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Abstract
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and
few-shot settings. An advantage of these models over more standard approaches based on fine-tuning is the
ability to understand instructions written in natural language (prompts), which helps them generalise better to
different tasks and domains without the need for specific training data. This makes them suitable for addressing
text classification problems for domains with limited amounts of annotated instances. However, existing research
is limited in scale and lacks understanding of how text generation models combined with prompting techniques
compare to more established methods for text classification such as fine-tuning masked language models. In
this paper, we address this research gap by performing a large-scale evaluation study for 16 text classification
datasets covering binary, multiclass, and multilabel problems. In particular, we compare zero- and few-shot
approaches of large language models to fine-tuning smaller language models. We also analyse the results by
prompt, classification type, domain, and number of labels. In general, the results show how fine-tuning smaller and
more efficient language models can still outperform few-shot approaches of larger language models, which have
room for improvement when it comes to text classification.
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1. Introduction
A standard approach for supervised text classi-
fication is fine-tuning language models such as
BERT using an additional classifier head (Radford
et al., 2018; Dong et al., 2019; Devlin et al., 2018;
Yin et al., 2019; Viswanathan et al., 2023; Mos-
bach et al., 2023). However, these approaches
require large amounts of data to achieve state-of-
the-art results (Edwards et al., 2022) which makes
them unsuitable for classification tasks associated
with class imbalances and data sparsity (Giridhara
et al., 2019; Zhang and Wu, 2015; Türker et al.,
2019; Yin et al., 2019). These problems often oc-
cur in real world applications where annotation of
data can be performed only by scarce domain ex-
perts such as medical and legal domains or ap-
plications with highly imbalanced classes such as
crime data and fraud detection (Giridhara et al.,
2019; Zhang and Wu, 2015; Türker et al., 2019).
Recent advances in Natural Language Process-
ing (NLP) lead to the emerge of an alternative ap-
proach based on using autoregressive text gen-
eration models (Radford et al., 2019) that have
zero- and few- shot capabilities and perform un-
seen tasks through the use of prompting (Schick
and Schütze, 2021a; Radford et al., 2019; Le Scao
and Rush, 2021; Viswanathan et al., 2023; Plaza-
del Arco et al., 2023). The ability of these mod-
els to understand natural language instructions let
them generalise to different domains and tasks
without the need of large training corpora (Plaza-

del Arco et al., 2023). There have been even fur-
ther improvements in the performance of these
models in zero-shot settings by fine-tuning them
on sets of instructions (task descriptions) (Raffel
et al., 2020).
The promising results of these models against var-
ious benchmark datasets (Wang et al., 2022b; Liu
et al., 2023; Bang et al., 2023) led to increased
research into developing methods, mainly based
on prompt engineering techniques (Viswanathan
et al., 2023; Le Scao and Rush, 2021) for improv-
ing their generalisation capabilities. Further, there
has been an increased attention into evaluating
the suitability of these models for more specialised
domains such as the legal, medical, and financial
domain (Sarkar et al., 2021; Chalkidis et al., 2020;
Yin et al., 2019; Labrak et al., 2023). However,
most of the proposed approaches are domain- and
task-specific. There is lack of understanding of
how these models perform in comparison to more
established approaches for text classification. In
general, analyses are performed for a small range
of model types, domains, and tasks.
Our work is the first attempt to systematically com-
pare how text generation models using zero-shot
and one-shot learning compare to more estab-
lished but data-consuming approaches for clas-
sification based on fine-tuning language models.
Our goal is to identify how well current large lan-
guage models (LLMs) can adapt to different text
classification tasks and domains given limited in-
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formation, and outline the potential strengths and
weaknesses of thesemodels. For these purposes,
we evaluate five heterogeneous models of differ-
ent sizes, including traditional masked language
models and more recent autoregressive LLMs.
Our analyses span over 16 datasets from 7 do-
mains representing binary, multiclass, and multil-
abel classification.
Our main contributions are as follows. First, we
explore an important but understudied problem
of how suitable the newly developed text gener-
ation models such as LLaMA, Flan-T5, T5, and
ChatGPT are for text classification in few-shot set-
tings compared to lighter models that require train-
ing data such as RoBERTa or FastText. In addi-
tion to the performance, our analysis helps iden-
tify specific strengths and weaknesses of each
type of model. Second, in contrast to the major-
ity of existing research focusing on optimisation
techniques for prompt creation, we analyse trends
in the model’s performance that are non-prompt
sensitive as well as look at how the amount of
specificity provided in the prompt regarding the
task and the domain affect the performance of
the models. Third, we evaluate generalisation
abilities of models for 7 domains, including real-
world specialised domains, such as legal, medical,
and crime data. We also analyse how the mod-
els’ behaviour changes for datasets used in the
pre-training stage versus when testing on unseen
datasets.

2. Related Work
We first introduce the different types of meth-
ods and models used for text classification along
with their strengths and weaknesses (see Section
2.1). Then, we discuss relevant work on compar-
ing prompting and fine-tuning approaches for text
classification as well as outline challenges and re-
search gaps within existing work (see Section 2.2).

2.1. Text Classification
We distinguish between three main approaches
for text classification, linear methods (described in
Section 2.1.1), fine-tuning language models (Sec-
tion 2.1.2) and prompting techniques combined
with text generation models (Section 2.1.3).

2.1.1. Linear Methods
FastText (Joulin et al., 2017) is a linear text clas-
sification model which provides a strong baseline
for many text classification tasks and gives per-
formance comparable to state-of-the-art methods,
including language models such as BERT (Zhou,
2020; Edwards et al., 2020). It integrates a linear
model with a rank constraint which allows sharing
parameters among classes and features. It also
integrates word embeddings which are averaged

into a text. These features help address many
problems associated with other linear models such
as out-of-vocabulary words and fine-grained dis-
tinctions between classes.

