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Abstract

Among the various pre-trained neural language models that are popular today, dropout is already an indispensable
regularization technique. To solve the inconsistency between training and inference caused by the randomness of
dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a
novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language
models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy.
Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the
hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent.
The proposed LR-Drop can be regarded as a “self-distillation” framework, in which each sub-model generated by
dropout is the other’s “teacher” model and “student” model. Through extensive experiments on 8 natural language
understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of
15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.
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1. Introduction

In recent years, pre-trained language models
(PLMs) based on the Transformer architecture have
revolutionized the field of natural language process-
ing (NLP) by achieving state-of-the-art performance
on a wide range of NLP tasks. These models, such
as BERT (Bidirectional Encoder Representations
from Transformers) (Kenton and Toutanova, 2019),
ALBERT (A Lite BERT) (Lan et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019), and
ELECTRA (Efficiently Learning an Encoder that
Classifies Token Replacements Accurately) (Clark
et al., 2019b), have demonstrated their effective-
ness in tasks such as text classification, named en-
tity recognition, sentiment analysis, machine trans-
lation, question answering, and more.

One of the key reasons for the success of these
Transformer-based PLMs is their ability to capture
contextualized representations of words and sen-
tences. By leveraging the self-attention mecha-
nism, these models can efficiently encode the re-
lationships between different words in a sentence,
allowing them to capture long-range dependen-
cies and context. The pre-training stage involves
training the models on large amounts of unlabeled
text, followed by fine-tuning on specific downstream
tasks using labeled data. This transfer learning ap-
proach has proven to be highly effective, as the
pre-trained models can leverage the knowledge
learned from the vast amount of unlabeled data to
perform well on a variety of NLP tasks.

†Corresponding author

To prevent overfitting and improve the general-
ization ability of PLMs, dropout regularization tech-
niques (Srivastava et al., 2014) are commonly em-
ployed during both the pre-training and fine-tuning
stages. Dropout randomly deactivates a portion of
the neural units during training, effectively creating
an ensemble of sub-models. This ensemble ap-
proach helps in reducing over-reliance on specific
units and encourages the model to learn more ro-
bust and generalizable representations. However,
the use of dropout introduces a challenge in terms
of inconsistency between training and inference.
During training, dropout is applied to create the en-
semble, but during inference, the full model without
dropout is used, leading to a mismatch in behavior.

Several studies (Ma et al., 2016; Zolna et al.,
2018) have highlighted this inconsistency and its
potential impact on model performance. They have
proposed methods to address this issue by intro-
ducing L2 regularization to the hidden unit state.
However, the effectiveness of this approach is lim-
ited, and it does not fully resolve the inconsistency
problem. To tackle this challenge more effectively,
recent research (Wu et al., 2021) has introduced a
novel consistency training method called R-Drop.
R-Drop aims to align the output distributions of
identical data samples processed by different sub-
models created through dropout. It involves per-
forming two forward passes for each data sample,
with each pass handled by a distinct sub-model
that randomly deactivates some hidden units. By
minimizing the bidirectional Kullback-Leibler (KL) di-
vergence between the output distributions of these
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two sub-models, R-Drop encourages consistency
in the predictions made by the ensemble. This
approach provides a more robust and consistent
regularization of dropout, addressing the inconsis-
tency issue between training and inference.

In addition to regulating dropout at the output
layer, it is also important to ensure consistency in
other representations within the PLM. For instance,
the multi-head attention mechanism, which is a
crucial component of Transformer-based models,
typically employs dropout. Previous studies (Clark
et al., 2019a) have shown that the attention weight
matrix captures substantial linguistic knowledge.
Therefore, it is essential to maintain consistency be-
tween the multi-head attention matrices of different
sub-models to preserve the learned linguistic knowl-
edge. By extending the principles of R-Drop, we
proposed LR-Drop to introduce regular constraints
into each Transformer layer of the model.

