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Abstract
In this position paper we argue that researchers interested in language and/or language technologies should attend
to challenges of linguistic and algorithmic injustice together with language communities. We put forward that this
can be done by drawing together diverse scholarly and experiential insights, building strong interdisciplinary teams,
and paying close attention to the wider social, cultural and historical contexts of both language communities and the
technologies we aim to develop.
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1. Introduction

In the last decade, speech and language tech-
nologies have seen unprecedented “successes”
across the board. Performance of a wide range of
applications has apparently increased steadily, as
measured in established benchmarks. Many tools
have found widespread adoption through integra-
tion in consumer and business computing, and
speech and language technologies have become
a focal point in the interest (and hype) surrounding
“artificial intelligence”.

As a result, technologies that researchers have
known in some form for a long time, like automatic
speech recognition (ASR), speech synthesis (TTS)
and (large) language models (LLMs) are being de-
ployed (and developed) in novel social contexts.
These changes in context, rather than (just) the
technologies themselves, raise a number of ethi-
cal, technical and legal questions such as:

• How should we develop language technolo-
gies that work for everyone?

• Who should be developing language

• What risks and impacts should we accept in
the development of language technologies?

2. Continuing the conversation

These questions are not (only) technical but social
and normative: they are about what we should do
rather than (just) what we can do. They are, of
course, not new questions. However, unlike many
technical questions, they cannot be definitively re-
solved but need to be engaged with on a continu-
ous basis. They are particularly important at this
juncture. The most prominent and widely avail-
able language technologies at this moment are
highly resource-intensive models (in terms of data,

hardware, energy, labour) controlled by (large)
commercial developers (Tacheva and Ramasub-
ramanian, 2023; Whittaker, 2021). Despite grow-
ing access to speech technologies for more and
more languages (e.g., Zhang et al., 2023), we do
not see growing participation, agency, or owner-
ship by language communities in the development
and deployment process (Mahelona et al., 2023;
Schwartz, 2022).

This paper is intended as an introduction to lan-
guage, identity, and injustice in the context of lan-
guage technologies, and an invitation to all mem-
bers of this research community to recognise their
own responsibility in grappling with complex eth-
ical, technical and legal questions and deferring
to language communities. It has been heartening
to see these big issues move towards the center
of language technology research in recent years,
including a long-overdue discussion of coloniality
in language technology development (Held et al.,
2023; Mahelona et al., 2023; Schwartz, 2022; Bird,
2020), algorithmic bias and harm (Wenzel et al.,
2023; Bender et al., 2021; Koenecke et al., 2020),
and the double-edged sword of “diversity and inclu-
sion” (Helm et al., 2024; Hoffmann, 2021). Here,
we want to add to this conversation and propose
some practical steps to sustain a (renewed) focus
on interdisciplinarity and language communities in
language technology development.

3. Language, identity, and injustice

Using language (regardless of modality) is a fun-
damentally social process. How we use language
depends on many different layers of context: the
people we are engaging with and our relationship
to them, the physical and social setting of the inter-
action, our linguistic backgrounds, and our embod-
iment, among others. In this way, language use
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is closely tied to social identity. Beyond the indi-
vidual, language communities (and by extension,
their languages) are also embedded in a web of
power relations. Below we discuss some ways of
conceptualising the role of these contexts, in partic-
ular as related to identity and justice, before bring-
ing them into conversation with technology.

3.1. Language and identity
Since at least the 1960s, research in the field of
“variationist” sociolinguistics has been document-
ing that language variation is socially stratified
along axes like class, race, and ethnicity (Taglia-
monte, 2011)1. While the specific linguistic vari-
ables of interest differ and much of the founda-
tional work was conducted on variation in English
in the United States (following Labov, 1966), broad
social patterns have been found to hold across a
wide range of linguistic and social contexts. For ex-
ample, that speakers with a lower socioeconomic
status use stigmatised variants more frequently
than speakers with higher socioeconomic status,
and that there are relatively fewer markers of re-
gional and ethnic variability among higher-status
speakers, and that this lack of variation itself marks
high status (e.g., Arabic (Hassemer and Garrido,
2020); Chinese (Dong and Blommaert, 2009); En-
glish (Romaine, 1980)).

