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Abstract

Zero-shot stance detection on social media (ZSSD-SM) aims to distinguish the attitude in tweets towards an unseen
target. Previous work capture latent variables between source and target domains to perform this task, but the
lack of context knowledge hinders the detection performance. Recent studies have been devoted to obtaining the
accurate representation of tweets by bringing additional facts from Knowledge Graph (KG), showing promising
performance. However, these knowledge injection methods still suffer from two challenges: (i) The pipeline of
knowledge injection causes error accumulation and (ii) irrelevant knowledge makes them fail to understand the
semantics. In this paper, we propose a novel knowledge injection method for ZSSD-SM, which adopts two training
stages, namely knowledge compression and task guidance, to flexibly inject knowledge into the pre-trained language
model (PLM) and adaptively expand tweets context. Specifically, in the knowledge compression stage, the latent
representation of KG is reconstructed by the triplet denoising task and compressed into external matrices; while in the
task guidance stage, the frozen matrices are employed to guide the PLM to adaptively extract its own context-related
knowledge, and then complete the fine-tuning of the ZSSD-SM task. Extensive experiments on multiple datasets show
the effectiveness of our proposed method. The code is available at: https://github.com/ShuohaoLin/KPatch.
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1. Introduction

Zero-shot stance detection on social media (ZSSD-
SM) has become hot research, which assists man-
agers in quickly detecting fake news and identifying
communities on social platforms. The aim of ZSSD-
SM is to determine the attitude or standpoint (e.g.
Favor, Against, or Neutral) expressed in tweets to-
wards an unseen target (Liang et al., 2022a).

Previous work (Allaway et al., 2021; Allaway and
McKeown, 2020; Liang et al., 2021, 2022a) focuses
on domain transfer, hoping to transfer the latent
variables for each stance learned from the source
domain to the target domain. However, traditional
ZSSD-SM methods fail to understand the target
domain’s tweet knowledge that does not appear in
the source domain, since the short length of tweets
contains less context information.

Recently, some studies (Zhang et al., 2020; Liu
et al., 2021) attempt to inject external knowledge
into the pre-trained language model (PLM) (Devlin
et al., 2019) in the form of knowledge graph (KG)
(Chen et al., 2023) for ZSSD-SM task, and achieve
impressive results. Similar to common knowledge
injection methods (Zhang et al., 2019; Peters et al.,
2019; Liu et al., 2020; Sun et al., 2020; Wang et al.,
2021; Yasunaga et al., 2022), these methods em-
ploy graph neural networks or other multi-modal

† Corresponding author.

alignment techniques to map external knowledge
into the hidden space of the PLM.

Yet, traditional knowledge injection methods in-
volve complex pipelines including (NER) identifying
the location of the entity, (EL) linking entity to the
knowledge graph entity, (KS) sampling knowledge
related to the entity, and (KI) injecting knowledge
into the PLM. NER, EL, and KS are collectively
known as the preparatory work for knowledge injec-
tion. The process of multi-step knowledge injection
poses two challenges:

A) Error accumulation during the preparatory
work: Due to the independent steps in the
preparatory work, error information will be
transferred and amplified by entity missing,
recognition error and confusion. Figure 1
illustrates an example where the "electricity"
is not recognized by NER, leading to the
disregard of "electricity" entity information,
which serves as a critical node for navigating
to the topic entity of "climate". Additionally,
NER may wrongly take "Be" as an entity, and
EL may link it to "beryllium", amplifying the
error over time. Therefore, how to effectively
mitigate the accumulation of errors is of great
significance for the task of stance detection.

https://github.com/ShuohaoLin/KPatch
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Figure 1: A data flow example of knowledge injec-
tion (KI) methods on ZSSD-SM ("Topic" is omitted)
and the explanation of two challenges faced by KI.
NER: A rectangle indicates a token, which colored
in green and red represents whether the recogni-
tion is correct or not. EL: "confuse" means that the
entity link is wrong, and the red dotted line indicates
that misses some entities because the NER did not
recognize them. KS: The dotted box indicates the
sampling scope. KI: The blue square represents
the tweet embedding. Due to error accumulation
and the influence of irrelevant information, the input
tweet is incorrectly classified as "Neutral", whose
ground truth is "Favor".

B) Irrelevant knowledge injection: Limited by
the narrow sampling scope and the invisibil-
ity of KG to the backbone PLM, it may not be
possible to introduce information conducive to
judging the stance of a tweet. Figure 1 demon-
strates that when the sampling scope of KS is
limited, and the KG is invisible to the PLM, the
knowledge that is relevant to the context (Earth,
contain, fuel) may not be taken into account.
Thus, wider sampling scope and more accurate
injection of knowledge related to the tweet is
critical for understanding the semantics of the
tweet.

In this paper, we propose a novel method, named
KPatch, a two-stage knowledge injection method
for ZSSD-SM. In the first stage, KPatch com-
presses the external knowledge graph into a hidden
space and stores it into the external matrix. In the
second stage, KPatch adopts the knowledge from
the latent KG space to guide the PLM in modeling
ZSSD-SM. KPatch is capable of capturing latent
variables between the source and target domains
and injecting knowledge into the PLM without rely-
ing on the preparatory work.

