
LREC-COLING 2024, pages 10225–10236
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

10225

LCGbank: A Corpus of Syntactic Analyses Based on Proof Nets

Aditya *Bhargava, Timothy A. D. *†Fowler, and Gerald Penn*
*Department of Computer Science

University of Toronto
{aditya,tfowler,gpenn}@cs.toronto.edu

†Cerence Inc.
Toronto, ON

Abstract
In syntactic parsing, proof nets are graphical structures that have the advantageous property of invariance to spurious
ambiguities. Semantically-equivalent derivations correspond to a single proof net. Recent years have seen fresh
interest in statistical syntactic parsing with proof nets, including the development of methods based on neural
networks. However, training of statistical parsers requires corpora that provide ground-truth syntactic analyses.
Unfortunately, there has been a paucity of corpora in formalisms for which proof nets are applicable, such as
Lambek categorial grammar (lcg), a formalism related to combinatory categorial grammar (ccg). To address this, we
leverage CCGbank and the relationship between lcg and ccg to develop LCGbank, an English-language corpus of
syntactic analyses based on lcg proof nets. In contrast to CCGbank, LCGbank eschews type-changing and uses
only categorial rules; the syntactic analyses thus provide fully compositional semantics, exploiting the transparency
between syntax and semantics that so characterizes categorial grammars.

Keywords: Lambek categorial grammar, proof net, grammar conversion, English treebank

1. Introduction

In the family of categorial grammars, combinatory
categorial grammar (ccg) has received by far the
most attention in the computational linguistics liter-
ature, including the development of multiple statis-
tical parsers (e.g., Clark and Curran, 2007; Lewis
et al., 2016; Stanojević and Steedman, 2020). An-
other member of the categorial family, Lambek cat-
egorial grammar (lcg), has been less well-explored
from a statistical perspective. The historical lack of
attention is likely due to two notable results: (1) lcg
is weakly context-free equivalent (Pentus, 1997);
and (2) lcg parsing is NP-complete (Pentus, 2006;
Savateev, 2012).

We maintain that neither of these issues is neces-
sarily practically relevant, especially in the context
of statistical parsing. Context-sensitive parsing is
required only for certain specific constructions in a
handful of languages; context-free grammars can
get quite far, and in practice, statistical parsers for
mildly context-sensitive formalisms such as ccg
are typically restricted to context-free fragments
(Fowler and Penn, 2010). The numerical parame-
terization of discrete formal grammars, furthermore,
is known to have drastic consequences for hierar-
chies of formal language complexity (Rabin, 1963;
Nasu and Honda, 1971), to the extent that even
numerical precision can determine the generative
capacity of a particular grammar.

As for NP-completeness, time complexity is less
relevant for statistical parsers if they can neverthe-

Code to construct LCGbank from CCGbank is available
at https://doi.org/10.5683/SP3/ZVGWQY.

less return parses quickly. For example, Lewis and
Steedman’s (2014) parser has worst-case exponen-
tial time complexity, and yet is substantially faster
than Clark and Curran’s (2007) venerable parser
even though the latter has cubic time complexity.
As well, lcg’s time complexity can be shown to be
polynomial if a bound is assumed on the order of
the lexical categories (Pentus, 2010), which is a
reasonable practical assumption (Fowler, 2009a).

The lack of research attention to statistical lcg
parsing is especially unfortunate as lcg has a dis-
tinct advantage: its derivations can be represented
by proof nets, graphical structures that compactly
encode syntactic analyses such that semantically
equivalent (i.e., spuriously ambiguous) derivations
are represented by a single proof net. By contrast,
there is no known method of applying proof nets to
ccg, despite interest in doing so (Buch, 2009). In-
stead, ccg parsers employ normal-form constraints
(Eisner, 1996; Hockenmaier and Bisk, 2010) to
avoid spurious ambiguities. With lcg proof nets,
invariance to spurious ambiguities is baked in to the
representation. For example, the two ccg deriva-
tions in Figure 1 correspond to the same lcg proof
net, shown in Figure 2.

In at least partial pursuit of proof nets’ advan-
tages, recent years have seen renewed interest
in statistical syntactic parsing with proof nets, in-
cluding the development of methods based on neu-
ral networks (e.g., Kogkalidis et al., 2020b; Bhar-
gava and Penn, 2021). Of course, training of statis-
tical parsers requires corpora that provide ground-
truth syntactic analyses. This is another area in
which lcg and related formalisms have been under-

mailto:aditya@cs.toronto.edu
mailto:tfowler@cs.toronto.edu
mailto:gpenn@cs.toronto.edu
https://doi.org/10.5683/SP3/ZVGWQY

10226

ship

n

that

(n\n)/(s/np)
we

np
𝐓/

s/(s\np)

legitimately

(s\np)/(s\np)
salvaged

(s\np)/np
𝐁/(s\np)/np

𝐁/
s/np

𝐀/
n\n

𝐀\n

ship

n

that

(n\n)/(s/np)
we

np
𝐓/

s/(s\np)

legitimately

(s\np)/(s\np)

𝐁/(s\np)/(s\np)

salvaged

(s\np)/np

𝐁/
s/np

𝐀/
n\n

𝐀\n

Figure 1: Two ccg derivations of n for the object relative clause ship that we legitimately salvaged. Although
the derivations are distinct, they are semantically equivalent (i.e., spuriously ambiguous).

n− n+ n− np− s+ np− np+ s− s+ np− np+ s− np+ n+

n np n

ship we

(n\n)/(s/np) (s\np)/(s\np) (s\np)/np

that legitimately salvaged

Figure 2: The lcg term graph corresponding to both
ccg derivations in Figure 1 and the lcg derivation
in Figure 4.

explored in comparison to ccg: where the last two
decades have seen the development of several ccg
corpora covering multiple languages and domains,
there has been a paucity of corpora to support the
development of proof net–based statistical parsers.