The “local context” in which speech occurs has
also been found to have a regular effect on pat-
terns of linguistic variation. Ethnographic research
has uncovered the importance of “local” categories
and “local” meaning which can account for differ-
ences within social groups. For example, while
stigmatised variants are typically more frequent in
the speech of men than women (Labov, 1990),
Hazen (2008) found that Appalachian West Vir-
ginian women were more likely than men to drop
their G’s (i.e., to produce the -ing suffix with an
alveolar nasal than a velar nasal). In contrast to
every other study on English -ing, in Appalachian
West Virginia the women are more “confident and
unashamed” of their stigmatised regional dialect
than the men are. In other words, binary gender
has a different relationship to linguistic variation in
this “local” context than in the context-free generali-
sations we might otherwise make. The same point
was made by Haeri (1994), who found that a stig-
matised variant of Cairene Arabic was used more
often among women than men, in part because it
was the men who had more access to formal edu-
cation.

As such examples grew in number, the field
of sociolinguistics shifted from recognising that

1See Tagliamonte (2015) and Eckert (2012) for the
history of variationist sociolinguistics, and Heller and
McElhinny (2017) for a broader history of linguistics.

linguistic variants are correlated with social cat-
egories to theorising that these categories are
constructed through these linguistic variants (Bu-
choltz and Hall, 2005; Eckert, 2008, 2012). So-
cially meaningful linguistic variation is not the “in-
cidental fallout” (Eckert, 2012) of a broader social
structure, but rather one of the ways in which we
build, maintain and challenge social structure(s).
Importantly, the social meanings attached to any
linguistic variable are not fixed. They only in-
dex social categories indirectly, and their mean-
ing depends on speaker, speech situation, and
hearer (Eckert, 2008). For example, the exact
same vowel quality in the exact same speech com-
munity can index youthfulness, effeminacy, flam-
boyance, trendiness, regional identity, or all or
none of these, depending on the time and context
in which it is spoken and heard (Hall-Lew et al.,
2021). As we use language we can draw on these
meanings to construct social identity, and express
stances by combining different linguistic variables
into styles (e.g., Podesva, 2007; Zimman, 2017).

3.2. Language, power and justice
Some of the patterns of variation discussed above
are noticed by speakers. Over time, correlations
between particular social groups and (their) partic-
ular ways of using language become associated in
speakers’ minds (Irvine and Gal, 2000; Campbell-
Kibler, 2010). This knowledge about language
variation becomes very deeply embedded in our
sense of how the world is and should be, what (and
who) is “normal” or “different” (Craft et al., 2020;
Rosa and Burdick, 2016; Irvine and Gal, 2000).
The way this is achieved is, in part, through the
way ideologies about language inform language
management within a social context, that is how
institutions and collectives decide which (kinds of)
language(s) to use in particular social contexts.

Two such beliefs (or ideologies) which are par-
ticularly relevant to language technologies are
that languages can and should be “standard-
ised” (Lippi-Green, 2012; Milroy, 2001; Spolsky,
2003), and that languages are clearly delineated
objects (Otheguy et al., 2015; Schneider, 2019).
Like the standardisation of objects, measurements
and tools (Bowker and Star, 2000), language stan-
dardisation is also not a neutral, but a political pro-
cess (Milroy, 2001). Standardising languages in-
volves selecting a variety (as there are always sev-
eral different styles or varieties to choose from)
and codifying (a written form of) this variety in dic-
tionaries and grammars (Johnson, 2013). Cru-
cially, the choices involved in this process are
guided implicitly and explicitly by language ideolo-
gies as well as pre-existing power structures (Spol-
sky, 2003; Ricento, 2000; Shohamy, 2006). To fur-
ther spread a standard and entrench its status, it is
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adopted in a variety of domains, including educa-
tion and government. It is in part because of this
official association with nation states and codifica-
tion in dictionaries and grammars that we tend to
perceive languages as clearly delineated objects
even though they are marked by significant varia-
tion (Schneider, 2019; Otheguy et al., 2015; Irvine
and Gal, 2000).

3.3. Algorithmic injustice
Given the connection between identity and lan-
guage variation, worse language technology per-
formance for a particular language variety or lin-
guistic features often means worse performance
for a particular group of people. This is espe-
cially problematic because language technologies
tend to work better for the (high status) varieties of
high-status speakers (e.g., Koenecke et al., 2020;
Markl, 2022a). Empirically grounded understand-
ing of different varieties can be used to audit lan-
guage technologies, discover and mitigate perfor-
mance differences, and build systems specifically
for different varieties (e.g., Blodgett, 2021; Martin,
2022; Wassink et al., 2022; Choe et al., 2022).