2.1.2. Fine-tuning Methods
Language models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019), pre-trained us-
ing a masked language modeling (MLM) objec-
tive provide a state-of-the-art performance against
most standard NLP benchmarks (Wang et al.,
2019, 2018). These models can be easily adapted
for text classification by using fine-tuning tech-
niques which are based on adding a single clas-
sification layer onto the model. However, fine-
tuning techniques require large amounts of data to
be adapted to targeted tasks and domains which
makes them impractical for low resource classi-
fication tasks (Strubell et al., 2019; Peng et al.,
2021; Lu et al., 2021).

2.1.3. Text Generation Models
Recent advances in NLP have led to the devel-
opment of bigger models composed of billion of
parameters which have shown an improved per-
formance especially in text generation and low re-
source settings (Zhang et al., 2019; Black et al.,
2022; Labrak et al., 2023). These text gener-
ation models such as GPT and subsequent re-
leases (Brown et al., 2020; Radford et al., 2018,
2019) as well as LLaMA (Touvron et al., 2023a,b)
and T5 (Raffel et al., 2020) can understand natu-
ral language instructions (i.e., prompts) and thus
can generalise to unseen tasks and domains with-
out the need for large computational and data re-
sources (Brown et al., 2020). Further progress
has been made by fine-tuning these models on
a set of natural language instructions, consisting
of descriptions of the tasks and the expected out-
put (Efrat and Levy, 2020; Mishra et al., 2022).
This enables models to generalise even better to
tasks, domains, and languages (Ouyang et al.,
2022; Wei et al., 2021; Sanh et al., 2022; Efrat and
Levy, 2020; Mishra et al., 2022).
The ability of text generation models to make
predictions with little or no training makes these
models particularly suitable for tackling the prob-
lem of data scarcity for text classification (Wang
et al., 2020; Gupta et al., 2020). Therefore, much
of the approaches in zero- and few-shot learn-
ing are focused at optimising the performance of
these models mainly through the use of prompt-
ing (Gera et al., 2022; Le Scao and Rush, 2021;
Deng et al., 2022; Schick and Schütze, 2021a;
Radford et al., 2019; Le Scao and Rush, 2021;
Viswanathan et al., 2023; Plaza-del Arco et al.,
2023).
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2.2. Prompting versus Fine-Tuning
Prompting in zero- and few- shot settings, also
known as in-context learning (ICL), is the process
of providing natural language instructions that de-
scribe a task as an input to a language model, in-
cluding the expected output (Labrak et al., 2023).
In few-shot prompting, the model is presented with
some training examples along with the task in-
structions. In contrast to fine-tuning techniques,
prompting does not involve changing the weights
of the model which makes the approach less
resource consuming. Additionally, previous re-
search has suggested that prompting can lead
to comparable or even better performance than
standard fine-tuning techniques (Gao et al., 2021;
Mosbach et al., 2023). A drawback of this ap-
proach is the models’ sensitivity to the prompts
where slight changes of the instruction can lead
to big differences in the performance (Schick
and Schütze, 2021b; Le Scao and Rush, 2021;
Sun et al., 2023). Thus, much of the work on
text generation models is focused on prompt op-
timisation techniques based on automatic gen-
eration for prompts (Wang et al., 2022a; Shin
et al., 2020), quantifying the benefits of prompt-
ing (Schick and Schütze, 2021b; Le Scao and
Rush, 2021), and improving the generalisation
abilities of prompts (Zhang et al., 2022; Schönfeld
et al., 2019; Song et al., 2021; Wang et al., 2022a;
Oniani et al., 2023; Sun et al., 2023)
There has been an increased research into evalu-
ating and improving the performance of text gen-
eration models for zero and few shot classifica-
tion in more specialised domains such as the le-
gal, medical, and financial domains (Ge et al.,
2022; Sarkar et al., 2021; Chalkidis et al., 2020).
Labrak et al. (2023) evaluate four state-of-the-
art instruction-tuned large languagemodels (Chat-
GPT, Flan-T5 UL2, Tk-Instruct, and Alpaca) on a
set of 13 real-world clinical and biomedical natural
NLP tasks, including text classification. The re-
sults show that instruction-tuned models tend to
be outperformed by a specialised model trained
for the medical field such as PubMedBERT (Gu
et al., 2021). This rises questions into the suitabil-
ity of text generation models and prompting tech-
niques for more specialised domains which require
domain experts for annotation. Another research
by Mosbach et al. (2023) conducts a comparison
between fine-tuning and prompting techniques for
two text classification datasets showing that both
approaches have similar performance, although
with a large variation in results depending on prop-
erties such as model size and number of exam-
ples. These works show that adapting these mod-
els to tasks, especially text classification for more
specialised domains, remains a challenge.
The variance in performance between tasks and

models depending on the prompt design makes
the generalisation of text generation models a
challenging problem. The small scale on which
analyses are performed does not give enough
knowledge on how well prompting techniques
compare to the more established models for clas-
sification across different text classification types
and more challenging unfamiliar domains. In this
paper, we address these challenges by performing
a large-scale comparison between different model
types across a wider range of classification tasks
and domains.