In particular, we formulate three loss functions to
regulate different representations from PLMs lay-
ers: 1) the hidden states and 2) multi-head attention
matrices extracted from the Transformer layer; 3)
the output distributions generated by the prediction
layer. The multi-head attention in PLMs typically
employs dropout, and previous studies (Clark et al.,
2019a) have demonstrated that the attention weight
matrix can acquire a substantial amount of linguis-
tic knowledge, hence we ensure the consistency
between the two multi-head attentions.

To summarize, the main contributions of this pa-
per are as follows:

• In this work, we propose the layer-wise regular-
ized dropout (LR-Drop), a simple but effective
regularization technique built upon dropout,
designed for Transformer-based pre-trained
language models.

• For the special structure of Transformer-based
pre-trained language models, we are the first
to propose Transformer-layer regularization,
which includes regularization for hidden states
and multi-headed attention.

• Our LR-Drop does not introduce additional
model parameters and does not change the
original architecture of the language model.

• By conducting rigorous experiments on 8 natu-
ral language understanding datasets, 6 neural
machine translation datasets, and 1 abstrac-
tive summarization dataset, we provide evi-
dence that LR-Drop excels in performance,
even achieving state-of-the-art results.

2. Related Work

2.1. Regularization Methods
The susceptibility of large and deep neural net-
work models to overfitting is a well-established
fact. It has been observed that the most effective
models are typically large ones, but they are also
paired with appropriate regularization techniques.
A plethora of regularization techniques have been
suggested to enhance the generalization capac-
ity of these models. (Krogh and Hertz, 1992) in-
troduced simple weight decay as a regularization
technique to improve generalizability . (Kang et al.,
2016) proposed the Shakeout method, which ran-
domly enhances or inverts the contribution of each
cell to the next layer, effectively applying L1 and L2
regularization to the weights. Normalization tech-
niques have also been utilized for regularization
by researchers such as (Ba et al., 2016; Salimans
and Kingma, 2016; Wu and He, 2018). (Hochreiter
and Schmidhuber, 1995; Poole et al., 2014) found
that adding noise can have a regularization effect.
Label smoothing, a simple regularization technique
particularly effective in the presence of noisy labels,
has been explored by (Müller et al., 2019; Zhang
et al., 2021; Li et al., 2020). Adversarial training,
as proposed by (Goodfellow et al., 2015; Zhu et al.,
2020; Ni et al., 2023, 2022a,b) has shown signif-
icant improvement in model performance, but it
comes at the cost of increased computational ef-
fort. Dropout and its derivatives, including Adaptive
Dropout by (Wan et al., 2013; Ba and Frey, 2013;
Srivastava et al., 2014; Ni and Kao, 2023) have
gained popularity due to their effectiveness and
compatibility with other regularization techniques.
Dropout enables the generation of sub-models with
exponentially shared parameters during training,
providing powerful regularization capabilities.

2.2. Knowledge Distillation
The concept of minimizing the output or parame-
ter distribution between two models is commonly
referred to as knowledge distillation (Hinton et al.;
Furlanello et al., 2018). In knowledge distillation,
a teacher model and a student model are typically
employed, where the student model learns from
both the ground truth labels and the teacher model
during training. The teacher model serves as a
guide for the student model, allowing it to learn the
parameters and output distribution of the teacher
model. This process can be viewed as the student
model distilling knowledge from the teacher model.
In the case of R-Drop (Wu et al., 2021), the gener-
ated sub-models can be seen as reciprocal teacher
and student models, similar to the concept of self-
distillation (Mobahi et al., 2020; Zhang et al., 2019;
Zhang and Sabuncu, 2020). However, R-Drop only
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applies self-distillation to the output of the model,
without considering the internal representations.
On the other hand, our proposed LR-Drop incorpo-
rates a layer-wise self-distillation approach, similar
to the knowledge distillation technique employed in
TinyBERT (Jiao et al., 2020). This allows for a more
comprehensive knowledge interaction between the
sub-models within our LR-Drop framework. It is
important to note that while knowledge distillation
is typically used to compress models, the primary
objective of LR-Drop is to facilitate mutual learn-
ing among the sub-models within the larger model,
thereby enhancing overall model performance.