The main contributions of our work are summa-
rized as follows:

• We propose a knowledge injection method that
skips the preparatory work of traditional knowl-

edge injection pipeline, which guides the PLM
to adaptively select the most suitable knowl-
edge from external matrix through its latent
modeling ability.

• We design the knowledge compression and
the task guidance stage to flexibly introduce
knowledge to the PLM. The former injects
knowledge by mapping KG into a hidden space
through triplet denoising task, while the latter
guides the PLM to complete ZSSD-SM task
with external parameter matrices learned in
the former stage.

• The extensive experiments on two pub-
lic datasets demonstrate that our KPatch
achieves better performance against the base-
lines on the ZSSD-SM task.

2. Related Work

2.1. Zero-shot Stance Detection on
Social Media

The application of social media has made zero-shot
stance detection on social media (ZSSD-SM) cru-
cial in various social media management scenarios,
including argument mining, fake news detection,
and fact checking, etc.

Previous studies aim to capture both the differ-
ences and similarities among topics. Allaway et al.
(2021) uses a domain adaptive method to capture
differences between topics. Allaway and McKeown
(2020) constructs a cluster space and introduces
an attention mechanism to explore similarities be-
tween topics. Liang et al. (2022b) learns both do-
main similarity and difference using a contrastive
learning strategy based on prototype graphs.

However, previous methods only consider latent
variables between domains, while ignoring the dif-
ferences in knowledge involved across different
domains. As a result, Zhang et al. (2020) and Liu
et al. (2021) utilize the knowledge graph to inject
relevant knowledge into the language model, which
effectively overcome the performance bottleneck
caused by the lack of knowledge.

2.2. Knowledge Injection to PLM
PLM uses knowledge acquired during the pre-
training phase to model high-quality representa-
tions of text, which greatly facilitates the develop-
ment of natural language tasks. However, retrain-
ing a PLM to update its knowledge can be costly.

To address this problem, some researchers have
proposed injecting a knowledge graph into the PLM
to update its knowledge. Zhang et al. (2019) and
Peters et al. (2019) align pre-embedded vectors of
entities in the KG with the PLM in hidden spaces.
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{
   "Donald Trump":  [
       "presidential candidate",
       "Republican candidate",
       "billionaire",
       "The Apprentice host", ...
   ], ...
}

[
"Tesla Cybertruck [SEP] designed by
[SEP] Franz von Holzhausen", 
"United States of America [SEP]
diplomatic relation [SEP] Tajikistan",
...
"CEO [SEP] together with [SEP] The
Washington Post"
]

[
   "Donald Trump",
   "Hillary Clinton",
   "Atheism",
   ...
]
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Figure 2: Knowledge Searching Stage: (1) Expand
each topic to obtain a list of secondary keywords.
(2) Query subgraphs related to all keywords from
the external KG. (3) Extract triplets from subgraph
as positive triplets, and randomly replace the head
or tail entity to form negative triplets.

Liu et al. (2020) and Sun et al. (2020), on the other
hand, extract relevant subgraphs from the KG and
convert them into the input format of the PLM, which
allows for injecting knowledge in the form of text.

However, as shown in Figure 1, these methods
often require the preparatory work before knowl-
edge injection, which accumulate errors through
the pipeline. Additionally, due to the limited sam-
pling scope and the invisibility of knowledge graph
to the PLM, these methods may introduce irrelevant
knowledge during the KS phase.

3. Methodology

3.1. Task Description

Let Ds = {(ris, tis, yis)}
Ns
i=1 be an annotated train-

ing set, where r, t and y are the tweet, target
topic and the stance label respectively. Then let
Dd = {(rid, tid)}

Nd
i=1 be the testing set for the top-

ics which are known but not present in Ds. Ns

and Nd are the size of Ds and Dd respectively.
The task of ZSSD-SM is to predict a stance label
ŷ ∈ {Favor,Against,Neutral} given the tweet r
and the topic t from Dd.

3.2. Method Overview
Our method consists of two parts: Knowledge
Searching (as shown in Figure 2) and KPatch,
where KPatch is a two-stage framework that in-
cludes knowledge compression and task guidance
stages (as shown in Figure 3):

1) Knowledge Searching: We enrich the seman-
tics of each topic on topic list by large language
model (LLM), then query the corresponding
triplets from the external KG and construct neg-
ative examples by randomly replacing the head
or tail entities.

2) Knowledge Compression (KPatch Stage 1): To
map external knowledge triplets into the same
high-dimensional space as the backbone PLM
and avoid knowledge forgetting while fine-tuning
towards ZSSD-SM, we freeze the backbone
PLM and compress the knowledge into the ex-
ternal matrix MK under the triplet denoising task
(TDT);

3) Task Guidance (KPatch Stage 2): To bypass
the lengthy preparatory work and complete the
ZSSD-SM task by allowing the backbone PLM to
learn to extract the most suitable knowledge for
the input tweet and topic from the external matrix
MK , we fine-tune the trainable backbone PLM
towards ZSSD-SM under the guidance of exter-
nal knowledge that stores in the frozen MK .