3. Experimental Setting

3.1. Datasets
For our experiments we selected a suite of
datasets representing all three classification types,
i.e., binary, multiclass, and multilabel. The
datasets span across 7 domains and 13 classifi-
cation tasks. Specifically, we selected the Twit-
ter datasets from the SemEval 18 on emoji predic-
tion (Barbieri et al., 2018), SemEval 18 on irony
Detection (Van Hee et al., 2018), SemEval 19 on
hate detection (Basile et al., 2019), SemEval 19
on offense detection (Zampieri et al., 2019), and
SemEval 19 on sentiment analysis (Nakov et al.,
2019). Further, we include datasets for topic cate-
gorisation such as BBC news1, AG News (Zhang
et al., 2015), Reuters (Lewis et al., 2004), and 20
Newsgroups (Lang, 1995) , as well as IMDB re-
views dataset for polarity detection (Maas et al.,
2011), PCL dataset for patronising language de-
tection (Perez Almendros et al., 2020), and Toxic
comments (Hosseini et al., 2017). Additionally,
we evaluate models for more specialised domains
representing real world applications such as EU
legislation documents (Chalkidis et al., 2019) for
legal legislation concepts detection, Hallmarks of
cancer (Baker et al., 2015) for detecting cancer
hallmarks, Ohsumed (Joachims, 1998) for car-
diovascular diseases detection, and Safeguarding
reports (Edwards et al., 2022) for theme detec-
tion. Additionally, we perform prediction for the
top classes as well as the sub-classes of the 20
Newsgroups and Safeguarding datasets. In this
way, we can analyse how the models performance
is affected by the number of classes. The main
features and statistics of each dataset are sum-
marized in Table 1. For the EU legislation docu-
ments we have performed experiments with the 10
most frequent labels, similarly to Chalkidis et al.
(2019). For the Ohsumed dataset, we have se-
lected the top 23 most frequent classes, similar to
prior work (Pilehvar et al., 2017).

1http://mlg.ucd.ie/datasets/bbc.html
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Dataset Domain Task Type Class Type Avg tokens Labels # Train # Dev # Test
SemEval 18 (Emoji) Twitter Emoji Prediction Sentence multiclass 12 20 45,000 5,000 50,000
SemEval 18 (Irony) Twitter Irony Detection Sentence binary 13 2 2,862 955 784
SemEval 19 (Hateval) Twitter Hateval Sentence binary 18 2 9,000 1,000 2,970
SemEval 19 (OffensEval) Twitter OffensEval Sentence binary 19 2 11,916 1,324 860
SemEval 17 (Sentiment) Twitter Sentiment Analysis Sentence multiclass 20 3 45,389 2,000 11,906
BBC news News Topic categorisation Document multiclass 220 5 1602 178 445
Reuters News Topic categorisation Document multiclass 83 8 6120 680 2659
AG News News Topic categorisation Document multiclass 31 4 103,346 11,482 5,928
20 Newsgroups News Topic categorisation Document multiclass 285 6 9,857 1,095 7,290
20 Newsgroups News Topic categorisation Document multiclass 285 20 9,857 1,095 7,290
IMDB reviews Reviews Polarity Detection Document binary 231 2 25200 2,800 25,601
Ohsumed Medical Cardiovascular diesese det. Document multiclass 104 23 9,390 1,043 12733
Toxic Comments Wikipedia Toxic prediction Document multilabel 46 7 143,614 15,957 63,978
PCL dataset News Patronising language det. Document multilabel 37 7 517 57 419
EU legislation documents Legislation Legal legislation concept det. Document multilabel 27 10 45,000 6,000 6,000
Hallmarks of cancer Medical Hallmarks of cancer detection Sentence multilabel 22 10 12,456 1,384 3624
Safeguarding reports Safeguarding Theme detection Sentence multilabel 18 5 5,719 635 3496
Safeguarding reports Safeguarding Theme detection Sentence multilabel 18 10 5,719 635 3496

Table 1: Overview of the classification datasets used in our experiments.

3.2. Comparison Models
We compare three main types of models: genera-
tive language models, masked language models,
and linear models, all described below.
Generative Language Models. We include
LLaMA 1 (Touvron et al., 2023a) and 2 (Tou-
vron et al., 2023b) into the analysis as represen-
tatives of large auto-regressive generation mod-
els, both with 7 billion parameters. As a represen-
tative of smaller but instruction-tuned model, we
use Flan-T5 (Chung et al., 2022). The model is
fine-tuned using the Flan instruction tuning tasks
collection (Chung et al., 2022). We use the
large Flan-T5 model with 780M parameters. We
have also included T5 model (Raffel et al., 2020)
into our analysis which we fine-tune, similarly to
RoBERTa. In particular, we use T5 base model.
We have downloaded the models from Hugging
Face (Wolf et al., 2019). As a representative of
the GPT family of autoregressive models (Brown
et al., 2020), we use OpenAI GPT 3.5-Turbo for
our analysis. We added this model for complete-
ness. However, given budget constraints and its
closed nature for which few conclusions can be
drawn, we only provide results for a sample of all
datasets.
Masked Language Models. As a representative
of masked languagemodel, we use RoBERTa (Liu
et al., 2019), pre-trained on English language. It is
known to achieve state-of-the-art results for many
text classification tasks. We perform experiments
with RobERTa base (125 million parameters) and
RoBERTa large (354 million parameters) models
to allow analysis into the effect of model size over
the classification performance. We have down-
loaded the models from Hugging Face (Wolf et al.,
2019).
Linear Models. Finally, we use FastText (Joulin
et al., 2017) (see Section 2.1.1) as a representa-
tive of a linear text classification model. Despite its
simplicity the model provides a strong baseline for
many text classification tasks and it is known to

give comparable results to state-of-the-art meth-
ods, including language models such as BERT
for some classification problems (Zhou, 2020; Ed-
wards et al., 2020).