In this paper, we leverage the relationship be-
tween ccg and lcg to develop a corpus of proof
net–based syntactic analyses. Our process be-
gins with CCGbank (Hockenmaier and Steedman,
2005). To get around ccg’s incompatibility with
proof nets, we first convert CCGbank’s derivations
to lcg, lexicalizing the incompatible rules. This in-
cludes CCGbank’s non-categorial type-changing
rules, which cloud the otherwise transparent rela-
tionship between categorial syntax and semantics.
The resultant lcg derivations then directly specify
the corresponding proof net.

The result is LCGbank, an English-language cor-
pus that provides purely-categorial syntactic anal-
yses based on proof nets and thus, as a direct
consequence, fully compositional semantics. Ad-
ditionally, LCGbank includes new analyses for the
sentences that were excluded from CCGbank’s own
conversion from the Penn Treebank (ptb).

2. Background

2.1. Lambek categorial grammar
Like ccg, lcg descends from the earlier ab gram-
mar (Ajdukiewicz, 1935; Bar-Hillel, 1953). The set
of valid lexical categories is formed by the closure of
two binary connectives, the forward slash / and the
backward slash \, over a small set of atomic cat-
egories (or atoms) such as s (for sentences) and

𝛥 ⊢ x/y 𝛤 ⊢ y
E/𝛥, 𝛤 ⊢ x

(a) Forward elimination

𝛤 ⊢ y 𝛥 ⊢ x\y
E\𝛤, 𝛥 ⊢ x

(b) Backward elimination

𝛤,y ⊢ x (𝛤 ≠ ε)
I/𝛤 ⊢ x/y

(c) Forward introduction

y, 𝛤 ⊢ x (𝛤 ≠ ε)
I\𝛤 ⊢ x\y

(d) Backward introduction

Ax
x ⊢ x
(e) Axiom

𝑤 ((𝑤,x) ∈ Lexicon)
Lex𝑤 ⊢ x

(f) Lexicon

Figure 3: The rule schemata of lcg. x and y are
variables over categories while 𝑤 is a variable
over words. 𝛤 and 𝛥 are variables over sequences,
where each sequence item is either a category or
a word. ε represents the empty sequence.

np (for noun phrases). Non-atomic categories are
called complex categories. The connectives create
functional categories; the forward slash specifies
that an argument must appear to the right while
the backward slash specifies that an argument
must appear to the left. For example, the category
((s\np)/np)/np combines with two nps to its right
and one np to its left to yield an s.1 Thus, in English,
this category is used to represent a ditransitive verb.

But where ccg adds additional rule schemata
such as composition, lcg treats the slash operators
as logical connectives and so defines the basis of
a logical system of reasoning over syntactic types,
called the Lambek calculus (Lambek, 1958). While
there are a number of variants of the Lambek cal-
culus, the one of relevance to our work is known as
𝐋, the associative Lambek calculus without product
and banning empty antecedents.2 Combining the
rules of the calculus with a lexicon yields an lcg,
the rule schemata for which are shown in Figure 3.

A statement in L, called a sequent, has an or-
dered list of categories called the antecedent on
the left of the turnstile (⊢) and a single category

1. Note that our use of the backward slash follows
Steedman notation, which is more common in the ccg
literature; the same category is instead represented as
np\s/np/np in most lcg literature, including the original
given by Lambek (1958).

2. We refer the interested reader to (Moot and Retoré,
2012) for formal details of Lambek calculus variants.

10227

ship⊢n1

that⊢(n3\n2)/(s5/np4)

we⊢np6

legitimately⊢(s8\np7)/(s9\np10)
salvaged⊢(s12\np11)/np13

Ax
np15⊢np16 E/

salvaged,np15⊢s18\np17 E/
legitimately, salvaged,np15⊢s20\np19 E\

we, legitimately, salvaged,np15⊢s21 I/
we, legitimately, salvaged⊢s22/np23 E/

that,we, legitimately, salvaged⊢n25\n24 E\
ship, that,we, legitimately, salvaged⊢n14

Figure 4: An lcg derivation of n for the object relative clause from Figures 1 and 2. Lexicon rule instances
are abbreviated to their conclusions for compactness.

called the consequent on the right. The interpre-
tation of a sequent is that its consequent can be
derived from its antecedent. The expressions above
bars are called premises and those below the
bars are called conclusions. Each rule establishes
that its conclusion is true (i.e., derivable) if all of
its premises are true. The elimination rules (Fig-
ures 3a and 3b) eliminate a slashed category, in
that it is missing from their conclusions; the intro-
duction rules (Figures 3c and 3d) introduce a new
slashed category in the consequent of their conclu-
sions. Figure 4 shows an example lcg derivation.
(The numerical indices should be ignored for the
moment; they will be useful later.)

The elimination rules correspond to the applica-
tion rules of ccg. Of the other common ccg rules,
type-raising and harmonic (i.e., non-crossed) com-
position, including generalized composition, are
derivable in lcg.3 Thus, ccg derivations that use
only these rules are also valid lcg derivations.