3.3. Knowledge Searching
The conversation of a topic discussed on social me-
dia tends to focus on the particular content related
to the topic in a certain time period. Therefore, the
ZSSD-SM only needs to consider knowledge that is
relevant to the topic. Based on this observation, as
shown in Figure 2, we first extend all known topics
(from training and testing sets) to obtain some sec-
ondary keywords explaining each topic. Then we
query external knowledge graphs related to these
keywords, thereby constructing a topic-related sub-
graph. Finally, we extract the data that is needed
for KPatch from the topic-related subgraph.
Expand Phase: In social media, a topic of discus-
sion is often highly condensed (such as "Hillary Clin-
ton", "Feminist Movement", etc.), and its condensed
semantics helps less in selecting knowledge rele-
vant to the topic. Therefore, expanding the known
topic list L into the expanded keyword list Le is nec-
essary. Given a large amount of knowledge that
is stored in the parameters of LLM (Petroni et al.,
2019), we propose using LLM to expand each topic
in L by constructing a prompt.
Query Phase: Since the knowledge graph is a
structured semantic graph extracted from a large
amount of text, each entity or triplet has an abstract
or source text. So we perform full-text searching
through these introductory texts to extract the sub-
graph KGe related to each phrase in Le.
Extract Phase: To map the queried KG subgraph
into the hidden space, we follow KG-BERT (Yao
et al., 2019) to extract self-supervised data from
KGe via triplet denoising task (TDT). Specifically,
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PLM

Dense

Triplet Correctness {True, False}

C

[CLS] head [SEP] rel [SEP] tail [SEP]
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(a) Knowledge Compression Stage: Train the  in TDT pre-
training task to compress the knowledge into the . (freeze
PLM and the Dense layer)

(b) Task Guidance Stage: Freeze the  from the Comparison
stage, load it to a same PLM,  and then fine-tune the PLM and
the Dense Layer on the Stance Detection Task.

Figure 3: The architecture of KPatch. The two sub-figures (a) and (b) represent the two stages of KPatch
respectively.

all triplets in KG are regarded as positive examples
D+, and the head entity h or tail entity o of triplet
(h, l, o) ∈ D+ is randomly replaced with an entity h′

or o′, i.e.,

D− =
{(

h′, l, o
)
| h′ ∈ E ∧ h′ ̸= h ∧

(
h′, l, o

)
/∈ D+}

∪
{(

h, l, o′
)
| o′ ∈ E ∧ o′ ̸= o ∧

(
h, l, o′

)
/∈ D+} ,

(1)

where E is the set of entities from KGe. We denote
D = D+ ∪ D− as the training set of TDT, N+ and
N− represent the size of D+ and D− respectively.
In particular, when N− > N+, we randomly select
N+ triplets from D− as a set of negative triplets to
ensure the balance of TDT training.

3.4. KPatch
3.4.1. Knowledge Compression Stage

The goal of knowledge compression is to com-
press knowledge into the matrix MK independent
of the backbone PLM. To this purpose, we re-
gard Parameter-Efficient Fine-Tuning (PEFT) (Man-
grulkar et al., 2022), which can flexibly transform
explicit knowledge into implicit parameter, as the
implementation of MK . And then we employ the
TDT to complete knowledge compression.
Triplet Denoising Task (TDT): Given a triplet
τ = (h, l, o) ∈ D, the object of TDT is to deter-
mine whether the triplet τ is a positive or negative
case.

As shown in Figure 3(a), we freeze the PLM and
the classification layer, and only update MK . We
input triplet τ = (h, l, o) ∈ D into the PLM with MK :

h⃗τ = PLMMK
(FormatT (τ))[CLS], (2)

where FormatT (·) is a function to format τ in the
form of "[CLS]h[SEP]l[SEP]o[SEP]", and underline
denotes to freeze the parameters of the module
while training.

We judge whether the triplet τ is positive or neg-
ative and employ the cross-entropy loss as an ob-
jective function:

y⃗τ = sigmoid(Wh⃗τ + b), (3)

Lτ = −
∑
τ∈D

yτ log(y⃗
0
τ ) + (1− yτ ) log(y⃗

1
τ ), (4)

where yτ ∈ {0, 1} is the label (negative or positive)
of the triplet.

Since no parameter is updated in the backbone
PLM and classification layer, we believe that the
knowledge graph is stored in MK .

Through the above two strategies of PEFT and
TDT, we can effectively compress the structured
knowledge into the PLM and retain the semantic
information of knowledge. It is worth noting that
PEFT is a general implicit knowledge compression
strategy and is not limited to a single type of man-
ner. We conduct experiments in Section 4.2 to
verify the generality of our proposed knowledge
compression.