3.3. Prompting, Training and Evaluation
As mentioned in Section 1, our aim is to estimate
how well the text generation models perform for
text classification when compared to themore data
consuming models such as RoBERTa and Fast-
Text. Therefore, we perform experiments for Flan-
T5 and LLaMA in zero- and one- shot ICL set-
tings. For zero shot, we provide information about
the task to the model through prompting. For one
shot, we randomly select a single training instance
per label and we provide these examples along
with the instruction to the model. To ensure ro-
bustness, the random selection of training sam-
ples is performed for three iterations and the re-
sults are averaged. For generating labels for the
test sequences, we use default model settings.
We judge the outputs as expected class labels or
not by simply checking whether the output of the
model matches one of the labels for the given clas-
sification task. We experiment with three different
prompts which we describe further in Section 3.4.
As for RoBERTa, we fine-tune it for the classifica-
tion task on the training data of each dataset using
a sequence classifier, a learning rate of 2e-5 and 4
epochs. In particular, we made use of RoBERTa’s
Hugging Face default transformers implementa-
tion for classifying sentences (Wolf et al., 2019).
As for T5, we fine-tune it using conditional gener-
ation, 2 epochs, and learning rate of 5e-5. Finally,
we use FastText classifier with 25 epochs and soft-
max as the loss function.
Finally, we report results based on standard micro
and macro averaged F1 (Yang, 1999).

3.4. Prompt Design
Our paper does not focus on identifying and de-
scribing most efficient prompt engineering prac-
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tices (as majority of work described in Section 2)
but instead we focus on highlighting prompt-
independent trends in the models performance
in order to help outline advantages and disad-
vantages of out-of-the-box approaches for few
shot text classification. We selected instructions
that led to satisfactory results in previous re-
search or have been used in the training set for
the instruction-tuned models Flan-T5 (Sun et al.,
2023; Wei et al., 2021). These prompts vary in
the detail they provide about the given task and
domain. We want to analyse trends across mod-
els behaviour that are non-prompt sensitive as well
as look at how the amount of specificity provided
in the prompt affect the performance of the mod-
els. For these purposes, we use the following
three prompts: (1) generic: a prompt which does
not give information about the task or domain,
used in (Sun et al., 2023); (2) task: describes
the given task, i.e., classification; (3) domain: a
prompt which givesmore information about the do-
main, for instance, it specifies the type of test data,
such as an article or tweet. We have created the
domain-based prompts following examples pro-
vided in Wei et al. (2021). Table 2 presents ex-
amples of the prompts per classification type2.

Binary Multiclass Multilabel
generic Choose your

answer: Accord-
ing to the above
paragraph, the
question ’Is the
text ironic?’:

Pick one category
for the following
text. The options
are:

Pick one or more from
the categories for the
following text.The op-
tions are:

task Classify the input
text into one of
the following cat-
egories:

Classify the input
text into one of
the following cate-
gories:

Classify the input text
using one or more
from the following
categories:

domain Is the Tweet clas-
sified as irony or
non-irony?

Select the topic that
the given news is
about. The topics
are -

Which of the given
toxic topics best de-
scribe the given com-
ment? Choose one or
more from the follow-
ing topics:

Table 2: Examples of prompts used for zero- and
one-shot learning for Flan-T5 and LLaMA.

4. Results and Analysis
The aim of our analysis is (1) identify if and how the
use of prompts affect the performance of text gen-
eration models (see Section 4.1); (2) compare per-
formance of prompting and fine-tuning techniques
in order to identify strengths and weaknesses of
the different models – we focus on a comparison
between the three types of classification, i.e., bi-
nary, multiclass, and multilabel (see Section 4.2);
and (3) perform a fine-grained analysis comparing
models’ performance at the domain and dataset
level (see Section 4.3). In addition to this gen-
eral comparison, we analyse separately the per-

2A list of all prompts is given in the Appendix.

formance of closed-source GPT3.5 and models
for the ‘IMDB reviews’ and ‘AG News’ datasets
as they are used in the fine-tuning of the Flan-T5
model.

4.1. Model and Prompt Analysis
A comparison between the two LLaMA models
shows an advantage of LLaMA 2 over LLaMA 1 for
both zero- and one-shot settings across all prompt
types (see Figure 1 and Table 3). The two mod-
els have similar performance in the zero-shot set-
ting in terms of F1 score. However, the number of
wrong labels for LLaMA 1 ismuch larger with 0.470
wrong labels compared to the 0.100 wrong labels
from LLaMA2. Results in Figure 1 also show a
clear advantage of Flan-T5 over the other mod-
els for all three prompts in terms of micro- and
macro- F1 for both zero- and one- shot settings.
The Flan-T5 model also leads to smaller num-
ber of wrong labels in zero-shot prompting. This
suggests that smaller but instruction-tuned mod-
els can be more beneficial in zero- and few- shot
classification in comparison to larger text gener-
ation models. Specifically, Flan-T5 has on aver-
age 0.110 improvement in micro- and macro-F1
for both zero- and one- shot settings over LLaMA
2.
Further analysis into the prompts reveal that
prompt choice does not lead to significant changes
in the models behaviour where the deviation for
the three prompts across all models is relatively
small. For instance, for LLaMA 1 and LLaMA 2
is less than 0.02 difference in micro-F1 for both
zero- and one- shot settings while for Flan-T5 it
gradually decreases from 0.07 in zero-shot to 0.01
for one-shot. This suggests that smaller models
such as Flan-T5 are more sensitive to the prompt
in zero settings versus few shot learning. The ben-
efits from one-shot prompting are evident across
all three models where the F1measure tends to in-
crease and the number of wrong labels decreases.
Flan-T5 improves its performance on a higher rate
compared to to the other two models with around
0.047 increase in the micro-F1 score versus 0.027
increase for LLaMA 2. This illustrates the strong
abilities of these models to learn tasks with mini-
mal amount of training data.