On the other hand, substitution and crossed com-
position rules aren’t derivable in lcg. We will dis-
cuss this issue further in Section 4.

2.2. Proof nets
Unlike ccg, the rules of the Lambek calculus are a
subset of linear logic, where a proof has a graphical
representation called a proof net (Girard, 1987).
Proof nets compactly represent proofs that differ in
ways that are considered irrelevant, such as order
of rule use where the reading is unaffected. This
corresponds directly to the problem of spurious
ambiguity: derivations within the same semantic
equivalence class are represented by a single proof
net; this elegantly and directly encodes the idea that
such derivations are equivalent in some way.

There exist different formulations of lcg proof
nets. Different proof net versions are equivalent in
that they can describe the same logical proofs, but
differ in other ways, such as representational over-
head. Penn’s (2004) presentation of proof nets for

3. The harmonic 𝐃 combinator (Hoyt and Baldridge,
2008) is also derivable in lcg, but we are not aware of
any ccg corpora that employ it.

L greatly simplified Roorda’s (1992) original specifi-
cation and reduced the number of correctness con-
ditions. Fowler’s (2009b) term graphs were simpler
still, further reducing the number of correctness con-
ditions as well as representational overhead. Term
graphs are thus our proof net version of choice;
from here, we use the terms “lcg proof net” and
“term graph” interchangeably.

3. Term graphs: simplified proof nets

The structure of a term graph can be separated into
two components:

1. A proof frame, which represents the internal
structure of the categories as edges in a di-
rected graph where the category atoms are
vertices. A proof frame is constructed by “un-
folding” sequent categories categories into lin-
ear sequences of atoms. This process is de-
terministic for a given sequent, and the proof
frame is invariant across all proofs of the se-
quent (if there are any).

2. A linkage, which is a set of directed edges
between proof frame vertices that connect cat-
egorial arguments with their filling categories.
A valid lcg derivation deterministically speci-
fies a linkage. Different linkages correspond to
semantically distinct derivations (i.e., parses);
but different derivations that are spuriously am-
biguous (i.e., semantically equivalent) specify
the same linkage. For a term graph to be valid,
the linkage must satisfy a number of validity
conditions (to be described shortly).

The separation between proof frames and link-
ages is especially relevant for a parser. A non-
statistical parser is given a sequent as input, from
which the proof frame is constructed deterministi-
cally; its job then is to find the set of linkages that
yield a valid term graph. On the other hand, a statis-
tical parser is given a sentence without any lexical
category assignments. Thus it must first predict
a proof frame, which corresponds to the problem
of supertagging (Bangalore and Joshi, 1999): pre-
dicting lexical categories for the sentence amounts

10228

(x/y)− ↦ x− y+ (x\y)− ↦ y+ x−

(x\y)+ ↦ x+ y− (x/y)+ ↦ y− x+

Figure 5: The polarized category decomposition
rules. Regular edges are drawn with solid lines
while Lambek edges are drawn dashed. The circle-
tipped edge shows where any edges (whether reg-
ular or Lambek) for the input category are to be at-
tached in the decomposed output categories. The
vertical lines specify the order of the outputs.

to predicting a sequent, which then specifies the
proof frame. The parser must then find a “best”
linkage that yields a valid term graph. This two-
stage process directly corresponds to the standard
pipeline for statistical ccg parsers, which are usu-
ally split into supertagging and derivation phases
(e.g., Clark and Curran, 2007; Lewis and Steed-
man, 2014; Yoshikawa et al., 2017).

3.1. Proof frame construction
The first step in the construction of a proof frame
for a sequent is assigning polarities to the sequent
categories. A category may have either positive or
negative polarity: a negatively-charged category x−

indicates that an x is available while a positively-
charged category x+ indicates that an x is sought.
So, for a sequent x1,x2, … ,x𝑛 ⊢y, each lexical cat-
egory x𝑖 of the antecedent is assigned negative
polarity (x𝑖−) and the consequent category y is as-
signed positive polarity (y+).

Next, each polarized category is recursively de-
composed according to four rules, shown in Fig-
ure 5. These rules “unfold” complex categories into
their result and argument subcategories. Subcate-
gorial structure is represented as a directed graph
with polarized atoms as vertices and two types of
directed edges: regular edges and Lambek edges.

The end result of this lexical decomposition is a
sequence of polarized atoms with directed edges
between them as specified by the rules. Note that
order is important: the output of each decompo-
sition also specifies a total order over the resul-
tant vertices, which is indicated by the linear, left-
to-right placement of the polarized atoms. The
resulting graph, including the total order, is the
proof frame for the sequent. So, the proof frame
for the sequent n, (n\n)/(s/np),np, (s\np)/(s\np),
(s\np)/np⊢n from Figure 4 comprises the polarized
atoms and directed edges below them in Figure 2.

3.2. Linkages and term graph validity
A term graph consists of a proof frame and a valid
linkage. A linkage is a set of directed edges called

links that go from positive vertices to negative ver-
tices of the same atomic type (e.g., np+ to np−). A
regular path in a term graph is a path consisting
only of links and regular edges.

A linkage is valid if and only if it forms a perfect
matching: each vertex has exactly one link, and that
link is outgoing for positive vertices and incoming
for negative vertices. In the term graph of Figure 2,
the (valid) linkage comprises the directed edges
above the polarized atoms.