However, there are limitations to this quantita-
tive approach of measuring “bias”. Birhane et al.
(2022b) highlight that a focus on (quantitative mea-
sures of) unequal outcomes allows researchers
to ignore users’ lived experiences with algorithmic
systems, and reproduces Western approaches to
ethics and fairness. Birhane (2021) argues in-
stead for a “relational ethics” approach to what she
terms “algorithmic injustice”. This approach, rather
than privileging the hegemonic Western rational-
ism, draws on “relationality” as theorised and prac-
tised by different schools of thought (including Afro-
feminism and complexity science) (Birhane, 2021).
At the heart of this perspective lies a focus on “inter-
dependence, relationships and connectedness”,
and a rejection of the rationalist quest for “timeless
and absolute knowledge” predicated on a “ratio-
nal, static, self-contained, and self-sufficient sub-
ject” (Birhane, 2021, 3). Instead, a relational ethics
approach to algorithmic bias (and injustice), urges
both breadth and depth of perspective. Away
from abstracted metrics, it encourages us to con-
sider the broader deployment and development
contexts of a system, and the specific ways it in-
teracts with people (Birhane, 2021). Feminist sci-
ence and technology studies have long pointed out
the fundamental impossibility of the kind of disem-
bodied objectivity (implicitly assumed or explicitly
asserted) in rationalist science (Haraway, 1988)
and, more recently, machine learning (Talat et al.,
2021).

Recent work has argued for the importance
of incorporating the social meaning of linguistic
variation in the design of language technologies

which we want to promote justice (Sutton et al.,
2019; Nguyen et al., 2021; Nee et al., 2021; Blod-
gett, 2021). Understanding the complex situated
and relational nature of both people and their lan-
guage varieties is crucial here. For example, as
discussed above, linking language variation and
macro-level social categories like race, gender,
and class can help us audit language technolo-
gies for algorithmic bias. However, this very same
linkage risks stereotyping (potential or actual) lan-
guage (technology) users and glosses over a huge
diversity in language use within social groups. Lan-
guage is also, in a neutral sense of the term, ideo-
logical. The meanings we attach to linguistic vari-
ants and varieties are embedded within broader
ideological frameworks and socio-cultural and his-
torical contexts that we often take for granted both
as researchers and everyday users of language.
Which varieties and variants we develop for is al-
ways a political and ideological choice, even if
we’re not aware of it. While researchers may
be constrained by wider social structures (e.g.,
funding incentive structures, data availability etc.),
these constraints too are the result of pre-existing
social and linguistic hierarchies (Markl, 2022b;
Hanna and Park, 2020).

4. Social contexts of development
and deployment

With the proliferation of language technologies in
consumer and business computing, we have seen
a rapid change in how they are being developed
and deployed. These changes lead to impor-
tant debates between and among developers and
users regarding diversity and inclusion, bias and
fairness, and sovereignty and responsibility.

4.1. New deployment contexts:
Language technologies for all?

The biggest improvements in speech technolo-
gies, whether we measure them in terms of ac-
curacy, efficiency, or affordability, have bene-
fited only a small number of language communi-
ties. Languages like English, Spanish and Man-
darin are often described as “high-resource” lan-
guages (Joshi et al., 2020; Bird, 2022). These “re-
sources” are typically understood to be language
datasets. However, the communities who speak
these languages, and the nation states which are
associated with these languages, are also rich in
wealth and geopolitical power, in many cases as
a direct result of violent colonial expansion (Heller
and McElhinny, 2017). In part because language
technology development is so costly, in terms
of data, labour, and money, language commu-
nities which are smaller, minoritised, or “under-
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resourced” have historically been sidelined.
Of course, as discussed above, “English”,

“Spanish” and “Mandarin” are not monoliths. Each
of these languages is comprised of a large num-
ber of varieties spoken in different regions and by
different people. As a result, we see large per-
formance disparities for different language com-
munities even for “high-resource languages”. It is
the standard varieties of these languages which
tend to be richest in resources, prestige, and,
as a result, best-supported by language technolo-
gies (Markl, 2022a; Koenecke et al., 2020). In this
way, linguistic hierarchies within a particular larger
language community are reproduced in language
technologies and speakers of marginalised vari-
eties are less likely to enjoy any of their benefits
and more likely to be negatively affected.

The boundaries between different languages
are furthermore more porous than we often as-
sume as the majority of people around the world
use multiple different languages. Linguistic prac-
tices like code-switching (Heller, 1988) or translan-
guaging (Otheguy et al., 2015) whereby speakers
effortlessly weave together words from what might
be considered different languages (like Spanish
and English) are extremely common but also very
stigmatised in many “monoglot” societies such as
the United States (Flores and Rosa, 2015; Silver-
stein, 1996).’2 They are also poorly supported by
language technologies (Doğruöz et al., 2021).