4.2. Prompting versus Fine-tuning
Results in Figure 2 show the same trends for
prompting methods where Flan-T5 outperforms
LLaMA 1 and LLaMA 2 for all text classification
types in terms of micro- and macro-F1. All three
models improve their performance for one-shot
prompting regarding the number of wrong labels.
In one shot setting, Flan-T5 and LLaMA 2 tend
to have close to 0 wrong labels with LLaMA 2 re-
turning slightly lower number of irrelevant results,
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Model Prompt zero shot one shot all
micro F1 macro F1 missing labs micro F1 macro F1 missing labs micro F1 macro F1

Flan-T5

generic .510 .459 .076 .446 .401 .020 – —
task .368 .373 .055 .462 .415 .012 – —
domain .369 .302 .092 .480 .432 .072 – —
AVG .416 .378 .074 .463 .416 .035 — —

LLaMA 1

generic .309 .213 .484 .274 .274 .043 – —
task .319 .230 .471 .339 .303 .414 – —
domain .284 .235 .463 .318 .270 .066 – —
AVG .304 .279 .469 .311 .267 .038 – —

LLaMA 2

generic .332 .282 .086 .305 .253 .436 – —
task .286 .238 .061 .333 .282 .679 – —
domain .309 .269 .153 .360 .322 .007 – —
AVG .309 .263 .100 .336 .288 .006 – —

T5 — – — — .134 .109 .851 .702 .625
RoBERTa (base) — – — — .273 .207 — .707 .625
RoBERTa (large) — – — — .338 .278 — .727 .657
fastText — — — — .254 .164 — .505 .419

Table 3: Prompt Analysis where Micro-F1 andMacro-F1 results averaged across all datasets, comparing
the performance of Flan-T5, LLaMA 1, and LLaMA 2 models for all three types of prompts, i.e., ‘generic’,
‘task’, and ‘domain’ as well as the average (‘AVG’) between them. ‘Missing labs’ shows the fraction of
results returned by the three models that are different from the classification labels. Results are displayed
for zero-shot (‘zero’) and one-shot setting (‘one’).

Figure 1: Micro-F1 (left) and Macro-F1 (middle) results averaged across all datasets, comparing the
performance of Flan-T5, LLaMA 1, and LLaMA 2 models for all three types of prompts, i.e., ’generic’,
’task’, and ’domain’ as well as the average (’AVG’) between them. ’Missing label’ (right) shows the
fraction of results returned by the three models that are different from the classification labels. Results
are displayed for zero-shot (’zero’) and one-shot setting (’one’).

while Flan-T5 has a better F1 score (see Figures 2
and 33). The advantage of LLaMA 2 over LLaMA
1 is clearly shown for all classification tasks, espe-
cially binary and multilabel where LLaMA 2 has a
smaller number of irrelevant results and higher F1
score (see Figure 2).
Regarding fine-tuning approaches, results in Fig-
ure 2 show a clear dominance of RoBERTa-
large in one-shot setting for all classification types.
When fine-tuning is performed using the entire
dataset, T5 outperforms the rest of the models for
binary classification with micro-F1 = 0.672 versus
RoBERTa-large with micro-F1 = 0.607. However,
for multiclass and multilabeling tasks, the perfor-
mance of T5 decreases and the model is outper-
formed by both RoBERTa-base and RoBERTa-
large. For instance, for multiclass problems
RoBERTa-large achieves micro-F1 of 0.726 ver-
sus micro-F1 for T5 = 0.700. For multilabeling
problems the performance gap between the mod-

3Macro-F1 results are available in the Appendix.

els increases and RoBERTa-large has a micro-F1
= 0.788 versus T5 with micro-F1 = 0.718. These
results suggest that fine-tuned masked language
models are more suitable for complex classifica-
tion tasks such as multiclass and multilabeling
problems when the number of labels is higher ver-
sus fine-tuning text-to-text models such as T5.

A comparison between prompting and fine-tuning
techniques for low resource settings suggests a
better performance of prompting for binary and
multiclass problems (see Figure 2) where Flan-
T5 and LLaMA 2 outperform fine-tuning models
by a significant margin. For instance, Flan-T5 has
micro-F1 = 0.553 versus micro-F1 for RoBERTa-
large with micro-F1 = 0.485 for binary classifi-
cation in one shot settings. The advantage of
prompting in one shot settings becomes even
more evident for multiclass problems where Flan-
T5 achieves micro-F1 = 0.489 versus RoBERTa-
large with micro-F1 = 0.162. However, for multil-
abeling problems, fine-tuning approaches outper-
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Figure 2: Comparison between prompting (left)
and fine-tuning (right) approaches per text classifi-
cation type where ’AVG’ refers to averaged results
across all prompt types per model. In ’Prompt-
ing’, ’zero’ and ’one’ refer to zero- and one- shot
prompt-based learning techniques, in ’Fine Tun-
ing’, ’one’ refers to fine-tuning the models with one
training instance per label and ’all’ refers to fine-
tuning using the entire dataset.