3.4.2. Task Guidance Stage

Traditional knowledge injection methods require
the preparatory work to determine what knowledge
should be introduced into the sentence. However,
these methods do not accurately learn the knowl-
edge semantics associated with tweets. van Aken
et al. (2019) has demonstrated that PLMs have the
capability to perform unsupervised operations such
as NER required by KI. Inspired by it, we present
the task guidance stage, where the PLM acquires
the ability to automatically select the relevant knowl-
edge from MK according to the context, instead of
relying on the preparatory work.

The workflow of the task guidance stage is shown
in Figure 3(b). We first initialize the backbone
PLM and classification layer identical to that of
the knowledge compression stage. Then we load
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and freeze MK onto the backbone PLM. For each
(r, t, y) ∈ Ds, we get the representation of υ = (r, t)
by:

h⃗υ = PLMMK
(FormatV (υ))[CLS]. (5)

Different from the Eq. 2, we input tweet and tar-
get topic in the form of "[CLS]r[SEP]t[SEP]" (Liang
et al., 2022b) by function FormatV (·). And fine-
tune the backbone PLM with calculating the cross-
entropy loss:

y⃗υ = softmax(Wh⃗υ + b), (6)

Lυ = −
Ns∑
i=1

dy∑
j=1

yji log((y⃗υ)
j
i ), (7)

where Lυ is the final object function for ZSSD-SM
task.

4. Experiments

4.1. Datasets and Evaluation Metrics
Datasets: We perform the ZSSD-SM task on two
public datasets: Sem16 dataset(Mohammad et al.,
2016) and MiDe22-EN dataset(Toraman et al.,
2022).

Sem16 dataset comprises tweets related to 6
predefined topics, collected up until January 2016,
including Atheism (A), Donald Trump (DT), Hillary
Clinton (HC), Climate Change is a Real Concern
(CC), Feminist Movement (FM) and Legalization of
Abortion (LA). Each tweet is categorized as either
"Favor", "Against", or "Neutral" towards a specific
topic.

MiDe22-EN dataset collected tweets from 2020
to 2022 on 4 predefined topics for fake news detec-
tion, including Russia-Ukraine war (RU), Refugees
(R), COVID-19 (C) and Miscellaneous (M). For-
mally, each piece of data in the MiDe22-EN dataset
can be expressed as (r, t, e, y), where e ∈ EMiDe

is the event to be detected, and the size of EMiDe

is 40. The purpose of MiDe22-EN dataset is to
evaluate whether the content expressed in r pro-
vides evidence to support e. We feed the model
as "[CLS]r[SEP]e[SEP]" and aggregate all results
according to t.

Following Allaway et al. (2021), for each topic
t ∈ T of Sem16 or MiDe22-EN dataset (T is the tar-
get topic set of the dataset), we utilize all examples
from topics in {T − t} and split them 85/15 for the
training and validation. Finally, we test the model
on all examples of t. The statistics of datasets are
shown in Table 1. More details about dataset can
be found in Appendix A.
Evaluation Metrics: We follow Mohammad et al.
(2016) and report the average F1 score on "Favor"
and "Against" labels in the Sem16 dataset. Addi-
tionally, we report the Fmacro score in the MiDe22-
EN dataset.

Dataset Target Train Valid Test

Sem16

A 3519 618 733
CC 3663 643 564
FM 3336 585 949
HC 3306 580 984
LA 3349 588 933
DT 3542 621 707

MiDe22-EN

C 2712 479 1048
M 2632 465 1142
R 2732 482 1025

RU 2733 482 1024

Table 1: Statistics of Sem16 and MiDe22-EN
datasets.

Dataset |L| |Le| N+
L N+

Le

Sem16 6 971 6k 390k
MiDe22-EN 100 680 131k 468k

Table 2: The data statistics of Sem16 and MiDe22-
EN dataset during the knowledge searching and
knowledge compression stage. |L|, |Le|, N+

L and
N+

Le
respectively represents the size of the topic list

L, the expanded keyword list Le, positive example
set D+ constructed based on L and Le.

4.2. Baselines and Modules
Baselines: We compare with ZSSD-SM methods:
BiCond(Augenstein et al., 2016)–conditional en-
coder method based on bidirectional LSTM (Jia
et al., 2023), TOAD(Allaway et al., 2021)–domain
adaptation method based on adversarial learning,
BERT(Allaway et al., 2021)–Bidirectional Encoder
Representation from Transformers (Devlin et al.,
2019) with learning rate warm-up and decay after
10% training steps, TGA Net(Allaway and McK-
eown, 2020)–topic clustering method based on
BERT, JointCL(Liang et al., 2022b)–target-aware
prototypical graph contrastive learning method
and WS-BERT(dual)(He et al., 2022)–text splicing
knowledge injection method on ZSSD-SM.