A term graph represents a proof in L, and there-
fore also an lcg parse, if and only if it meets the
following conditions (Fowler, 2009b, 2016):
T1. The linkage is half-planar; i.e., the links can

be drawn above the linearly-ordered vertices
without crossing.

T2. The graph is regular-acyclic; i.e., there is no
regular path from a vertex to itself.

T3. For each Lambek edge ⟨𝑖, 𝑗 ⟩, there is a regular
path from 𝑖 to 𝑗.

T4. For each Lambek edge ⟨𝑖, 𝑗 ⟩, there is a nega-
tive vertex 𝑘 such that there is a regular path
from 𝑖 to 𝑘 and there is no Lambek edge ⟨𝑖′, 𝑘⟩
such that there is a regular path from 𝑖 to 𝑖′.

Such a term graph is called a valid term graph.

3.3. Converting lcg derivations to term
graph linkages

As mentioned above, a derivation for a sequent
specifies a linkage over the corresponding proof
frame. We translate Roorda’s (1992) original spec-
ification as required for the simplified representa-
tion provided by term graphs. At a high level, the
construction of a term graph linkage from an lcg
derivation can be separated into three steps:

1. For each lcg rule instance in the derivation, an
initial set of vertices and edges (called match
edges) is constructed according to a set of
graph construction rules.

2. Match edges that connect complex categories
are recursively propagated until only match
edges between atomic vertices remain.

3. Maximal match paths are contracted into links.

3.3.1. Initial graph construction

The rules employed in the first step of term graph
construction are shown in Figure 6. Vertices and
edges are constructed according to these rules
for each lcg rule instance in a derivation. Two de-
tails should be noted here. First, unlike the lexical
decomposition rules (Figure 5), these graph con-
struction rules do not specify any order over the
vertices. Thus the vertices can be placed freely;
the particular arrangement shown in Figure 6 is
for illustrative purposes only. Second, the edges

10229

𝛥 ⊢ xL/yL 𝛤 ⊢ yR E/𝛥, 𝛤 ⊢ xC
xC xL yL yR↦

𝛤 ⊢ yL 𝛥 ⊢ xR\yR E\𝛤, 𝛥 ⊢ xC
yL yR xR xC↦

𝛤,yP ⊢ xP I/𝛤 ⊢ xC/yC
xC xP yP yC↦

yP, 𝛤 ⊢ xP I\𝛤 ⊢ xC\yC
yC yP xP xC↦

Ax
xA ⊢ xC

xA xC↦

Figure 6: Initial term graph construction rules.

(x1 |y1) (x2 |y2) x1 x2 y1 y2↦

Figure 7: Match edges are propagated through sub-
categories. | is a variable over {/, \}.

added in this step are not links: they do not (yet)
connect positive proof frame vertices to negative
ones. We refer to these edges as match edges and
distinguish them visually by using turned squares
to terminate them rather than arrowheads.

As an example, consider again the derivation
in Figure 4. Each rule instance in the derivation
will produce vertices and edges. To track the ver-
tices, each atom occurring in a consequent is as-
signed a unique (but otherwise arbitrary) label;
we use numerical indices chosen for simple cor-
respondence with the order specified by the proof
frame. The same is done for atoms occurring in
antecedents of axiom rule instances (np15 in this
example), but the labels on an antecedent category
are then maintained in subsequent antecedents
in the derivation until the category is moved to
the consequent via an introduction rule instance.
Thus, the initial edges produced from Figure 4 are
np16 np15, (s18\np17) (s12\np11), np13 np16,
(s20\np19) (s8\np7), (s9\np10) (s18\np17),
s21 s20, np19 np6, s22 s21, np15 np23,
(n25\n24) (n3\n2), (s5/np4) (s22/np23),
n14 n25, and n24 n1.

3.3.2. Subcategorial match propagation

Next, the match edges connecting complex cate-
gories are subcategorially propagated according to
the rule in Figure 7. This rule replaces each match
edge between complex categories with edges be-
tween the categories’ subcategories, adding ver-
tices for them if needed. The rule is applied recur-
sively until there remains no match edge between
any complex category vertices. Continuing our ex-
ample, this rule replaces five match edges:
(s18\np17) (s12\np11) s18 s12 np11 np17↦

a1 ⋯ a2 a1
+ a2

−↦

Figure 8: Contraction of maximal match paths to
links. a is a variable over atomic categories. a1 must
not have any incoming edges and a2 must not have
any outgoing edges for this rule to apply.

(s20\np19) (s8\np7) s20 s8 np7 np19↦
(s9\np10) (s18\np17) s9 s18 np17 np10↦
(n25\n24) (n3\n2) n25 n3 n2 n24↦
(s5/np4) (s22/np23) s5 s22 np23 np4↦

3.3.3. Contracting match paths into links

At this stage, the only vertices with exactly one
edge (whether incoming or outgoing) correspond to
atomic categories from the sequent. In our running
example, these are atoms with indices 1 through 9
for the antecedent and index 10 for the consequent.
(The antecedent categories are at leaf nodes of the
derivation tree, while the consequent category is at
the root.) The final step forms links by contracting
maximal match paths (Figure 8). In other words,
there is a link from vertex 𝑖 to vertex 𝑗 if and only
if there is a path of match edges from 𝑖 to 𝑗. With
the linkage so determined, the match edges and
intermediate vertices along the contracted paths
are discarded. Returning to our example, this pro-
cedure yields exactly the linkage shown in Figure 2.