Figure 3: Wrong labels for prompting approaches
per binary (left), multiclass (middle), and multilabel
(right) classification where ’zero’ refers to zero-
shot learning and ’one’ refers to one-shot learning.

form promptingmethods with a difference inmicro-
F1 of 0.082 between the best fine-tuned model,
RoBERTa-large, and the best prompting model,
i.e. Flan-T5. It is worth noting that during one-shot
training, all models have been provided the same
training examples. However, further analyses are
needed to identify most efficient ways for repre-
senting multi-labeling problems as part of prompt-
ing techniques.
Despite the better overall performance of prompt-
ing techniques in zero- and one- shot settings,

these approaches lead to unsatisfactory perfor-
mance when compared to fine-tuned masked lan-
guage models on a larger training set. Further,
the difference in the performance between the two
techniques grows larger for more complex text
classification tasks such as multiclass and multi-
labeling problems. For instance, for binary clas-
sification, the difference in performance in terms
of micro-F1 between best performing prompting
and fine-tuning technique is 0.119 while for multi-
class the difference in performance is 0.240. This
shows that large autoregressive text generation
models coupled with few shot learning techniques
still have room for improvement when it comes to
text classification. Fine-tuned masked language
models, despite being smaller, lead to better per-
formance for text classification versus LLMs in ICL
settings.

4.3. Trends across datasets and models
Results presented in Table 4 confirm findings from
Section 4.2 showing a clear dominance of Flan-T5
over LLaMA for zero- and one-shot prompting for
themajority of datasets. Exceptions are the ’irony’,
’sentiment’, and ’PCL’ datasets where LLaMA per-
forms better for either zero or one shot setting, or
both. For some datasets such as ‘hate’, prompt-
ing models give better performance in zero- shot
than one-shot setting. However, models still im-
prove performance for these datasets in terms of
number of wrong labels. Further, the choice of
one shot training instances can influence the per-
formance of models in few-shot learning. For the
purposes of this analysis we have selected the one
shot examples randomly. Analysing the impact of
the training examples in few-shot learning can be a
future research direction which we leave for future
work.
In contrast to the prompting approaches, results
for the fine-tunedmodels do not show a clear dom-
inance of either RoBERTa or T5. T5 shows a
better performance for the majority of the binary
classification tasks (those associated with Twitter
datasets) as well as the datasets ‘AG news’, ‘20
News’ (top 6 classes)’, and the ‘legal’ domain. The
two models attain a similar macro-F1 for the emoji
prediction and safeguarding reports datasets.
Impact of the number of labels. Analysis into the
effect of the number of classification labels in the
performance shows an interesting trend with the
fine-tuned models (RoBERTa and T5) performing
slightly better for classification tasks with 6 to 9 la-
bels than classification with less labels (see Fig-
ure 4). For RoBERTa this trend occurs for both
micro-F1 and macro-F1 while for T5 it appears
only for micro-F1. This can be attributed to the
nature of the binary classification tasks (’irony’,
’offense’, ’hate’) which express human emotions
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Dataset Model zero shot one shot all
micro F1 macro F1 wrong labs micro F1 macro F1 wrong labs micro F1 macro F1

irony

RoBERTa – – – .459 (±.005) .459 (±.005) – .508 .508
T5 — — — .455(±.021) .455(±.021) .589 .688 .688
FlanT5 .428 .428 .049 .491(±.034) .491(±.034) .009 – –
LLaMA .499 .499 .214 .443 (±.003) .443 (±.003) .000 – –
GPT 3.5* .727 .727 .000 – – – – –

offense

RoBERTa – – – .550 (±.143) .550 (±.143) – .705 .705
T5 – – – .462 (±.001) .462 (±.001) .864 .709 .709
FlanT5 .429 .429 .269 .558(±.019) .558(±.019) .003 – –
LLaMA .419 .419 .227 .347 (±.026) .347 (±.026) .001 – –
GPT 3.5* .635 .635 .000 – – – – –

hate

RoBERTa – – – .445 (±.118) .445 (±.118) – .607 .607
T5 — — – .386 (±.312) .386 (±.312) .732 .619 .619
FlanT5 .634 .634 .004 .611 (±.006) .611 (±.006) .005 – -
LLaMA .539 .539 .004 .514 (±.111) .514 (±.111) .000 – –

emoji

RoBERTa — — – .047 (±.009) .005 (±.001) – .366 .317
T5 — — — .000 (±.000) .000 (±.000) .100 .259 .317
FlanT5 .059 .042 .036 .114(±.021) .082(±.007) .006 – –
LLaMA .060 .041 .091 .033(±.036) .020(±.017) .001 – –

sentiment

RoBERTa — — – .449 (±.108) .271 (±.008) – .714 .714
T5 — – – .312 (±.121) .272 (±.078) .563 .708 .709
FlanT5 .459 .402 .109 .417 (±.004) .381 (±.007) .000 – –
LLaMA .369 .334 .027 .482 (±.037) .402 (±.143) .000 – –

BBC

RoBERTa — — – .217 (±.027) .112 (±.029) – .989 .989
T5 — — – .001 (±.001) .001 (±.001) .999 .977 .977
FlanT5 .922 .867 .096 .939(±.008) .936(±.009) .038 – –
LLaMA .498 .439 .021 .849 (±.098) .843 (±.081) .004 – –
GPT 3.5* .912 .913 .000 – – – – –

Reuters

RoBERTa — — – .154 (±.111) .054 (±.021) – .939 .869
T5 — — – .010 (±.034) .010 (±.067) .990 .929 .833
FlanT5 .321 .334 .334 .467 (±.023) .504 (±.032) .017 – –
LLaMA .212 .168 .006 .528 (±.076) .304 (±.145) .006 – –
GPT 3.5* .852 .718 .000 – – – – –

20 News(all)

RoBERTa — — – .190 (±.028) .101 (±.019) – .859 .853
T5 — — – .000 (±.000) .000 (±.000) .999 .861 .854
FlanT5 .564 .520 .001 .684 (±.008) .654 (±.007) .057 – –
LLaMA .324 .272 .094 .368 (±.034) .300(±.079) .001 – –