3. Method: LR-Drop

This section presents a novel regularization
method called LR-Drop, specifically designed for
Transformer-based language models. The LR-Drop
technique is illustrated in Figure 1, where it is ap-
plied to the Transformer-based model. The process
begins by inputting a sample x into the model with
dropout applied twice, resulting in two output distri-
butions denoted as P1 and P2. Subsequently, the
cross-entropy loss is calculated using P1, P2, and
the hard label y:

LCE = −logw1 (y|x)− logw2 (y|x). (1)

In addition to the losses obtained from the compu-
tation with labels, LR-Drop contains three regular-
ization losses, which are Transformer-layer regular-
ization (containing (1) hidden states regularization
loss and (2) multi-head attention regularization loss)
and (3) output regularization loss. Next we will de-
scribe each of these three regularization processes
and details.

3.1. Transformer-layer Regularization
As shown in Figure 1, the red box is a Transformer-
layer regularization, and we regularize between
the two sub-Transformer-layers sampled in each
layer of the model. The two sub-models obtained
by dropout random sampling are mutually teacher
and student. Therefore, Transformer-layer regu-
larization can also be seen as Transformer-layer
self-distillation. The right side of Figure 1 shows
a concrete representation of the Transformer-layer
regularization, which contains hidden states regu-
larization and multi-head attention regularization.

Hidden States Regularization. A fully con-
nected feed-forward network is included in each
transformer layer, which is expressed as follows:

HS(x) = max(0, xW1 + b1)W2 + b2, (2)

where there are two linear transformations and
one ReLU activation in each feed-forward network.

We regularize the knowledge from the Transformer
layer outputs of the two sub-models with the follow-
ing objectives:

LHSR = MSE(HS(x)1,HS(x)2), (3)

where the matrices HS(x)1 ∈ Rl×d and HS(x)2 ∈
R

l×d are the hidden states of first sub-model and
the second sub-model respectively, which are cal-
culated by Equation 2. MSE() is the mean squared
error loss function, l is the input text length, and d
is the hidden sizes of this two sub-models.

Multi-head Attention Regularization. The key
point for the Transformer-based model to work well
is that each Transformer contains a multi-headed
attention module whose attention function is com-
puted depending on the query, key and value, rep-
resented as matrices Q, K and V . The attention
function is called “Scaled Dot-Product Attention”, it
can be expressed as:

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V , (4)

where dk is the dimension of queries and keys.
Then the dot product of the query and all the keys
is obtained by dividing each key by sqrtdk and ap-
plying the softmax() function to obtain the weights
of the values. Multi-head attention is concatenated
by the attention of independent initialization weights
in equation (4), which enables the model to focus
jointly on information from different representation
subspaces. It can be expressed as:

MHA(Q,K ,V ) = Concat(A1
head, ..., A

2
head)W

o,
(5)

where h is the number of attention heads, andA1
head

denotes the i-th attention head, which is calculated
by the equation (4). The matrix W o acts as a linear
transformation.

Multi-head attention learns a lot of linguistic
knowledge during training, and it is necessary to
regularize it. Therefore, we propose multi-head at-
tention regularization to encourage mutual learning
of attention weights between two sub-models. The
optimization objective is defined as:

LMHAR =
1

h

h∑
i=1

MSE(A1
i ,A

2
i ), (6)

where h is the number of attention heads, A1
i ∈

R
l×l and A2

i ∈ Rl×l refer to the attention matrix
corresponding to the i-th head of first sub-model
and the second sub-model, l is the input text length,
and MSE() refer to the mean squared error loss
function.

3.2. Output Regularization
In addition to regularizing the Transformer layer
within the model, we also apply regularization to
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Figure 1: The proposed LR-Drop to regularize Transformer-based PLM. The left figure shows that one
input will go through the two different sub-models produced by dropout twice and obtain two distributions
P1 and P2. The right one shows a Transformer-layer regularization containing hidden states regularization
MHA regularization.

the output of the model, similar to R-Drop. Specifi-
cally, our approach, LR-Drop, aims to minimize the
bidirectional KL-divergence between the output dis-
tributions of the two sub-models obtained through
dropout sampling. The optimization objective is
defined as:

LOR =
1

2
[KL(P1, P2) + KL(P2, P1)], (7)

where P1 and P2 are the output distributions of the
first and second sub-models, respectively, and KL()
denotes the KL-divergence loss function.