3.4. Related work
Historically, work on syntactic parsing with proof
nets has been strictly non-statistical despite the
invariance to spurious ambiguities that proof nets
provide (Aarts, 1994; Morrill, 1996; Penn, 2004;
Fowler, 2010). This is likely due to a lack of corpora
providing relevant ground-truth.

This has slowly started to change in recent
years, leading to new research on statistical proof
net–based parsing and related techniques. For ex-
ample, Kogkalidis et al. (2020a) developed Æthel,
a Dutch-language corpus that provides (among
other things) ground-truth proof net parses, ex-
tracted automatically from a corpus of dependency
parses.4 Their subsequent parser (Kogkalidis et al.,
2020b) relies on Æthel for its training data. As well,
recent supertagging research (Margueritte et al.,
2023; Kogkalidis and Moortgat, 2023) has made
use of TLGbank (Moot, 2015), a French-language
corpus of type-logical grammar proofs.

For English, there has been no prior corpus pro-
viding proof net–based analyses. The closest for-
malism to lcg for which an English-language cor-

4. Their formalism is related to lcg but differs notably:
their binary connective is non-directional and they incor-
porate grammatical roles in their categories and rules.

10230

pus exists is ccg, with CCGbank (Hockenmaier
and Steedman, 2007) being the largest and most
prominent. Directly converting CCGbank’s anal-
yses to proof nets is impossible, as there is no
known proof net specification for ccg: the crossed
rules cause difficulty (Buch, 2009) and substitu-
tion is prima facie directly incompatible due to the
resource-sensitive nature of linear logic. Moreover,
CCGbank’s non-categorial type-changing rules ob-
scure the transparency between syntax and seman-
tics, making truly compositional semantics difficult
to extract from the provided derivations.

4. From CCGbank derivations to lcg

At a high level, the development of LCGbank con-
sists of two steps: (1) alter CCGbank derivations to
only use lcg-derivable rules; then (2) convert the
resultant derivations into term graphs. The latter
step is a straightforward application of the proce-
dures specified above in Section 3; thus, in this
section, we focus our discussion on the former.

To convert CCGbank derivations to lcg, those
that use non-lcg rules must be re-analyzed. In ad-
dition to substitution and any crossed rules, this
includes CCGbank’s feature-handling and unary
type-changing rules. Our overall strategy for this is
lexicalization. For binary nodes, for example, when
a non-lcg rule is used in a derivation, we alter the
node to instead use either forward or backward
elimination such that the primary-secondary rela-
tionship between the child nodes is preserved.5
Requisite changes to child node categories are then
propagated to the leaf nodes, resulting in changes
to the lexical categories assigned to the words in
the sentence.

In this section, we discuss representative exam-
ples that require such lexicalization. Note that we
omit rule names from derivations for compactness.

4.1. Category features
Atomic categories in CCGbank can bear features:
sdcl for declarative sentences, sto for to-infinitival
clauses, etc. Such features are non-categorial in
the sense that the rules for handling them aren’t
part of any standard categorial grammar; instead,
the rules come (in this case) from CCGbank.

For our conversion to lcg, we discard the fea-
tures entirely and stick to lcg’s purely categorial
rules. While it may have been possible to maintain
at least some of the features through lexicaliza-
tion, this would be a somewhat unintuitive use of
features as there would be no formal relationship
between s and sdcl, etc.; effectively, each feature-
annotated category would be entirely distinct, with

5. Primary and secondary functors are also called prin-
cipal and subordinate functors, respectively.

issues

np

they

np

s/(s\np)

floated

(s\np)/np

in

((s\np)(s\np))/np

1980

n

np

(s\np)(s\np)
(s\np)/np

s/np

np\np

np

Figure 9: CCGbank’s analysis for a contracted frag-
ment of sentence 0339.13, showing its use of type-
changing rules np → n and np\np → s/np.

np− np− np+ np+ np− np+ np− np+ np− np+ np− np+

np np np np

issues they 1980

(np\np)\np ((np\np)\(np\np))/np

floated in

Figure 10: LCGbank’s analysis for the reduced rel-
ative clause from Figure 9.

the only relationship between them being the su-
perficial one of having a common initial letter for the
category. The potential advantage of maintaining
the features is also unclear, as Fowler and Penn
(2010) found that removing the features can actu-
ally increase parsing accuracy.

As they are irrelevant to our conversion, we omit
features from CCGbank-based examples here.

4.2. Type-changing rules
CCGbank employs several type-changing rules,
allowing some categories to be transmuted as
needed. The simplest example of this is the unary
np → n rule. We handle type-changing instances
by propagating the higher-level category to the lexi-
cal categories, eliminating the type-changing node.

For example, in CCGbank, related and equipment
can be tagged with n/n and n, respectively. For-
ward application allows n to represent the span
related equipment, which can then be promoted to
np in order to fill an np argument slot. Our corre-
sponding lcg derivation propagates the np to the
lexical categories so that related and equipment are
instead tagged with np/np and np, respectively.

CCGbank uses more complex type-changing
rules as well. Figure 9 shows how np\np → s/np
is used for the reduced relative clauses the issue
they floated in 1980. Our lcg re-analysis, shown
in Figure 10, propagates the np\np category so
that floated has lexical category (np\np)\np and in
has lexical category ((np\np)\(np\np))/np. Where
CCGbank employs type-changing to maintain the
usual verbal category (s\np)/np for floated, LCG-
bank maintains syntax-semantics transparency by

10231

would

(s\np)/(s\np)
temporarily

(s\np)\(s\np)

(s\np)/(s\np)

dilute

(s\np)/np

earnings

n

np

s\np

s\np

Figure 11: CCGbank’s analysis for a fragment of
sentence 0317.33, showing its use of crossed com-
position.

allowing a different verbal lexical category.

