@inproceedings{haldar-hockenmaier-2024-analyzing,
title = "Analyzing the Performance of Large Language Models on Code Summarization",
author = "Haldar, Rajarshi and
Hockenmaier, Julia",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.89/",
pages = "995--1008",
abstract = "Large language models (LLMs) such as Llama 2 perform very well on tasks that involve both natural language and source code, particularly code summarization and code generation. We show that for the task of code summarization, the performance of these models on individual examples often depends on the amount of (subword) token overlap between the code and the corresponding reference natural language descriptions in the dataset. This token overlap arises because the reference descriptions in standard datasets (corresponding to docstrings in large code bases) are often highly similar to the names of the functions they describe. We also show that this token overlap occurs largely in the function names of the code and compare the relative performance of these models after removing function names versus removing code structure. We also show that using multiple evaluation metrics like BLEU and BERTScore gives us very little additional insight since these metrics are highly correlated with each other."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haldar-hockenmaier-2024-analyzing">
<titleInfo>
<title>Analyzing the Performance of Large Language Models on Code Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rajarshi</namePart>
<namePart type="family">Haldar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) such as Llama 2 perform very well on tasks that involve both natural language and source code, particularly code summarization and code generation. We show that for the task of code summarization, the performance of these models on individual examples often depends on the amount of (subword) token overlap between the code and the corresponding reference natural language descriptions in the dataset. This token overlap arises because the reference descriptions in standard datasets (corresponding to docstrings in large code bases) are often highly similar to the names of the functions they describe. We also show that this token overlap occurs largely in the function names of the code and compare the relative performance of these models after removing function names versus removing code structure. We also show that using multiple evaluation metrics like BLEU and BERTScore gives us very little additional insight since these metrics are highly correlated with each other.</abstract>
<identifier type="citekey">haldar-hockenmaier-2024-analyzing</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.89/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>995</start>
<end>1008</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing the Performance of Large Language Models on Code Summarization
%A Haldar, Rajarshi
%A Hockenmaier, Julia
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F haldar-hockenmaier-2024-analyzing
%X Large language models (LLMs) such as Llama 2 perform very well on tasks that involve both natural language and source code, particularly code summarization and code generation. We show that for the task of code summarization, the performance of these models on individual examples often depends on the amount of (subword) token overlap between the code and the corresponding reference natural language descriptions in the dataset. This token overlap arises because the reference descriptions in standard datasets (corresponding to docstrings in large code bases) are often highly similar to the names of the functions they describe. We also show that this token overlap occurs largely in the function names of the code and compare the relative performance of these models after removing function names versus removing code structure. We also show that using multiple evaluation metrics like BLEU and BERTScore gives us very little additional insight since these metrics are highly correlated with each other.
%U https://aclanthology.org/2024.lrec-main.89/
%P 995-1008
Markdown (Informal)
[Analyzing the Performance of Large Language Models on Code Summarization](https://aclanthology.org/2024.lrec-main.89/) (Haldar & Hockenmaier, LREC-COLING 2024)
ACL