3.3. Total Optimization Objective
To summarize, the total optimization objective of
our proposed LR-Drop during training is expressed
as follows:

LTotal = LCE + αLHSR + βLMHAR + γLOR, (8)

where α, β, and γ are the weight coefficients for the
regularization loss functions LHSR, LMHAR, and
LOR, respectively.

4. Experiments

We assessed the effectiveness of LR-Drop on vari-
ous natural language processing tasks. Our evalua-
tion involved eight datasets for natural language un-
derstanding, six datasets for neural machine trans-
lation, and one dataset for abstractive summariza-
tion. In the table below, we use the abbreviations
"RD" to refer to R-Drop and "LRD" to refer to LR-
Drop in the presentation of the experimental results.

4.1. Natural Language Understanding

Datasets We begin by assessing the effectiveness
of LR-Drop on natural language understanding
tasks. The GLUE Benchmark consists of eight En-
glish natural language understanding tasks, which
vary in domains, data volumes, and difficulty levels.

(1) RTE (Dagan et al., 2006; Bar Haim et al.,
2006; Giampiccolo et al., 2007): This dataset
comprises a series of natural language inference
datasets used in annual text challenges.

(2) MNLI (Williams et al., 2018): In this task,
a premise and a hypothesis are given, and the
objective is to predict whether the premise supports
or contradicts the hypothesis, or neither.

(3) MRPC (Dolan and Brockett, 2005): Given a
pair of sentences, the task is to determine whether
their semantics are the same.

(4) STS-B (Agirre et al., 2007): Each data in-
stance consists of a pair of sentences along with
a similarity score ranging from 1 to 5. The task
involves discrete regression to predict the scores.

(5) QQP (Iyer et al., 2017): This task involves
identifying whether a pair of questions are semanti-
cally identical.

(6) SST-2 (Socher et al., 2013): This binary task
requires predicting whether a sentence is positive
or negative.

(7) QNLI (Rajpurkar et al., 2016): The objective
of this task is to determine if a given question can
be answered using the context sentence.

(8) CoLA (Warstadt et al., 2018): This task fo-
cuses on assessing the grammatical accuracy of a
sentence.

Experimental Settings In this subsection, we
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Model MNLI MRPC QNLI QQP RTE SST-2 STS-B CoLA Avg
BERT-base 83.8 85.3 90.8 91.0 68.2 92.4 89.3 62.3 82.85
BERT-base + RD 85.5 87.3 92.0 91.4 71.1 93.0 89.6 62.6 84.06
BERT-base + LRD 86.1 88.0 92.3 91.4 71.8 93.2 90.2 63.4 84.55
RoBERTa-large 90.2 90.9 94.7 92.2 86.6 96.4 92.4 68.0 88.93
RoBERTa-large + RD 90.9 91.4 95.2 92.5 88.4 96.9 92.5 70.0 89.73
RoBERTa-large + LRD 91.3 91.8 95.9 93.2 89.2 97.4 92.7 71.8 90.41
ELECTRA-large 90.9 90.8 95.0 92.4 88.0 96.9 92.6 69.1 89.46
ELECTRA-large + RD 91.2 91.3 95.6 92.6 88.9 97.4 92.8 70.5 90.03
ELECTRA-large + LRD 91.7 92.1 96.2 93.3 89.5 97.6 93.1 71.9 90.68

Table 1: Performances on natural language understanding tasks of GLUE benchmark. Significance test:
the average performance of LR-Drop and R-Drop on the GLUE datasets was t-tested to obtain a p-value
of 0.0034 < 0.01.

employ three publicly available pre-trained lan-
guage models (PLMs) as the baseline models
for our experiments to evaluate the effectiveness
of LR-Drop. The chosen PLMs are BERT-base,
RoBERTa-large, and ELECTRA-large. Different
tasks may require different parameter settings,
so we dynamically adjust the coefficients α, β,
and γ from the set {0.01, 0.05, 0.1, 0.5} accordingly.
The experimental methodology for the comparative
models follows the approach outlined in previous
research. For the STS-B task, we use the Pearson
correlation as the evaluation metric, while for CoLA,
we employ Matthew’s correlation. The remaining
tasks are evaluated based on Accuracy. We report
the mean results of 5 runs to ensure statistical reli-
ability. The experiments were conducted using an
RTX 3090 GPU.