4.3. Crossed composition
Of the ccg rules that aren’t lcg-derivable, crossed
composition is the most frequently used in CCG-
bank. For example, it is used in CCGbank’s anal-
ysis of the verb phrase would temporarily dilute
earnings as shown in Figure 11. This allows tem-
porarily to bear the usual lexical category for ad-
verbs ((s\np)\(s\np)) while modifying would, which
has the usual lexical category for auxiliary verbs
((s\np)/(s\np)). CCGbank’s analysis for the re-
duced relative clause example (Figure 9) also em-
ploys crossed composition, since the (s\np)\(s\np)
category for in 1980 must modify the (s\np)/np cat-
egory for floated to produce (s\np)/np.

While our re-analysis for type-changing fortu-
itously removes the need for crossed composition
in the latter example, this will not be true (or appli-
cable) more generally. Thus, we handle instances
of crossed composition by lexicalization: as exem-
plified in Figure 12, when x\y composes with y/z,
we change the former to (y/z)\(y/z) and propagate
the change to the lexical categories.6 This applies
to generalized crossed composition as well.

4.4. Coordination
CCGbank assigns the category conj to coordinators
such as and. In the grammar, conj is effectively
treated as the polymorphic category (x\x)/x. In
simple cases of like coordination, the instantiated
coordinating category is evident. For example, the
phrase doors and corners can be analyzed as having
category np using the nominal coordination rule
np → np conj np. It’s clear that conj functions as
(np\np)/np, since its result and two arguments all
have category np.

Unlike coordination, where the two conjuncts
have differing syntactic types, is handled less sim-
ply in CCGbank. In the verb phrase will come a little
richer and in a larger amount, the left conjunct a lit-
tle richer is analyzed as having category s\np while
the right conjunct has category pp. CCGbank adds

6. It is nearly always the case that the child nodes of the
crossed composition rule node are already leaf nodes.

extra rules in order to maintain the conj category for
the coordinator and. In this example, the relevant
rule is s\np → s\np conj pp.

In LCGbank, we do not use polymorphic cate-
gories as doing so would require extra (non-lcg)
rules for how to handle them.7 Instead, the category
assigned to the coordinator is deduced from the
categories of the conjuncts and that of the parent
node. For like coordination, this results in a cate-
gory that matches the (x\x)/x template, such as
(np\np)/np for nominal coordination. For unlike co-
ordination, the resulting category does not match
the template: for the example above, the conj cate-
gory is replaced with ((s\np)\(s\np))/pp.

4.5. Manual annotations and new
analyses

Our conversion process is semi-automated: we de-
veloped a framework to categorize the rules used
in CCGbank derivations and then altered them with
rules such as those described above. This leaves
approximately 500 rules without valid lcg deriva-
tions; we annotate these manually. Most of these
we judged to be annotation errors in CCGbank.

During CCGbank’s own conversion from the ptb,
274 sentences were left out because they were
problematic for the conversion process (Hocken-
maier and Steedman, 2007). For example, cases of
sentential gapping were excluded entirely; by con-
trast, we are able to handle these cases in LCGbank
since, as described above, we do not insist that co-
ordinators must always have categories that match
the standard (x\x)/x template. LCGbank thus in-
cludes new analyses for the 274 excluded sen-
tences. We generate initial analyses using Petrov
and Klein’s (2007) parser after training it on the con-
verted derivations for the non-excluded sentences.
We then manually verify and correct its outputs.

Lastly, we found 40 sentences where the ground-
truth term graph had intra-lexical links (i.e., links
between vertices that are part of the same lexi-
cal category). These were all cases of argument
cluster coordination (e.g., This has both made in-
vestors uneasy and the corporations more vulnerable),
where the conjuncts are type-raised categories that
must be handled by the coordinator. As Bhargava
and Penn (2021) found that disallowing intra-lexical
links is a useful search space restriction, we re-
analyzed these sentences similarly to how we han-
dled the cases of complex coordination mentioned
above, thereby removing the intra-lexical links. For
these 40 sentences, we keep the original term

7. A dedicated (ternary) coordination rule is often in-
cluded in ccg. CCGbank allows only unary and binary
nodes, so it provides a simple binarized form of instances
of this rule. We ignore this binarization in this paper for
simplicity.

10232

np+ s− s+ np− np+ s− s+ np− np+ s− s+ np− np+ s− np+ np− s+ np−

np

earnings

(s\np)/(s\np) ((s\np)/(s\np))\((s\np)/(s\np)) (s\np)/np s\np

would temporarily dilute

Figure 12: LCGbank’s analysis for the verb phrase from Figure 11.

graph (with intra-lexical links) in the corpus and
provide our re-analysis as an extra alternative.

5. LCGbank: a corpus of lcg proof
net parses

The result of our procedures described above is
LCGbank, an English-language corpus of proof
net–based syntactic analyses for 49,206 sen-
tences. For each sentence, the corpus includes:

1. Lexical category assignments for each word to-
ken in the sentence.8 These lexical categories
form the antecedent of the sequent for the sen-
tence.

2. The sentential (i.e., spanning) category for the
sentence (usually s).9 This category is the con-
sequent of the sequent for the sentence.