We also compare with traditional knowledge in-
jection model: K-BERT(Liu et al., 2020)–constructs
a sentence tree with limited-scale subgraph of enti-
ties, and converts the sentence tree as sequence
via visible matrix to input into the PLM.
Modules: We use pre-trained uncased BERT-base
with an embedding dimension of 768 as the back-
bone PLM. During the "Expand Phase", we use ar-
tificially constructed prompts (Appendix B) to guide
ChatGPT (OpenAI, 2023) to expand the topic list.
We use WikiData1 as the external knowledge graph.
To verify the generality of KPatch, we adopt two
widely used PEFT methods: LoRA and P-Tuning
V2, which serves as the implementation of external
matrix MK to conduct experiments:

1https://wikidata.org/

https://wikidata.org/
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Model Sem16 (Favg%)
A LA HC CC FM DT

BiCond 31.98(±4.35) 32.10(±5.12) 35.88(±4.06) 11.54(±1.59) 38.55(±2.21) 28.14(±0.69)
TOAD 31.07(±7.46) 28.65(±5.60) 32.45(±7.06) 8.31(±3.04) 38.44(±9.78) 36.16(±7.14)
BERT 30.74(±3.31) 37.43(±5.24) 42.56(±3.78) 14.44(±7.71) 43.05(±4.37) 20.30(±1.30)
TGA Net 34.71(±0.43) 39.97(±2.41) 40.15(±5.72) 11.27(±1.85) 45.18(±1.49) 25.15(±1.25)
JointCL 33.43(±5.31) 34.51(±1.18) 39.15(±3.55) 4.76(±0.34) 38.58(±4.25) 31.61(±10.37)
WS-BERT 30.13(±4.00) 41.29(±3.13) 34.30(±15.58) 8.87(±4.16) 35.16(±2.95) 21.78(±7.97)
K-BERT 39.39(±1.09) 40.52(±3.33) 39.75(±1.36) 12.34(±9.89) 42.76(±6.75) 32.43(±2.49)
KP(LoRA) 39.86(±2.84) 43.80(±5.01) 49.75(±4.97) 31.92(±9.54) 43.92(±3.46) 41.14(±3.74)
KP(PTV2) 38.61(±2.13) 44.94(±0.64) 45.85(±7.60) 27.99(±7.28) 44.16(±2.49) 41.81(±2.73)

Model MiDe22-EN (Fmacro%)
C M R RU

BiCond 34.30(±0.21) 42.73(±0.18) 43.25(±4.07) 33.65(±1.69)
TOAD 32.92(±1.02) 38.80(±2.42) 38.43(±0.99) 32.27(±1.26)
BERT 57.41(±1.21) 52.43(±5.04) 61.28(±8.72) 47.22(±1.49)
TGA Net 48.90(±1.71) 42.26(±0.97) 55.56(±1.32) 42.37(±5.53)
JointCL 54.89(±3.28) 57.42(±3.15) 58.50(±11.38) 43.41(±8.32)
WS-BERT 55.54(±1.60) 57.23(±2.18) 59.09(±5.65) 40.33(±3.45)
K-BERT 40.63(±1.13) 36.97(±3.61) 42.65(±3.44) 37.50(±4.13)
KP(LoRA) 55.06(±2.90) 60.55(±5.25) 69.50(±1.67) 54.92(±1.67)
KP(PTV2) 58.14(±4.05) 62.84(±1.40) 69.02(±2.31) 52.24(±3.05)

Table 3: Performance comparison of KPatch and ZSSD-SM models on two public ZSSD-SM datasets.
The best scores are in bold and the suboptimal scores are in underline (KPatch and P-Tuning V2 is
represented by KP and PTV2 respectively and the same below).

1) LoRA (Hu et al., 2021): Based on the assump-
tion of lower intrinsic dimensions of downstream
tasks, two bypass matrices are added to the
attention module, whose dimension r (rank) be-
tween them is the intrinsic dimensions of down-
stream tasks.

2) P-Tuning V2 (Liu et al., 2022): Stores the in-
formation in the parameter matrix of the prefix
encoder, and inserts virtual tokens (as a soft
prompt) before the input sequence of each layer
to adapt to the downstream task. The number
of virtual tokens is recorded as lvt.

We design two variants for ablation study:

1) "w/o Expand": Cancels the "Expand Phase"
during "Knowledge Searching", and directly
uses the topic list to query the external knowl-
edge graph.

2) "w/o Compress": Cancels the "Knowledge
Compression Stage", trains the backbone PLM
(freeze the last classification layer) on D without
MK , and then fine-tunes it on the ZSSD-SM
task.

4.3. Implementation Settings
All models are implemented with PyTorch (Paszke
et al., 2019) framework and Huggingface transform-
ers (Wolf et al., 2020) on one NVIDIA GeForce RTX
2080 (8GB) card.