Experimental Results The experimental results
are presented in Table 1. When applying LR-Drop
to the BERT-base model, we observed improve-
ments in fine-tuning scores across multiple tasks.
For the MNLI task, the fine-tuning score increased
from 83.8 to 86.1. In the MRPC task, the score
improved from 85.3 to 88.8. The QNLI task saw an
improvement from 90.8 to 92.3, and the QQP task
improved from 91.0 to 91.4. For the RTE task, the
score increased from 68.2 to 71.8. The SST-2 task
showed an improvement from 92.4 to 93.2, and the
STS-B task improved from 89.3 to 90.2. Similarly,
the RoBERTa-large and ELECTRA-large models
also exhibited performance improvements of more
than 1 point per dataset when using LR-Drop.

Across the eight datasets, the BERT-base + LR-
Drop, RoBERTa-large + LR-Drop, and ELECTRA-
large + LR-Drop models achieved impressive aver-
age scores of 84.55, 90.41, and 90.68, respectively.
LR-Drop significantly improved the performance of
the three baseline models: BERT-base, RoBERTa-
large, and ELECTRA-large, by 1.70 points, 1.48
points, and 1.22 points, respectively. Furthermore,
when compared to the previous method R-Drop,
our proposed LR-Drop demonstrated average im-

provements of 0.49 points, 0.65 points, and 0.68
points, respectively. These results indicate that the
performance of our LR-Drop regularization is partic-
ularly enhanced when applied to stronger baseline
models. Additionally, the effectiveness of LR-Drop
is evident across different neural language mod-
els, resulting in improved performance in natural
language understanding tasks.

4.2. Neural Machine Translation

Datasets The datasets used for neural ma-
chine translation were obtained from the Interna-
tional Workshop on Spoken Language Translation
(IWSLT) competitions. These datasets consist of
translations between English and German (En ↔
De), English and Spanish (En ↔ Es), English and
French (En ↔ Fr), and English and Chinese (En ↔
Zh). Specifically, we used the IWSLT14 dataset for
English to German and vice versa, the IWSLT14
dataset for English to Spanish and vice versa, the
IWSLT17 dataset for English to French and vice
versa, and the IWSLT dataset for English to Chi-
nese and vice versa. The IWSLT dataset con-
tains approximately 170,000 pairs of sentences
for training, 7,000 pairs for validation, and 7,000
pairs for testing. These datasets serve as valuable
resources for training and evaluating our neural
machine translation models.

Experimental Settings The experimental con-
figuration outlined in (Wu et al., 2021) is fol-
lowed in this study. Our benchmark model is
the Transformer network proposed by (Vaswani
et al., 2017). The specific configurations for the
IWSLT translations are specified under the trans-
former_iwslt_de_en setting. To explore different
settings, the coefficients α, β, and γ are dynami-
cally varied within the set {0.1, 0.5, 1}. The imple-
mentation of our models is carried out using the
Fairseq framework. For evaluating the performance
of the models on neural machine translation tasks,
we utilize BLEU scores. The reported results are
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Model En to De De to En En to Fr Fr to En En to Zh Zh to En En to Es Es to En Avg
Transformer 28.57 34.64 35.9 36.1 26.3 18.4 39.0 40.6 32.44
Transformer + RD 30.72 37.25 38.0 38.9 28.1 19.5 41.8 43.2 34.68
Transformer + LRD 30.95 37.87 38.8 39.6 28.6 20.3 42.6 44.1 35.35

Table 2: BLEU scores on 8 IWSLT machine translation tasks. Significance test: the average performance
of LR-Drop and R-Drop on the 8 datasets was t-tested to obtain a p-value of 0.0037 < 0.01.

the averages obtained from five trial runs to ensure
robustness. The experiments are conducted on an
RTX 3090 GPU, which serves as the hardware for
the experiments.