The dominance of a small number of “high-
resource” language varieties (and their speakers)
directly leads to the marginalisation of smaller lan-
guage communities. In colonial contexts specifi-
cally, indigenous communities have often been vi-
olently suppressed, including in their use of their
language(s) (Chiblow and Meighan, 2021; Char-
ity Hudley et al., 2020; Kroskrity, 2021). Over
time, discriminatory (legal or social) “rules” on how
and where languages (and other cultural practices)
should be used can lead to the loss of language va-
rieties (and other cultural practices). Furthermore,
communities often shift to languages which they
perceive to be more (economically or socially) valu-
able.

Language technologies are often positioned as
“saviours” in such contexts of language endanger-
ment. For instance, in 2019 UNESCO organised
(in partnership with ELRA) the “Language Tech-
nologies for All” conference where the demise of

2Within the borders of the United States exist a very
large number of languages and language communities,
many of which predate the United States. Silverstein
(1996) uses the term “monoglot” to describe societies
which despite their obvious lived plurilingualism are char-
acterised by a very strong commitment and to one mono-
lingual standard variety (such as Standard English in the
United States).

languages not supported by language technolo-
gies was framed as inevitable: “Languages that
miss the opportunity to adopt Language Technolo-
gies will be less and less used, while languages
that benefit from cross-lingual technologies such
as Machine Translation will be more and more
used” (ELRA, 2019, cited in Bird, 2020). While
this impulse is often well-intentioned, it arguably
reproduces a kind of “tech-solutionism” or “tech-
chauvinism” (Broussard, 2019; Greene, 2021).
Without a doubt, language technologies can be
useful for minoritised and “under-resourced” com-
munities in some contexts, they might also neg-
atively impact communities and their languages.
Whether and how technological interventions in
precarious linguistic ecologies are ultimately suc-
cessful depends on many factors (Bird, 2020). The
impulse to apply the same standard to all lan-
guages, regardless of their historical, cultural and
sociolinguistic context, and understand them all
in the same way is an extension of the colonial
approach to linguistic research and documenta-
tion (Deumert and Storch, 2018; Heller and McEl-
hinny, 2017; Kuhn et al., 2020; Schwartz, 2022).
Helm et al. (2024) use the term “language mod-
elling bias” for “linguistic or cultural inaccuracies
in the way a language is processed or repre-
sented” because the technology is (fundamentally)
designed with a different social, cultural and lin-
guistic context in mind. It is this intrinsic techni-
cal bias that is very difficult to resolve without re-
imagining the process from scratch.

Thinking carefully about the wider historical and
political context of the language community, their
language(s), and their needs and desires, is, in
our opinion, an absolutely crucial first step. Ide-
ally, this consideration should go far beyond “par-
ticipatory design” (Sloane et al., 2022), and involve
serious commitments to communities’ sovereignty
of their data and perhaps even the technologies
themselves as discussed below.

4.2. Language technologies by whom?
While industry has always been a major driver of in-
novation, its influence across machine learning do-
mains is perhaps now greater than ever (Birhane
et al., 2022a; Rikap, 2022). This is in part be-
cause of the resources required to “beat” the cur-
rent state of the art: ever larger datasets and
computing resources (Whittaker, 2021). Data re-
quirements have been dramatically changing the
way datasets are compiled for about a decade
now (e.g., Crawford and Paglen, 2021; Denton
et al., 2021; Paullada et al., 2021).

Expanding language technologies to groups, be
they understood as “language communities”, “user
groups”, or “markets”, also affects the data com-
pilation process, in particular if these “new” com-
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munities have previously not been considered in
language technology development. As alluded
to above, data compilation can form part of a
larger project that Birhane (2020) terms “algorith-
mic colonisation”. Academic institutions and large
technology corporations operating from the Global
North seek in this way to extract (language) re-
sources to develop tools, services, and research
which, ultimately, benefit them at least as much
as they benefit the communities they’re suppos-
edly serving, both in terms of financial and cul-
tural capital. As Hoffmann (2021) highlights, dis-
courses of “inclusive” and “ethical” development
can be used by technology corporations (and
academic institutions) to position themselves as
responsible and “doing good” (see also Green,
2019).3 But, as Fuller Medina argues: “lan-
guage data is patrimony” (2022, 2). Fuller Med-
ina is talking about one specific sociolinguistic
corpus which contains “disappearing cultural her-
itage” (the “Older Recordings of Belizean vari-
eties of Spanish”), but since linguistic corpora of-
ten feature folklore or personal recollections of a
particular time and place, her point is relevant
to many datasets of “naturalistic” language use.
To honour this patrimony (and the language com-
munities) she calls for “repatriation [of linguistic
data]” (Fuller Medina, 2022, 19). This framing
raises important questions regarding the “owner-
ship” of not just data but language varieties more
broadly, which are particularly acute in language
technology development.