In our KPatch, we use AdamW (Loshchilov and
Hutter, 2019) as the optimizer without warm-up,
and determine the timing of early stopping based
on the evaluation metric of different datasets in the
fine-tuning of ZSSD-SM.
Knowledge Searching Stage: We query 4 candi-
date entries for each keyword by WikiPedia2 full-text
search engine (Koren, 2012), and then query their
one-hop neighbor subgraphs from WikiData. For
triplets in subgraphs, we only keep those relations
considered in WikiData5M (Wang et al., 2021). Dur-
ing the extract phase, we consider the WikiData
aliases of each entity as its label as well, and re-
place them into the original triplets to augment the
set of positive triplets.
Knowledge Compression Stage: The training
epoch is set to 2 to save resources and reduce
the risk of overfitting, since the value of loss will
decrease slowly after 2 epochs according to our
previous experiments. The learning rate of LoRA
and P-Tuning V2 are set to 2e-5 and 1e-3 respec-
tively. The batch size is set to 64. (It will be 80%
of the value and rounded down when the external
matrix MK is implemented by P-Tuning V2. The
batch size parameter mentioned below also follows
this setting.) r and lvt both take 64, except lvt on
MiDe22-EN takes 16.
Task Guidance Stage: The learning rate is set to
2e-5 on both datasets. The batch size is 64 and 10
on Sem16 and MiDe22-EN respectively. We train

2https://www.wikipedia.org/

https://www.wikipedia.org/
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Model Sem16 (∆Favg%) MiDe22-EN (∆Fmacro%)
A LA HC CC FM DT C M R RU

K-BERT 0.22 -2.83 -1.32 -8.23 1.56 -1.38 5.76 1.09 0.12 3.35
KP(LoRA) 9.12 6.36 7.19 17.48 0.87 20.84 -2.35 8.12 8.22 7.70
KP(PTV2) 7.87 7.50 3.29 13.55 1.11 21.51 0.73 10.41 7.74 5.02

Table 4: Performance comparison between KPatch and K-BERT fine-tuned for ZSSD-SM on two public
ZSSD-SM datasets. Scores represent the difference in performance between the model and its backbone
PLM.

Model Sem16 (Favg%) MiDe22-EN (Fmacro%)
A LA HC CC FM DT C M R RU

KP(LoRA) 39.86 43.80 49.75 31.92 43.92 41.14 55.06 60.55 69.50 54.92
w/o Expand 34.44 46.26 48.44 22.18 42.52 35.68 54.08 57.31 67.85 52.72

KP(PTV2) 38.61 44.94 45.85 27.99 44.16 41.81 58.14 62.84 69.02 52.24
w/o Expand 36.32 39.00 43.98 18.03 37.19 33.66 55.48 55.60 66.61 48.55

w/o Compress 39.83 45.36 48.69 29.84 39.32 36.04 48.74 53.70 59.60 48.42

Table 5: Experimental results of ablation study. For KPatch variants that implement MK by different
PEFT methods, we complete w/o Expand experiments using the same hyper-parameters.

KPatch for 20 epochs under the early stopping set-
ting with the patience value of 3.

We repeat the experiment for ZSSD-SM on 3 dif-
ferent random seeds. In addition, to restore the real
performances of baselines, all results are the aver-
age performance obtained after re-experimenting
on three random seeds under the same dataset,
rather than citing from other papers. For most base-
lines, we use settings from the original paper. On
the Sem16 dataset, TOAD uses about two thou-
sand unlabeled target domain tweets crawled at
the same time as training data. However, on the
MiDe22-EN dataset, there are not unlabeled target
domain data for adversarial learning. Therefore,
we cancel the adversarial learning setting of TOAD
on MiDe22-EN.

4.4. Overall Performance
The performance comparison on two datasets is
shown in Table 3. We can observe that the per-
formance of KPatch is significantly better than tra-
ditional ZSSD-SM models on two datasets. This
verifies the effectiveness of KPatch on the ZSSD-
SM task.

Another observation is that the vanilla BERT with-
out introducing knowledge achieves similar per-
formance to the suboptimal traditional ZSSD-SM
model. This indicates that the vanilla BERT can
also learn the capability of domain transfer. In addi-
tion, the performance of vanilla BERT is worse than
the knowledge-introduced KPatch, which proves
that the introduction of external knowledge is bene-
ficial for the model to achieve better performance
on the ZSSD-SM task.

Considering the different backbone PLMs used
by each KI approach, to ensure a fair comparison,

we conduct a comparative analysis of the model’s
performance fluctuations before and after the in-
jection of knowledge into the PLM for the ZSSD-
SM task. As shown in Table 4, the fluctuations of
KPatch are generally positive and significant. On
the contrary, K-BERT is limited by the preparatory
work, and the knowledge injected leads to poorer
performance on Sem16. Due to KPatch canceling
the preparatory work of KI, there is no challenge
of error accumulation, limited sampling scope and
invisible KG to the PLM faced by traditional KI mod-
els.

4.5. Ablation Study
w/o Expand: We can intuitively see that a signif-
icant degradation in the performance of "w/o Ex-
pand" is compared to KPatch on two datasets in
Table 5. Specifically, on the Sem16 dataset, the av-
erage Favg of "w/o Expand" lagged behind KPatch
by 3.48% and 5.86% (LoRA and P-Tuning V2 imple-
mentation respectively and the same below), while
on the MiDe22-EN dataset, the gap narrowed to
2.02% and 4.0%.