3. The linkage for the sentence’s sequent.
We do not specify the proof frame since it is con-
structed deterministically from the sequent and thus
can be easily determined from the lexical category
assignments. Similarly, we do not provide the com-
positional semantics indicated by the term graphs;
the structure of the graph itself represents this and
can be converted automatically to other forms (e.g.,
λ-calculus expressions) as desired by the user.

We follow the CCGbank (and ptb) tradition and
designate section 0 as the development/validation
set and section 23 as the test set. For the training
set, however, we include all of the remaining data
(sections 1–22 and 24), in contrast to the usual
training set for CCGbank (sections 2–21). This is
simply to enable full use of all available data.

As CCGbank is available only via a paid licence,
we are unable to provide LCGbank on its own, since
it is a CCGbank derivative. Our solution is to instead

8. In CCGbank, punctuation that does very little gram-
matical work (for example, commas that delineate quotes
or colons that separate object clauses from their verbs) is
treated as a generic adjunct, effectively being “absorbed”
into a neighbouring category. For LCGbank, we omit
lexical categories for such “transparent” punctuation.

9. In order of decreasing frequency, the sentential cat-
egories that appear in LCGbank are s, np, s\np, and pp.
This is as in CCGbank (minus features), except for five
cases which had sdcl/np; we judged these to be misan-
notations and re-analyzed them for LCGbank.

C Cf L

Sentences 44,614 44,614 44,870
Lexical categories 1,327 487 1,071
Atomic categories 34* 11* 5
Avg. cat order 1.748 1.916 2.317
Exp. cat order 0.785 0.785 0.919
Word types 46,757 44,210 46,946

Uncased 41,599 41,599 41,769
Word-cat pairs 79,527 69,705 91,416

Uncased 73,523 68,165 85,323
Avg. cats per word 1.701 1.577 1.947

Uncased 1.767 1.639 2.043
Exp. cats per word 20.083 14.958 29.731

Uncased 21.889 16.916 31.599
*Six of the atomic categories are for punctuation.

Table 1: Basic statistics for sections 1–22 and 24
of CCGbank (C), CCGbank without features (Cf),
and LCGbank (L). Expected values are frequency-
weighted while average values are not.

provide a set of scripts that, when given a copy of
CCGbank, produces the files that constitute the
LCGbank corpus. Our scripts are freely available
under the Apache License, version 2.0 at the url
provided on the first page of this paper.

5.1. Corpus statistics
Table 1 shows some basic statistics for CCGbank,
CCGbank without features, and LCGbank, com-
puted using LCGbank’s training split.10 At first blush,
it would seem that LCGbank has fewer unique lexi-
cal categories than CCGbank. But this is mostly due
to the removal of features; when comparing against
CCGbank without features, it is clear that our con-
version process more than doubled the number of
unique lexical categories.

This is as expected given that our strategy was
to lexicalize out the incompatible rules. The new
categories accordingly increase lexical ambiguity
(categories per word). As we can see when compar-
ing Figures 11 and 12, new categories sometimes
take other categories whole as arguments and thus

10. See Table 2 in Appendix A for the same statistics
computed using CCGbank’s training split.

10233

are likely to be higher-order than the ones they re-
place, leading to the notably higher average and
expected category order for LCGbank as compared
to CCGbank.

As well, disallowing the polymorphic (x\x)/x cat-
egory drastically increased the number of lexical
category pairings for coordinators. In CCGbank sec-
tions 1–22 and 24, and is assigned category conj
for 17,806 of its 18,467 occurrences, with some 33
categories making up the remainder. But for LCG-
bank, and is the single word type with the greatest
lexical ambiguity, having 177 different lexical cat-
egories assigned to it throughout the training set.
Similarly, or went from having conj in 2,789 of its
2,922 occurrences and 16 categories making up
the remainder to having 68 different lexical cate-
gories assigned to it throughout the training set.11

As we saw in Section 4, maintaining usual cat-
egory assignments is a motivating factor behind
many of the non-categorial rules in CCGbank. Lex-
icon size was an explicit consideration at the time
that CCGbank was developed: the supertagger’s
job is to restrict the search space, and a larger lexi-
con makes predicting lexical category assignments
more difficult. We’re not concerned by LCGbank’s
larger lexicon, however, as modern supertaggers
are substantially more capable than what was avail-
able 20 years ago (e.g., Kogkalidis and Moortgat,
2023; Yamaki et al., 2023).

The increase in lexical ambiguity brings with it
the danger of entirely new word-category pairings
(relative to what occurs in the training data). In
LCGbank’s development set, 3.0% of word tokens
have categories assigned to them that they never
have in sections 2–21. This is a substantial increase
from CCGbank, where the number is 2.2% (1.8%
if features are discarded). Some of these new pair-
ings even have categories that do not appear at
all in the training data. Here, as well, we do not
see this as a major downside, as many modern
supertaggers are constructive (e.g., Bhargava and
Penn, 2020; Prange et al., 2021; Kogkalidis and
Moortgat, 2023), building lexical categories from
primitives rather than predicting them as wholes.

6. Conclusion

In this paper, we presented LCGbank, an English-
language corpus of proof net–based syntactic
parses. Our conversion from CCGbank aimed to
preserve the transparency between syntax and se-
mantics provided by categorial grammars; LCG-
bank thus eschews type-changing and its deriva-
tions yield fully compositional semantics. We hope
that LCGbank proves useful for the development of

11. The most common category for both and and or in
the LCGbank training set is (np\np)/np.

statistical parsers as well as other research areas
related to syntax and proof nets.