One interesting case study here is the response
by Māori speakers to efforts to create proprietary
or open-source Māori ASR systems (Coffey, 2021;
Mahelona et al., 2023). Having compiled a tran-
scribed speech dataset with Māori speakers, the
Māori media company Te Hiku resisted requests
to sell or license it to non-Māori developers (Cof-
fey, 2021). Instead they trained their own system
(building on open-source architectures) to tran-
scribe their own radio archive for the Māori com-
munity (Coffey, 2021), a project they have since ex-
panded into the Papa Reo project4. As one Te Hiko
employee put it: “They suppressed our languages
and physically beat it out of our grandparents. [...]
And now they want to sell our language back to
us as a service” (Coffey, 2021). Importantly, these
questions of data sovereignty and who should own
language data are not limited to explicitly for-profit
contexts. The recently released open-source mul-
tilingual ASR model Whisper (Open AI) (Radford
et al., 2022) was trained on over a thousand hours

3Furthermore, Sadowski (2019) argues, in modern
capitalism, data is not like capital, but rather it is capital
as it is essential to (especially (AI) technology) produc-
tion.

4https://papareo.nz/

of Māori speech data. As Mahelona et al. (2023)
(Papa Reo) note it is not clear where exactly this
data was drawn from as Radford et al. (2022)
provide no detailed description, but like Google
USM (Zhang et al., 2023), Whisper is trained on
data from the web. While it is therefore likely not
drawing on the same datasets Te Hiko compiled
and tried to safeguard, it does represent language
technology development without (meaningful) en-
gagement or consent of the Māori community.

4.3. Language technologies at what
cost?

As pointed out by Crawford (2022) and Tacheva
and Ramasubramanian (2023), machine learning
is extractive, requiring ever-large amounts of re-
sources: energy, data, minerals, labour. The sig-
nificant harms caused by mining and manufactur-
ing, and the huge carbon footprints associated
with training and deploying deep learning based
language technologies are slowly being recog-
nised (Hershcovich et al., 2022; Schwartz et al.,
2020). For example, Hershcovich et al. (2022) call
for transparent and accurate reporting of carbon
emissions and energy use associated with natu-
ral language processing experiments. They high-
light that this kind of reporting is currently absent
from much of the research, and argue that these
should be reported alongside other impacts and
ethical considerations (Hershcovich et al., 2022).

Language technology development also comes
at significant human costs. Perhaps contrary to
the public perception, the development of lan-
guage technologies is not just conducted by (rel-
atively) highly-paid engineers and researchers in
universities and technology firms (located, pre-
dominately, in the Global North). Even in the age
of unsupervised model training, most language
technologies require human annotation at some
point in their development cycle. Across machine
learning domains, this annotation work is gener-
ally precarious and underpaid but ultimately crucial
“cultural work” (Irani, 2013) outsourced to work-
ers in the Global South (Gray and Suri, 2019).
For example, detection of “toxic” (i.e., undesirable)
text requires datasets with manually labelled exam-
ples. Like social media content moderation (Perri-
gio, 2022), annotating such “toxic” text can be ex-
tremely disturbing. In recent months, Kenyan em-
ployees of data annotation company Sama5 which
was contracted by Open AI, have alleged “exploita-
tive conditions” (Rowe, 2023) and called for an in-
vestigation by the Kenyan government (Perrigio,
2023). They say that the task of reviewing graphic

5Sama has since stated that they will no longer work
on content moderation or natural language process-
ing (Perrigio, 2023).

https://papareo.nz/
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descriptions of violence without (what they deem)
adequate preparation or support, has caused seri-
ous harm to their mental and physical health (Per-
rigio, 2023). The dataset these workers annotated
was eventually used to limit the amount of “toxic”
content generated by ChatGPT (Perrigio, 2023).
The impacts on workers involved in the develop-
ment language technologies should be a central
ethical concern.