The reason for this phenomenon is that there
are different sizes of topic list lengths on differ-
ent datasets. As shown in Table 2, on the Sem16
dataset for example, the size of external knowledge
triplet N+

L (6k) is much smaller than N+
Le

(390k). It
indicates that without sufficient knowledge, KPatch
cannot effectively complete "knowledge compres-
sion" and construct effective MK , and therefore
cannot effectively "guide" the backbone PLM to
complete the ZSSD-SM task. On the MiDe22-EN
dataset, the number of knowledge used for "knowl-
edge compression" by KPatch and "w/o Expand" is
on the same order of magnitude, which allows the
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Figure 4: Box plot of the impact of TDT data gen-
erated under the different random seed sns on
KPatch (LoRA or P-Tuning V2 implementation) per-
formance. ◦ represents outliers, and “2nd baseline”
is the suboptimal baseline performance reported in
Table 3 except KPatch. (suboptimal baseline does
not refer to a specific model)

"w/o Expand" variant to close the gap with KPatch.
w/o Compress: Essentially, "w/o Compress" is
equivalent to KPatch degenerating into KG-BERT,
which learns external knowledge into the parame-
ters of the backbone PLM through TDT and then
fine-tunes the PLM on the downstream task.

However, due to the lack of the "knowledge com-
pression" stage, the PLM may forget previously
injected knowledge while fine-tuning downstream
tasks. Therefore, although the average perfor-
mance of "w/o Compress" is only reduced by 1.89%
and 0.71% compared to KPatch on Sem16, it de-
crease sharply increases to 7.39% and 7.95% on
the MiDe22-EN with larger injection knowledge.
This further demonstrates the role of "knowledge
compression" in isolating knowledge from interfer-
ence from downstream tasks.

4.6. The Effect of Random Negative
Triplets Generation in Extract Phase

When conducting "Knowledge Searching Stage",
the sampled negative triplets will changed due to
differences in random seeds. In order to study the
impact of TDT data generated by different random
seeds on KPatch, we set up six different random
seeds to conduct repeated experiments. Specifi-
cally, during the negative triplets generation, we set
a random seed sns to control the negative sampled
triplets. After obtaining TDT data, we train KPatch
on three different random seeds strain mentioned in
Section 4.3. Finally, we average the results corre-
sponding to all strain under the same sns and draw
a box plot as shown in Figure 4.

We observed that different negative sampling

16 32 64 128 140
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Figure 5: On Sem16 and MiDe22-EN, the relation-
ship between performance and the size of MK (i.e.,
the rank r of LoRA or the number of virtual tokens
lvt of P-Tuning V2).

Dataset The value of lvt
0 16 32 64 128 140

Sem16 30 46 62 94 158 170
MiDe22-EN 65 81 97 129 193 205

Table 6: The average length of input tokens in
Sem16 and MiDe22-EN (the first column) and the
actual input length to the backbone PLM under dif-
ferent lvt values (remaining columns on the right).

data will cause some fluctuations in model perfor-
mance. However, KPatch performs better than the
suboptimal baseline models on most subsets. In
addition, due to the difference in assumptions be-
tween LoRA and P-Tuning V2 (see Section 4.2 for
details), KPatch(LoRA) can usually achieve better
and more stable results than KPatch(P-Tuning V2).

4.7. The Effect of Different Size of MK

Referring to the practical conclusions of the PEFT
method (Hu et al., 2021; Liu et al., 2022), different
external matrix MK sizes should be selected to
adapt to different datasets and tasks.

As shown in Figure 5 (a), we observe that the
performance of the two types of PEFT methods on
the Sem16 dataset is relatively similar, and both
achieve the best results at r = 64 and lvt = 64.

On the MiDe22-EN dataset, as shown in Figure
5 (b), the LoRA implementation still shows stabil-
ity, while the P-Tuning V2 implementation shows
a negative correlation between performance and
the value of lvt. Empirically, the reason for this
phenomenon is that the longer input is not con-
ducive to the backbone PLM obtaining effective ex-
ternal knowledge from the virtual tokens introduced
by P-Tuning V2: As shown in Table 6, on Sem16
and MiDe22-EN, KPatch(P-Tuning V2) achieves the
best results with similar average input lengths, 94
and 81 respectively. In addition, longer input length
may also cause the denoising ability of KPatch(P-
Tuning V2) to decrease as lvt increases.
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Figure 6: Comparison of the prediction process and differences between traditional knowledge injection
method and KPatch.

4.8. Case Study
We provide a case study of traditional knowledge in-
jection method (taking K-BERT as an example) and
KPatch on the Sem16 dataset. Figure 6 shows the
details and comparison of the prediction process
of two methods.