Experimental Results The experimental results
are presented in Table 2. When applying the
Transformer model to our LR-Drop technique, we
observed improvements in the fine-tuning scores
for various translation tasks. For the English to
German translation task, the fine-tuning score in-
creased from 28.57 points to 30.95 points. Sim-
ilarly, for the German to English translation, the
score improved from 34.64 points to 37.87 points.
For the English to French translation, the score im-
proved from 35.9 points to 38.8 points, and for the
French to English translation, the score improved
from 36.1 points to 39.6 points. In the English to
Chinese translation task, the score improved from
26.3 points to 28.6 points, and in the Chinese to
English translation, the score improved from 18.4
points to 20.3 points. Additionally, for the English to
Spanish translation, the score improved from 39.0
points to 42.6 points, and for the Spanish to English
translation, the score improved from 40.6 points to
44.1 points.

Comparing the Transformer model with the LR-
Drop technique to the original Transformer, we ob-
served an average improvement of 2.91 points
across the eight IWSLT machine translation tasks.
Furthermore, the Transformer model with R-Drop
achieved an average score of 34.68, while our
Transformer model with LR-Drop achieved an av-
erage score of 35.35. These results demonstrate
the effectiveness of our method in improving the
performance of neural machine translation tasks.

4.3. Abstractive Summarization
Datasets The abstract summarization task aims
to condense lengthy sentences or documents into
concise sequences while preserving the main con-
tent. It is a generation task. To evaluate the effec-
tiveness of LR-Drop on the abstract summarization
task, we employ the CNN/Daily Mail dataset. This
dataset consists of news documents (source) and
their corresponding highlighted summaries (target),
which are extracted from CNN and Daily Mail web-
sites. The dataset comprises 287,226 training doc-
uments, 13,368 validation documents, and 11,490
test documents. We preprocess the dataset follow-

Model RG-1 RG-2 RG-L
Transformera 39.50 16.06 36.63
ProphetNetb 44.02 21.17 41.30
BARTc 44.16 21.28 40.90
PEGASUSd 44.17 21.47 41.11
BART + R3Fe 44.38 21.53 41.17
BART + RDf 44.51 21.58 41.24
BART + LRD 44.58 21.63 41.30

Table 3: The ROUGE scores, consisting of
ROUGE-1, ROUGE-2, and ROUGE-L, are pre-
sented for the CNN/Daily Mail summarization
dataset. A significance test was carried out, com-
paring the mean performance of LR-Drop and R-
Drop. A t-test yielded a p-value of 0.0064, which
is less than 0.01. References: a: (Vaswani et al.,
2017); b: (Qi et al., 2020); c: (Lewis et al., 2020);
d: (Zhang et al., 2020); d: (Aghajanyan et al., 2020);
f : (Wu et al., 2021).

ing the guidelines provided by Wu et al. (2021) (Wu
et al., 2021).

Experimental Settings In this subsection, we
conduct experiments using the BART pre-training
model as a baseline to assess the efficacy of our
proposed LR-Drop regularization technique. Dur-
ing the fine-tuning process, we apply the BART
model with LR-Drop. The coefficients α, β, and
γ are set to 0.1, 0.2, and 0.5, respectively. The
remaining hyper-parameter settings are consistent
with the original paper on the BART model. To eval-
uate the performance of the models on the abstract
summarization task, we employ the ROUGE F1
score. The reported results are the mean scores
obtained from five independent runs. The experi-
ments are conducted on an RTX 3090 GPU.