The deployment of language technologies, like
other machine learning technologies, also affects
the (economic) value assigned to some linguis-
tic work, like translation (do Carmo, 2020). More
broadly, as (Levy, 2022) argues in the context of
long-haul truck drivers in the US, the expansion of
“AI” in the workplace often translates to a deteri-
oration of working conditions and much reduced
worker autonomy due to increased ML-facilitated
surveillance. Furthermore, the spread of propri-
etary language technologies to workplaces has as-
yet poorly understood privacy and security implica-
tions, leading some workplaces to ban employees
from using them (Naidu and Lange, 2023).

5. Attending to challenges together:
slowly and carefully

Much of the research on language technologies is
focused on solving carefully formulated problems
through technical innovation. While this approach
has proven extremely successful on a plethora of
small and large challenges, and continues to lead
to great innovations and improvements, it does not
apply to all types of problems.

Some problems, we argue, we need to attend
to even if we cannot “solve” them quickly or alone.
Attending to a problem is about noticing and car-
ing, paying deliberate attention. Big questions like
“what are the impacts of language technologies
on individuals and communities?”, “what is lan-
guage data and who can lay claim to it?”, “how
can we foster linguistic diversity?”, cannot be an-
swered definitively. Problems of “algorithmic bias”,
“data bias”, “language endangerment”, “linguistic
discrimination”, cannot be solved definitively – at
least not without radical social change. But this
indeterminacy need not be the end of the path. In-
stead, it can be a starting point. It is an invita-
tion for persistent engagement with these issues
and collaboration across and beyond disciplines.
As Tsing argues: “Collaboration means working
across difference, which leads to contamination.
Without collaboration we all die.” (2015, 28). Tsing
is talking about collaboration between and within
species (including plants and humans) in the face
of ecological disturbance but it is not difficult to see
how her point translates to social and technologi-
cal change and the challenges they raise (Tsing,

2015, 160).

5.1. Attention, not (quick) solutions
The problem of “bias in computing”, as initially dis-
cussed almost 30 years ago by Friedman and Nis-
senbaum (1996), is one such challenge. There are
ways to mitigate biases in machine learning (e.g.,
Mehrabi et al., 2021). However in addition to po-
tentially having significant technical limitations (Go-
nen and Goldberg, 2019), these approaches al-
ways fail to address the underlying causes of “bias”
in the first place. As Hoffmann puts it: “[E]fforts to
achieve fairness and combat algorithmic discrim-
ination fail to address the very hierarchical logic
that produces advantaged and disadvantaged sub-
jects in the first place. Instead, these efforts have
tended to admit, but place beyond the scope of
analysis important structural and social concerns
relevant to the realization of data justice” (2019,
901). Auditing algorithmic systems and document-
ing algorithmic bias can push developers to ad-
just system behaviours for instance by changing
training data (Buolamwini and Gebru, 2018; Raji
and Buolamwini, 2019). However, this auditing
paradigm does assume that public pressure or
governance mechanisms internal or external to the
developing organisation can affect such change
– an assumption that does not always hold (Met-
calf et al., 2021). More deeply, the kinds of bi-
ases in the technical designs of algorithmic sys-
tems, such as the ones identified by Helm et al.
(2024) often cannot be easily addressed. As a
growing area of scholarship points out, algorithmic
bias in speech and language technologies are not
just a matter or data sparsity for some language
varieties. More fundamentally, language technolo-
gies tend to presume a written standard and mono-
lingual speakers. Designing useful language tech-
nologies for contexts in which there either is no
standard written form or it is not seen as cultur-
ally appropriate (Deumert, 2010), or for (the global
majority of) communities whose linguistic reper-
toires include multiple “different” languages (Oth-
eguy et al., 2015), requires a complete rethinking
of our design process (Bird and Yibarbuk, 2024;
Markl et al., 2023).

A parallel can be drawn here between the work
to tackle algorithmic injustice (or bias, or discrimi-
nation) and linguistic injustice (or bias, or discrim-
ination). Much of the work in sociolinguistics has
been explicitly or implicitly motivated by a desire
to prevent linguistic discrimination (Charity Hudley,
2013; Charity Hudley et al., 2020). Researchers
have been documenting language difference and
highlighting that this difference should not be un-
derstood as deficit (Charity Hudley, 2013; Hen-
ner and Robinson, 2021; Craft et al., 2020). For
example, much work employing quantitative and
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qualitative methodologies and different theoretical
frameworks has shown how linguistic difference
and racial difference is co-constructed – and how
this difference is then framed as a deficit in com-
parison to a white (linguistic) norm (Rosa and Flo-
res, 2017; Rosa, 2018; Figueroa, 2023). As Hen-
ner and Robinson (2021) discuss, these norms are
furthermore ableist in the way they position some
ways of using language as disordered. The op-
pression of (a) language is not (just) about lan-
guage, but about culture, history and identity. This
is why language revitalisation efforts are complex
and differ depending on the social and historical
context of the language community (Chiblow and
Meighan, 2021; Yamada, 2007; Smith, 2021).