It can be observed that K-BERT requires the
lengthy preparatory work before performing the
knowledge injection (KI) stage, which may lead to
serious error accumulation. Specifically, K-BERT
(Figure 6 (a)) has errors in the NER, EL and KS
stages:
1) NER: K-BERT identifies "Hope" and "is" as enti-

ties respectively, and misses the key entity "so-
lar".

2) EL: On top of the errors caused by the NER
stage, K-BERT links "Hope" and "is" to "Hope
(Non-Prophets album)" and "Islamic State (IS)"
respectively. In addition, if "solar" can be identi-
fied in the NER stage, it is difficult for traditional
models to correctly understand the connection
between "solar" and "solar power".

3) KS: Due to the errors in the first two stages, K-
BERT introduces a lot of context-independent
information through "Hope" and "is". In addi-
tion, if K-BERT can correctly recognize "solar"
as an entity, the model will also be unable to
sample the effective inference path between "so-
lar power" and "climate change" entities due to
sampling scope limitations.

In contrast, KPatch (Figure6 (b)) hands over
these manually designed steps to the PLM for
processing and implements knowledge injection
through the hidden space. In other words, KPatch
can directly perform stance detection without the
need for the lengthy preparatory work.

5. Conclusion

We propose a simple but effective knowledge injec-
tion method (KPatch) for zero-shot stance detec-
tion on social media (ZSSD-SM), which skips the
preparatory work required in the traditional knowl-
edge injection (KI) method and avoids the prob-
lems of error accumulation and irrelevant knowl-
edge injection faced by traditional KI. Based on
the two stages of knowledge compression and task
guidance, KPatch guides the backbone pre-trained
language model (PLM) to adaptively introduce the
most suitable knowledge by its latent modeling abil-
ity. During this process, we leverage the triplet
denoising task to compress the external knowledge
into external parameter matrices, acting as a bridge
to communicate two stages. Tests on two public
ZSSD-SM datasets show that our KPatch outper-
forms traditional ZSSD-SM and KI methods. In
future work, we plan to investigate how to explain
the knowledge considered during the inference pro-
cess.
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7. Limitations

We have proven the effectiveness of KPatch on two
public datasets, however there are still limitations:
1) In order to skip the traditional KI model’s depen-

dence on the preparatory work, we map KG to
the hidden space. However, due to the limita-
tions of deep learning, this makes KG invisible
and unreadable to humans, exacerbating the
inexplicability of the model’s inference process.
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2) Compared to full tuning, the efficient parameter
fine-tuning method represented by LoRA and P-
Tuning V2 has advantages in parameter quantity
and can also bring the characteristic of "knowl-
edge compression" to KPatch. But it leads the
model performs a slower speed during training.

8. Ethics Statement

1) Our method may be used to identify the overall
stance of the public towards a particular event.
If the model provides incorrect predictions, it
may mislead managers into making incorrect
decisions. Therefore, there are still certain risks
in using our method for stance detection before
performance improvement.

2) The external knowledge graph we use mainly
comes from WikiData, and the training data we
use comes from public datasets that contain
controversial topics such as politics, war, and
refugees. As a result, there may be toxic, bi-
ased, or offensive information in the data, which
is used for model training. Therefore, during test-
ing, the model may have biases against some
special data, which requires further security re-
view.
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A. Dataset Details

Following TOAD (Allaway et al., 2021), our pre-
processing methods to datasets include: (1) Re-
move URLs, non ASCII characters, and words with
special meanings for tweet. (2) Split the hashtag.
If the processed text is an empty string, the data
will be discarded.

For MiDe22-EN, as it only provides a tweet ID,
it is unable to download some expired or deleted
data. Therefore, the dataset used in this paper is
slightly smaller than the dataset proposed in the
MiDe22 paper (Toraman et al., 2022), but it does
not affect the overall distribution of the data.

B. The Design Details of Prompt for
Topic List Expansion

We restricts the following conditions in the prompt:

• Using Chain of Thought: By adding "think step
by step" (Ruis et al., 2023) in the prompt.

• The output content should be named entities
as much as possible.

• Specify a time time, so that the output content
is as active as possible within that time range.

• Each entity in the output list should be related
to the target topic T or event keyword kw.

• The output list should not be longer than
amount.

• Output as the format of json list.

The prompts we designed for Sem16 and
MiDe22-EN datasets are as follows:

Sem16: Imagine you are a person living in time!
What can you think of about ’T’ in time? Please
think step by step! Please generate amount named
entities related to ’T’, which can be relevant to event,
and output as json format. The example is as fol-
lows: ["phrase A", "phrase B", ...]. Consider some
events and hotspots at that time. The json output
is:

MiDe22-EN: What can you think of about ’kw’
and ’T’? Please think step by step! Please gen-
erate amount named entities related to ’kw’ and
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’T’, which can be relevant to event, and output as
json format. The example is as follows: ["phrase
A", "phrase B", ...]. Considering some events and
hotspots at that time. The json output is:

We used ChatGPT based on gpt-3.5-turbo to
expand the topic list on the Sem16 and MiDe22-EN
datasets.
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