Experimental Results To provide a comprehen-
sive evaluation of the different methods, we report
the ROUGE-1 (RG-1) and two-sequence ROUGE-
2 (RG-2) overlaps to assess the information con-
tent, as well as the longest common subsequence
ROUGE-L (RG-L) scores to evaluate fluency. The
experimental results are presented in Table 3. No-
tably, BART, when trained with our LR-Drop tech-
nique, outperforms all other models and achieves
state-of-the-art performance. Compared to the orig-
inal BART model, BART + LR-Drop demonstrates
improvements of 0.41 points in RG-1, 0.35 points
in RG-2, and 0.40 points in RG-L scores. Addition-
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Model MNLI MRPC QNLI QQP RTE SST-2 STS-B CoLA Avg
LR-Drop 86.1 88.0 92.3 91.4 71.8 93.2 90.2 63.4 84.55
– w/o LHSR 85.7 87.4 92.2 91.4 71.6 93.1 89.6 62.7 84.21
– w/o LMHAR 85.9 87.4 92.2 91.6 71.7 93.1 89.9 62.7 84.30
– w/o LOR 85.8 87.5 92.1 91.5 71.5 93.2 89.7 62.8 84.26

Table 4: Ablation study of LR-Drop.

Methods size of the training set
1K 2K 4K 8K 16K 32K

BERT-base 53.10 54.24 57.34 62.39 86.58 89.16
BERT-base + R-Drop 54.12 56.21 57.87 62.74 87.10 89.56
BERT-base + LR-Drop 55.04 56.53 58.56 63.47 88.03 90.07

Table 5: LR-Drop performance on training sets of different sizes. Dataset: SST-2, baseline model: BERT-base.

ally, BERT + LR-Drop surpasses BERT + R3F and
BERT + R-Drop. These experimental findings high-
light the effectiveness of our LR-Drop technique in
enhancing the performance of abstract summariza-
tion tasks.

5. Study and Analysis on LR-Drop

In this section, we present a comprehensive in-
vestigation and analysis of LR-Drop, considering
multiple aspects such as ablation study, training set
sizes, dropout times, and loss landscape analysis.
All experiments in this section are conducted using
the datasets from the General Language Under-
standing Evaluation (GLUE) benchmark.

5.1. Ablation Study
To further analyze the role of each component in
LR-Drop, we conducted ablation experiments by re-
moving individual parts of the loss function: LHSR,
LMHAR, and LOR. This allowed us to assess the
contribution of each component to the overall per-
formance of LR-Drop. The following three ablated
methods were obtained: (1) LR-Drop w/o LHSR:
This method removes the hidden states regulariza-
tion component from LR-Drop. (2) LR-Drop w/o
LMHAR: This method removes the multi-head at-
tention regularization component from LR-Drop. (3)
LR-Drop w/o LOR: This method removes the output
regularization component from LR-Drop.

Table 4 presents the results of the ablation exper-
iments. It is evident that the full LR-Drop method
achieves the best performance. When the hidden
states regularization component is ablated, the av-
erage score of LR-Drop on GLUE decreases to
84.21, which is 0.34 points lower than the full LR-
Drop. Similarly, when the multi-head attention regu-
larization component is removed, the average score
of LR-Drop on GLUE decreases to 84.30, which
is 0.25 points lower than the full LR-Drop. Lastly,

when the output regularization component is ab-
lated, the average score of LR-Drop on GLUE de-
creases to 84.26, which is 0.29 points lower than
the full LR-Drop.

These results highlight the importance of each
component in LR-Drop and demonstrate that the
combination of all components leads to the highest
performance on GLUE tasks.

5.2. LR-Drop Performance on Training
Sets of Different Sizes

This study also investigates the performance of
LR-Drop across training datasets of varying sizes.
To examine this, we partitioned the SST-2 training
set into different subsets and utilized the BERT-
base model with the same structure as previously
described. The results of this experiment are pre-
sented in Table 5, where we compare LR-Drop with
R-Drop. As shown in Table 5, our approach, LR-
Drop, not only achieves superior performance on
large training datasets but also demonstrates sig-
nificant improvements on smaller datasets. In com-
parison to the BERT-base model, our enhanced
model, BERT-base + LR-Drop, achieves perfor-
mance boosts of 1% to 2% across distinct training
sets. Furthermore, LR-Drop outperforms R-Drop
on training sets of various sizes. These experimen-
tal findings highlight the effectiveness of LR-Drop in
providing robust regularization for the model, even
when data availability is limited.

