49 79.61±3.11 76.15±3.47 58.58±3.87 72.31±3.84 64.79±3.40

6

RoBERTa 33.75±2.19 47.20±2.54 39.32±2.06 52.88±4.84 61.41±4.86 56.82±4.82
LASER 48.64±2.14 53.54±2.10 50.96±1.95 - - -
LayoutLMv3 71.19±3.75 80.83±1.09 75.68±2.58 60.91±3.51 69.16±2.76 64.76±3.16
†LAGERBASE 72.71±3.41 81.53±1.98 76.84±2.58 61.80±5.14 70.00±3.75 65.63±4.53
KnowVrDUBASE 72.23±3.26 83.25±1.16 77.31±2.36 63.27±2.76 72.90±4.68 67.59±3.38
KnowVrDULARGE 73.49±2.31 85.02±2.40 78.60±1.77 66.43±3.64 73.41±2.57 69.62±3.05

8

RoBERTa 37.30±3.55 49.52±4.89 42.52±4.89 57.38±1.86 65.32±1.54 61.08±1.57
LASER - - - - - -
LayoutLMv3 74.31±2.19 81.75±2.60 77.85±2.29 64.49±3.24 72.21±2.17 68.12±2.77
†LAGERBASE 76.27±1.44 83.41±1.73 79.66±1.14 64.89±4.38 72.22±3.19 68.35±3.84
KnowVrDUBASE 78.14±1.68 84.65±1.29 81.44±1.42 66.17±2.83 72.99±3.71 69.23±3.16
KnowVrDULARGE 81.52±1.78 87.23±1.36 84.04±1.30 70.19±3.49 75.41±4.44 72.51±3.63

Table 2: Performance of our KnowVrDU model and previous state-of-the-art models on the FUNSD and
CORD datasets. N is the number of shots for FUNSD and CORD dataset. The best scores are in bold
and the second-best scores are underlined. † marks scores produced by the model LAGERnearst , which
adopts the nearst heuristics to construct topology graph.

Ratio Model RVL-CDIP DocVQA

1%
LayoutLMv3 29.70 16.84
KnowVrDUBASE 38.53 20.91
KnowVrDULARGE 45.31 25.42

5%
LayoutLMv3 52.47 28.03
KnowVrDUBASE 56.90 31.78
KnowVrDULARGE 61.27 35.23

10%
LayoutLMv3 71.14 42.11
KnowVrDUBASE 75.70 45.52
KnowVrDULARGE 78.22 49.67

20%
LayoutLMv3 80.25 67.46
KnowVrDUBASE 84.03 69.81
KnowVrDULARGE 85.89 72.43

Table 3: Results of KnowVrDU and the previous
work on Document Image Classification and Docu-
ment Question Answering tasks with different ratio
settings.

4.3.2. Document Image Classification

We conduct our experiments on the RVL-CDIP
dataset and report the average classification ac-
curacy as the evalution metric. We adopt the

start/end classifiers to predict the start/end posi-
tion of document categories. A document clas-
sification is regarded as correct only if the pre-
dicted span is located in the labeled question
span. We compare our method with LayoutLMv3
under 1, 5, 10 and 20 ratio settings and the
evaluation results in shown in Table 3. From
our preliminary experiments, we observe that our
KnowVrDUBASE outperforms baselines on average
improvements of 5.64%-15.61% in different sam-
pling ratios. KnowVrDULARGE achieves the new
state-of-the-art performance, illustrating the effec-
tiveness of our proposed structural prompts in doc-
ument image classification.

4.3.3. Document Question Answering

We report the Average Normalized Levenshtein
Similarity (ANLS) score which is widely used in
question answering tasks, which greater ANLS
scores reflect the stronger performance of models.
The KnowVrDUBASE improves the ANLS scores
compared with LayoutLMv3 and demonstrates
the advantage of our framework in different ra-
tio settings. The KnowVrDULARGE further gains
an absolute ANLS score of 4.97%-8.58% over
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KnowVrDUBASE in distinct sampling ratios. The
results show that KnowVrDUBASE is effective for
the document visual question answering task.

4.4. Ablation Study
To further prove the effects of different components
in KnowVrDU, we conduct the ablation study and
report the experimental results as illustrated in Ta-
ble 4. We conduct experiments from the 8-shot
setting on the CORD dataset using the following
ablation options:

• KnowVrDUBASE removes the knowledge at-
tention network, which means that the noise
in retrieved knowledge from open knowledge
base are not reduced.

• KnowVrDUBASE removes the knowledge inte-
gration module, removing the whole “Knowl-
edge” key-value pair in the structural prompt.

• KnowVrDUBASE removes the soft prompts
embedding in the task indicator. Under this
setting, we utilize the task name “CORD” to
initialize the value of the task indicator.

• KnowVrDUBASE removes all the components
proposed in our framework, which is essen-
tially the same as native LayoutLMv3 model.

According to Table 4, we can see that the knowl-
edge attention network constitutes a significant con-
tribution to the model performance. It suggests
that our framework can gain huge benefit from
the refined task-specialized knowledge. Besides,
by comparing the performance of KnowVrDUBASE
w/o knowledge integration module, we claim that
our knowledge-aware framework can reduce the
gap between pre-trained model and downstream
tasks through incorporating the external knowledge
with knowledge retrieved modules. Moreover, the
soft prompts also bring improvements to the model
because they can enable the model to accom-
modate the unified prompt more effectively. Fi-
nally, the model without all three components pro-
duces the worst performance, which proves that
our knowledge-aware prompt-tuning framework suf-
ficiently enhances the task-specialized knowledge

Method Prec. Rec. F1

KnowVrDUBASE 78.14 84.65 81.44
w/o Attention 76.41 82.27 79.23
w/o Knowledge 74.92 81.66 78.14
w/o Soft Prompts 77.10 83.49 80.16
w/o All 74.31 81.75 77.85

Table 4: An ablation study of the knowVrDUBASE
model on the CORD dataset.

information and improves the performance of down-
stream tasks.

4.5. Case Study
Figure 3 shows the comparison of the baseline and
our KnowVrDUBASE model from the 8-shot setting
on the FUNSD dataset. We observe that the base-
line model fails to understand the semantics of the
question and answer entities due to the limitation of
the training set. Our method integrates the knowl-
edge “RECIPIENT: person or organization to whom
a letter is addressed” and “FAX: telephone num-
ber of a facsimile line” from the large-scale knowl-
edge base. Therefore, KnowVrDUBASE recognizes
the “RECIPIENT ”, “FAX ” and recipient answer cor-
rectly. It indicates that our proposed knowledge-
aware prompt-tuning framework could fuse the ex-
ternal task-specialized knowledge effectively and
contribute to the visual document understanding
properly.

5. Conclusion

In this paper, we propose a unified knowledge-
aware framework for a wide applications of various
downstream VrDU tasks. We propose to model
heterogeneous VrDU structures through reformu-
lating all tasks into extractive question answering
tasks with task-specific prompts. We propose to
reduce the knowledge gap through integrating ex-
ternal open-source knowledge to incorporate exter-
nal open-source knowledge bases. Experimental
results in few-shot settings demonstrate the effec-
tiveness of our method on a wide variety of down-
stream VrDU tasks.
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