20 News(subcl)

RoBERTa — — – .055 (±.013) .015 (±.003) – .741 .728
T5 — — – .000 (±.000) .000 (±.000) .990 .717 .693
FlanT5 .510 .507 .000 .512 (±.013) .501 (±.013) .011 – –
LLaMA .185 .194 .167 .376 (±.015) .342 (±.014) .020 – –

Ohsumed

RoBERTa — — – .025 (±.019) .002 (±.004) – .476 .415
T5 — — – .002 (±.001) .002 (±.001) .958 .452 .362
FlanT5 .306 .283 .194 .288 (±.003) .241 (±.001) .375 – –
LLaMA .151 .099 .154 .180 (±.110) .162 (±.110) .036 – –

Toxic

RoBERTa — — – .671 (±.005) .550 (±.003) – .899 .782
T5 — — – .020 (±.001) .010 (±.011) .989 .913 .661
FlanT5 .629 .380 .140 .710 (±.066) .262 (±.014) .003 – –
LLaMA .331 .142 .211 .005 (±.079) .002 (±.077) .004 – –

Legal

RoBERTa — — – .429 (±.030) .285 (±.030) – .965 .601
T5 — — – .500 (±.037) .125 (±.042) .970 .982 .612
FlanT5 .251 .233 .000 .351 (±.047) .352 (±.028) .000 – –
LLaMA .224 .167 .069 .269 (±.091) .232 (±.175) .005 – –

Cancer

RoBERTa — — – .309 (±.003) .290 (±.002) – .524 .414
T5 — — – .000 (±.000) .000 (±.000) .000 .344 .157
FlanT5 .296 .286 .246 .361 (±.027) .319 (±.017) .000 – –
LLaMA .249 .178 .141 .168 (±.131) .104 (±.098) .004 — –

PCL

RoBERTa — – – .555(±.004) .518 (±.006) – .719 .592
T5 — — – .001 (±.001) .001 (±.001) .999 .654 .525
FlanT5 .224 .124 .000 .224 (±.008) .141 (±.112) .001 – –
LLaMA .392 .303 .050 .287 (±.095) .159 (±.114) .000 – –
GPT 3.5* .207 .117 .000 – – – – –

Safeguard(all)

RoBERTa — — – .601 (±.011) .589 (±.011) – .905 .895
T5 — — – .000 (±.000) .000 (±.000) .000 .756 .725
FlanT5 .347 .326 .000 .392 (±.007) .360 (±.003) .000 – –
LLaMA .291 .233 .041 .286 (±.007) .197 (±.003) .001 – –
GPT 3.5* .369 .340 .000 – – – – –

Safeguard(subcl)

RoBERTa — — – .247 (±.105) .201 (±.102) – .718 .515
T5 — — – .010 (±.002) .020 (±.002) .969 .657 .516
FlanT5 .275 .253 .000 .281 (±.012) .265 (±.009) .000 – –
LLaMA .195 .176 .051 .237 (±.049) .231 (±.089) .006 – –
GPT 3.5* .359 .366 .012 – – – – –

Table 4: Micro-F1 andMacro-F1 results per dataset for RoBERTa (large), fine-tuned T5, Flan-T5, LLaMA
2, and GPT 3.5-Turbo. The ratio of wrongly-formatted outputs is included in the wrong labels (labs)
column.The results for Flan-T5 and LLaMA 2 are based on averaged results across all prompts.
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Dataset Model zero shot one shot all
micro F1 macro F1 wrong labs micro F1 macro F1 wrong labs micro F1 macro F1

IMDB

RoBERTa — — – .436 (±.311) .436 (±0.311) – .955 .955
T5 — — —- .751 (±.065) .751 (±.065) .711 .952 .952
FlanT5 .948 .948 .097 .900 (±.007) .900 (±.007) .017 – –
LLaMA .628 .628 .219 .803 (±.012) .803 (±.012) .005 – –

AG News

RoBERTa — — – .280 (±.022) .111 (±.024) – .906 .884
T5 — — – .010 (±.003) .010 (±.003) .990 .907 .886
FlanT5 .819 .789 .000 .813 (±.008) .782(±.009) .000 – –
LLaMA .479 .463 .011 .787 (±.006) .753 (±.005) .003 – –

Table 5: Micro- and Macro-F1 results for ‘AG News’ and ‘IMDB’ datasets for RoBERTa-large, fine-tuned
T5 model, Flan-T5, LLaMA 2. The ratio of wrongly-formatted outputs is included in the wrong labels
(labs) column. The results for Flan-T5 and LLaMA 2 are based on averaged results across all prompts.

and represent the Twitter domain. This suggests
that the models find it more challenging to cate-
gorise such texts versus more categorical-based
datasets such as news and articles which are part
of the datasets with 6 to 9 labels. In contrast, the
performance of both prompting approaches de-
creases as the number of labels for the classifi-
cation task increases.

Figure 4: Averaged Micro-F1 and Macro-F1 re-
sults based on number of classification labels:
‘RoBERTa (all)’ and ‘T5 (all)’ refer to models fine-
tuned on the entire training set, ‘Flan-T5 (one)’ and
‘LLaMA (one)’ refer to one-shot prompting.