5.3. 3-time LR-Drop
From the above, it is evident that LR-Drop is based
on the concept of "twice dropout" to generate two
sub-networks for regularization during training. In
our research, we extended this approach by in-
creasing the number of forward propagations from
two to three, meaning that each example passes
through the model three times in LR-Drop. During
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Model MNLI MRPC QNLI QQP RTE SST-2 STS-B CoLA Avg
LR-Drop-2 86.1 88.0 92.3 91.4 71.8 93.2 90.2 63.4 84.55
LR-Drop-3 86.2 88.1 92.3 91.3 71.8 93.4 90.1 63.4 84.58

Table 6: The effect of the number of LR-Drop samples on performance.

Figure 2: 2D (left) and 3D (right) visualization of loss function minima selected by BERT-base with standard
training (ST) and LR-Drop on SST-2 dataset.

training, we also incorporate hidden states regu-
larization, multi-head attention regularization, and
output regularization to facilitate mutual learning
and knowledge exchange among the three sub-
models. The experimental results, as presented in
Table 6, demonstrate that LR-Drop-3, which con-
sists of three sub-models, yields a slight improve-
ment of 0.03 points over LR-Drop-2, the original
LR-Drop with two sub-models. However, it is worth
noting that increasing the number of dropout sam-
ples tends to increase computational consumption.
Therefore, we believe that utilizing LR-Drop-2 reg-
ularization twice is sufficient for achieving effec-
tive model training. However, if computational re-
sources are not a constraint, one can consider us-
ing LR-Drop-3.

It is important to mention that an increase in itera-
tions corresponds to an increase in resource usage.
Therefore, we are of the view that the double iter-
ation approach in LR-Drop-2 provides adequate
regularization during model training. However, if
computational resources are not a limitation, one
might explore the option of deploying LR-Drop-3.

5.4. Loss Landscape Analysis

To provide a more visual analysis of the regular-
ization effect of LR-Drop, we employed a method
proposed by Li et al. (2018) to visualize high-
dimensional non-convex loss functions. This
method allowed us to graphically depict the loss
landscapes surrounding the empirical risk minima
obtained through standard training and LR-Drop
training, both with the same model structure. Fig-
ure 2 presents 2D and 3D visualizations of these
loss landscapes.

In this visualization, we considered the dimen-

sions of θ and randomly extracted two direction-
representing vectors, dx and dy, from a Gaussian
distribution with a mean of zero. The scale of these
vectors was set to be equivalent to the variance of
the weight values. We then introduced linear per-
turbations α and β to a central point θ∗, resulting in
a loss function that represents variations in these
two random directions:

f(dx, dy) = L(θ∗ + αdx + βdy) (9)

The analysis points out that the proposed LR-
Drop indeed selects flatter loss landscapes by dy-
namically creating perturbation. Numerous investi-
gations have evidenced that a flatter loss landscape
generally implies superior generalization (Keskar
et al., 2019; Ishida et al., 2020).

6. Conclusion

In this work, we have introduced LR-Drop, a sim-
ple yet effective regularization technique based on
dropout. LR-Drop utilizes layer-wise self-distillation
between two sub-models generated by dropout
to improve model performance. During training,
LR-Drop regularizes different representations in
Transformer-based Pre-trained Language Mod-
els (PLMs), including the hidden state, the multi-
headed attention matrix, and the output distribu-
tion of the prediction layer. Importantly, LR-Drop
does not introduce additional model parameters
or modify the original architecture of the language
model, making it applicable to various Transformer-
based PLMs. Through extensive experiments on
a diverse set of 15 datasets, including natural
language understanding, neural machine transla-
tion, and abstractive summarization tasks, we have
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demonstrated that LR-Drop achieves superior per-
formance compared to existing methods. Our re-
sults even surpass state-of-the-art performance in
these tasks. This highlights the effectiveness and
versatility of LR-Drop as a regularization technique
for Transformer-based PLMs.
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