Compiling evidence on discrimination has lim-
ited use. It can contribute to efforts to slowly
change attitudes and change or dismantle oppres-
sive institutions, but it is not a “quick” solution,
since the problem, usually, is not that we don’t
know about the discrimination. Instead, linguistic
discrimination requires our persistent attention in
scholarship and teaching and requires us to re-
flect on our own biases as well (Mallinson and
Charity Hudley, 2018). The same is true for algo-
rithmic discrimination. As we approach (at least)
thirty years of “bias” discussions in computing, we
have amassed a wealth of evidence that racism,
misogyny and ableism are reproduced in algorith-
mic systems due to “biases” in data and technol-
ogy design, and that they can perpetuate harms re-
gardless of biases in implementation (e.g., in polic-
ing, surveillance, automation) and development
(e.g., exploitation of workers and environmental re-
sources). And thanks to this evidence, many prac-
tices have changed, such as the adoption of docu-
mentation frameworks (Gebru et al., 2021; Mitchell
et al., 2019; Bender and Friedman, 2018), routine
testing for algorithmic bias in language technol-
ogy development, a growing awareness of the so-
cial implications of this bias (Blodgett et al., 2020;
Schwartz, 2022), and a move towards multilingual
models. Nevertheless, there is still a lot of work
to do. In particular, many of the fundamental log-
ics of natural language processing (and AI more
broadly), remain unchanged, such as a focus on
scale, speed, novelty, efficiency, and universal-
ity (Birhane et al., 2022a; Tacheva and Ramasub-
ramanian, 2023; Rikap, 2022; Ricaurte, 2022; Bird,
2022). Many, if not most, language communities
are not well-served by these logics. The first step
in figuring out a better process, is putting communi-
ties (back?) at the centre of language technology
design in a meaningful way.

5.2. Shifting the centre of attention
If the development is lead by language communi-
ties, they can, firstly, decide themselves whether

and how their language(s) should be used in tech-
nology development. They can furthermore re-
tain sovereignty over their (language) data and any
derived technologies. This would follow the per-
spective of, for example, Mahelona et al. (2023)
who argue, indigenous language technology de-
velopment should be led by indigenous language
communities in ways which ensure that they re-
tain control over both the technologies and the
datasets they are trained on. Similar arguments
are made by organisers of participatory projects
like Masakhane NLP (Nekoto et al., 2020) who
describe themselves as a “grassroots NLP com-
munity for Africa, by Africa” and have been work-
ing on a range of language technology tasks in
a number of “low-resource” African languages,
such as named entity recognition (Adelani et al.,
2022). They have furthermore compiled datasets
for speech synthesis (Meyer et al., 2022), and de-
veloped a pre-trained language model (Dossou
et al., 2022). This approach of involving (and cred-
iting) large numbers of community members, is a
way of shifting the centre of attention to what are
often considered the “margins” of language tech-
nology development: “under-resourced” varieties
and “under-resourced” communities.

The Distributed AI Research Institute (DAIR)6

represents a complimentary movement towards
community-centred, distributed AI research which
pushes against the increasing consolidation of AI
research. As Mahelona et al. (2023) highlight, the
kind of models and datasets used by Google or
Open AI are difficult to recreate, store and use with-
out access to the right kind of (considerable) com-
puting power, storage and expertise even if they
are “open-source”. These discussions of course
tie into broader debates on ethics of data sharing,
especially in the Global South. Abebe et al. (2021)
identify the same kind of “deficit narratives” we
see applied to “low-resource” language varieties,
applied to African societies more broadly. Fold-
ing African researchers, research institutions and
governments into a global culture of (more or less
open) “data sharing”, is framed as a necessary as-
pect of “development”, but as Abebe et al. (2021)
highlight, “equitable data sharing” is challenging.
It requires a nuanced understanding of the “data
setting” (i.e., the context) (Loukissas, 2019), local
norms and interests and infrastructures which en-
able access for data subjects (Abebe et al., 2021).