Datasets used for pre-training. As mentioned
earlier in the section, we analyse the performance
of models for the ‘IMDB reviews’ and ‘AG News’
datasets separately as they are used in the fine-
tuning of the Flan-T5 model. For these datasets
(see Table 5) Flan-T5 performance significantly
improves achieving micro- and macro-F1 results
comparable to fine-tuning models on the entire
dataset. For instance, for the IMDB dataset,
the difference in macro-F1 between Flan-T5 and
RoBERTa is 0.007 while for the AG news the dif-
ference in macro-F1 is 0.027. In contrast, the per-
formance gap for the rest of the datasets between
Flan-T5 and the best performing fine-tuning model
is on average around 0.250 in micro-F1. This
shows the significant impact that data contamina-
tion may have in the final results. However, a care-
ful data contamination analysis becomes harder
on large models for which training data is not avail-
able, and especially for closed models.
GPT Analysis. Table 4 presents zero-shot
prompting results for the GPT 3.5-Turbo model
for the following datasets: ‘irony’, ‘offense’, ‘bbc’,
‘reuters’, ‘pcl’, and ‘safeguard’. We have used

the class-based prompt for prompting with GPT
3.5 because it has shown to lead to the higher
overall performance for Flan-T5 and LLaMA. Re-
sults show a clear advantage of the GPT-based
model over Flan-T5 and LLaMA achieving on av-
erage 0.350 higher micro- and macro-F1 across
the majority of the datasets, except for the ‘PCL’
dataset. Additionally, results achieved with zero-
shot learning with GPT 3.5-Turbo outperform fine-
tuned models on the entire dataset for the ‘irony’
dataset. However, for the rest of the datasets
the model is still outperformed by fine-tuning ap-
proaches confirming the lack of generalisation
abilities of few-shot learning techniques and text
generation models for text classification.

5. Conclusions

This paper presents a large-scale study on how
prompt-based LLMs in zero- and one- shot set-
tings compare to smaller but fine-tuned language
models for text classification. The evaluation
spans across 16 datasets covering binary, multi-
class, and multilabel problems. In particular, we
compared three different types of models, i.e., lin-
ear models such as FastText, masked language
models (RoBERTa), and text generation models
tested in ICL settings (T5, Flan-T5, and LLaMA, as
well as GPT 3.5-Turbo). Analyses on prompting
techniques showed a clear advantage of the Flan-
T5 model over LLaMA 1 and LLaMA 2 regardless
of the prompt used for both zero- and one-shot
settings. This shows that smaller but instruction-
tuned models have better generalisation abilities
for text classification than larger text generation
models. Further, our analysis showed that results
from zero- and few-shot learning LLMs are consid-
erably lower in comparison to smaller models fine-
tuned on the entire training set. This highlights the
need for training data, even in the age of LLMs,
and that fine-tuning smaller and more efficient lan-
guagemodels can still outperform in-context learn-
ing methods of larger text generation models.
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7. Limitations
The main limitation of this research is the lack of
experiments on fine-tuning Flan-T5 and LLaMA
models as well as the lack of further analysis with
larger text generation models such as LLaMA with
13 and 17 billion parameters. Moreover, the paper
presents a study for zero- and one-shot prompt-
ing. As future work, we plan to extend analy-
sis to understand how the number of training in-
stances affect the performance of in-context learn-
ing approaches. Further, considering the sen-
sitivity of in-context learning approaches to the
given instructions, it would be beneficial to per-
form further analysis on a larger more diverse
set of prompts. Finally, the paper presents re-
sults for a single high resource language (English).
Experiments for other languages (especially low-
resource) could show a different tendency.
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A. Appendix
In Section A.1 we present a comparison between
prompting and fine-tuning techniques based on
Macro-F1. In Section A.2, we present the prompts
we used for performing analysis with zero- and
one- shot in-context learning with Flan-T5 and
LLaMA 1 and LLaMA 2.

Figure 5: Comparison between prompting (left)
and fine-tuning (right) approaches per text classifi-
cation type where ’AVG’ refers to averaged results
across all prompt types per model. In ’Prompt-
ing’, ’zero’ and ’one’ refer to zero- and one- shot
prompt-based learning techniques, in ’Fine Tun-
ing’, ’one’ refers to fine-tuning the models with one
training instance per label and ’all’ refers to fine-
tuning using the entire dataset.

A.1. Prompting versus Fine-tuning:
Macro Results

Figure 5 shows the Macro-F1 results comparing
prompting and fine-tuning techniques. Results
show similar trends to those observed based on
Micro-F1, presented in Section 4.2.

A.2. Prompts
In Table 6 we have listed all ‘domain’ prompts
we used per dataset. The ‘task’ and the ‘generic’
prompts are the same for all datasets and are pre-
sented in Table 2 in Section 3.4.
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Dataset Domain Prompt
irony Is the Tweet classified as irony or non-irony?
offense Is the Tweet classified as offensive or non-

offensive?
hate Is the Tweet classified as hate or non-hate?
emoji Which of the given emojis best describe the given

Tweet?The emojis are:
sentiment Is the Tweet positive, negative, or neutral?
BBC Classify the news into one of the following topics:
Reuters Classify the news into one of the following topics:
20 News Classify the newsgroup into one of the following top-

ics:
Ohsumed Select the medical conditions that this article is

about. The options are:
Toxic Which of the given toxic topics best describe the

given comment? Choose one or more from the fol-
lowing topics:

Legal Which of the given legal topics best describe the
given legislation document?Choose one or more
from the following topics:

Cancer Which hallmarks of cancer are present in the text?
Choose one or more from the following options

PCL Which of the given topics best describe the patronis-
ing comment. Choose one or more from the follow-
ing topics:

Safeguard Which of the given themes best describe the sen-
tence? Choose one or more from the following
themes:

IMDB Is the movie review positive or negative?
AG News Select the topic that the given article is about.The

topics are:

Table 6: A list of all domain-based prompts used
per dataset.
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