5.3. Attending together
As a community of researchers interested in lan-
guage(s) and language technologies, we should
attend to deep-rooted linguistic and algorithmic in-
justice. Practically, this requires us to take an ethi-

6https://www.dair-institute.org/

https://www.dair-institute.org/
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cal, moral or political position, as noted by Blodgett
et al. (2020). While there are arguably no neutral
decisions in science or technology development,
the need for foundational principles is particularly
clear here. For example, we might take the po-
sition (and, we, as the authors do) that language
communities should retain a level of sovereignty
over their language(s). We also condemn linguis-
tic and algorithmic injustice, which we consider
forms of discrimination rooted in racism, ableism,
classism and misogyny among others. Starting
from these ethical, moral and/or political principles,
we can focus on the contexts of language technol-
ogy development and deployment.

As researchers and educators we have some
ability to influence how language technologies are
developed. Going beyond noticing injustices re-
quires, we believe, interdisciplinary perspectives.
It also requires us to take ourselves and our work
outside of the traditional research centres to learn
from language communities themselves. Attend-
ing together should involve interdisciplinary teams
of researchers looking at different aspects of lan-
guage and language technologies from different
vantage points, including linguists, computer sci-
entists, philosophers, interaction designers, law
scholars, and sociologists, as well as relevant ex-
perts in the deployment domain of the technology
(e.g., teachers and pedagogues for tools used in
education). Members of the language community
should also be considered experts in their own lan-
guages. They understand the histories of their
languages and community and are best-placed to
build towards their futures. These kinds of collab-
orative processes are inevitably complicated and
slow, and likely involve disagreement and discom-
fort. They are also an ideal – there are many
barriers to building and maintaining collaborative
projects across and beyond institutions. But even
if ideals cannot always be realised, they can be
useful starting points guiding us towards what we
might want to aim to do. Similarly changing teach-
ing practices or broadening curricula in education
is slow and laborious, but ultimately a powerful
way to affect research cultures (Charity Hudley and
Mallinson, 2018; Raji et al., 2021). For interdisci-
plinarity to be sustainable and rewarding, we also
need to foster inclusive events and spaces where
different kinds of skills, interests, backgrounds and
knowledges are valued and recognised. Collabo-
rators across and outwith academia and industry
are affected by different external pressures (e.g.,
publication norms) and constraints (e.g., financial,
geographic), and likely have different core inter-
ests. Translating between these differences and
allowing for fertile cross-contamination is hard, but
ultimately worthwhile, work.

Many of the positive and negative impacts of

language technologies emerge only within specific
deployment contexts. It is therefore important to
consider how the technologies (and the research)
we are working on are actually used and expe-
rienced by people. Once we have that estab-
lished, we can, again departing from some ethi-
cal principles unique to us, think about their im-
pacts. For example, automatic speech recognition
tools can greatly improve the accessibility of digi-
tal technologies and information for a wide range
of people (Reitmaier et al., 2023; Pradhan et al.,
2018). However, when embedded in voice user in-
terfaces in the home, they could also be collecting
sensitive information without the informed consent
of their users (Lau et al., 2018; Rincón et al., 2021).
Where automatic speech recognition tools are bi-
ased, any benefits might be completely negated for
some user groups and might even exacerbate ex-
isting linguistic discrimination (Wenzel et al., 2023;
Mengesha et al., 2021).

Changing the deployment contexts perhaps
means changing everything. And while that’s
forever “beyond the scope” of any one research
project, curriculum and career, it is something we
should consider in how we conduct our work.

6. Conclusions

In this paper, we invite you to draw your at-
tention to the persistent ethical and social chal-
lenges raised by language technologies. Devel-
oping and deploying language technologies “as
if people mattered” (Schumacher, 1993), involves
grappling with linguistic and algorithmic bias, in-
justice, and discrimination, and engaging with lan-
guage communities. Rather than positioning our-
selves as experts who can “solve problems”, this
requires a reflexive and receptive approach. Act-
ing as experts and problem solvers comes natu-
rally to researchers – after all that is what we have
been trained to do. But deeply-rooted social in-
equities cannot be “solved” over night, or alone. It
is through collaboration across and beyond aca-
demic disciplines, that the “interdependence, rela-
tionships and connectedness” (Birhane, 2021) of
languages, language communities and language
technologies becomes apparent. Layering many
different perspectives, and many different contexts
on top of each other both complicates and clarifies
the picture. It allows us to uncover the logics and
histories of technologies, appreciate the cultural
significance and societal role of language varieties
and listen to and honour the desires and needs
of language communities. Starting from our own
ethical and political commitments, we can use this
patchwork of insights and interests to build more
equitable futures.
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