6.1. Future work
6.1.1. Dependencies

While our conversion to lcg was based on deriva-
tions, CCGbank also provides ground-truth depen-
dencies for the sentences in the corpus. In fact,
testing dependencies is the standard method for
evaluating statistical parsers trained on CCGbank.
These dependencies are meant to represent the
predicate-argument structure of the sentence.

One of the major advantages of the dependency-
based evaluation is its invariance to spurious ambi-
guities; but of course, proof nets elegantly handle
this issue in lcg’s case, and the standard depen-
dency evaluation for CCGbank is not without its own
shortcomings (Bhargava and Penn, 2023). Still, ac-
curately predicting predicate-argument relations is
useful, and cannot be determined from a derivation
alone—statistical ccg parsers incorporate a sepa-
rate set of rules to convert derivations to dependen-
cies, usually those of Clark and Curran (2007) or
Lewis and Steedman (2014). Porting CCGbank’s
dependencies to LCGbank may warrant further in-
vestigation, as the graphical structure of proof nets
may facilitate the accurate prediction of dependen-
cies. Moreover, as there is (yet) no standard metric
for evaluating statistical lcg parsers, dependen-
cies may prove useful in this regard, and may also
enable inter-formalism comparisons, especially be-
tween ccg and lcg.

6.1.2. CCGrebank

CCGrebank (Honnibal et al., 2010) provides a num-
ber of improvements over CCGbank. For example,
corrections are made to how punctuation is han-
dled, a new pt atomic category is added for use with
verb-particle constructions, adnominals are made
restrictive, etc. Unfortunately, the corpus is not read-
ily available. This (in part) motivated our choice of
basing LCGbank on the standard CCGbank, as we
can expect far more researchers to have the latter
to use as a base for conversion. Still, CCGrebank’s
improved analyses would be preferable to use, as
any conversion would benefit from its corrections.
We thus hope to adapt our conversion method to
work with CCGrebank as well.

7. Bibliographical references

Erik Aarts. 1994. Proving theorems of the second
order Lambek calculus in polynomial time. Studia
Logica, 53(3):373–387.

Kazimierz Ajdukiewicz. 1935. Die syntaktische
Konnexität. In Storrs McCall, editor, Polish logic,

https://doi.org/10.1007/BF01057934
https://doi.org/10.1007/BF01057934

10234

1920–1939, pages 207–231. Clarendon Press,
Oxford, United Kingdom. Translated from Studia
Philosophica, 1:1–27.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237–265.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical
notation for syntactic description. Language,
29(1):47–58.

Aditya Bhargava and Gerald Penn. 2020. Su-
pertagging with ccg primitives. In Proceedings
of the 5th Workshop on Representation Learning
for NLP, pages 194–204, Online. Association for
Computational Linguistics.

Aditya Bhargava and Gerald Penn. 2021. Proof net
structure for neural Lambek categorial parsing.
In Proceedings of the 17th International Confer-
ence on Parsing Technologies and the iwpt 2021
Shared Task on Parsing into Enhanced Universal
Dependencies (iwpt 2021), pages 13–25, Online.
Association for Computational Linguistics.

Aditya Bhargava and Gerald Penn. 2023. Decom-
posed scoring of ccg dependencies. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 1030–1040, Toronto, Canada.
Association for Computational Linguistics.

Armin Buch. 2009. Mildly non-planar proof nets for
ccg. In European Summer School for Logic, Lan-
guage, and Information Student Session, pages
160–169, Bordeaux, France.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with ccg and
log-linear models. Computational Linguistics,
33(4):493–552.

Jason Eisner. 1996. Efficient normal-form pars-
ing for combinatory categorial grammar. In 34th

Annual Meeting of the Association for Compu-
tational Linguistics, pages 79–86, Santa Cruz,
California, USA. Association for Computational
Linguistics.

Timothy A. D. Fowler. 2009a. Parsing CCGbank
with the Lambek calculus. In Workshop on Pars-
ing with Categorial Grammars, pages 38–42,
Bordeaux, France.

Timothy A. D. Fowler. 2009b. Term graphs and the
NP-completeness of the product-free Lambek
calculus. In Formal Grammar, pages 150–166,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Timothy A. D. Fowler. 2010. A polynomial time algo-
rithm for parsing with the bounded order Lambek

calculus. In The Mathematics of Language, Lec-
ture Notes in Computer Science, pages 36–43,
Berlin, Germany. Springer.

Timothy A. D. Fowler. 2016. Lambek categorial
grammars for practical parsing. Ph.D. thesis,
University of Toronto, Toronto, Canada.

Timothy A. D. Fowler and Gerald Penn. 2010. Ac-
curate context-free parsing with combinatory cat-
egorial grammar. In Proceedings of the 48th

Annual Meeting of the Association for Compu-
tational Linguistics, pages 335–344, Uppsala,
Sweden. Association for Computational Linguis-
tics.

Jean-Yves Girard. 1987. Linear logic. Theoretical
Computer Science, 50(1):1–101.

Julia Hockenmaier and Yonatan Bisk. 2010.
Normal-form parsing for combinatory catego-
rial grammars with generalized composition and
type-raising. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics
(Coling 2010), pages 465–473, Beijing, China.
Coling 2010 Organizing Committee.

Julia Hockenmaier and Mark Steedman. 2007.
CCGbank: A corpus of ccg derivations and
dependency structures extracted from the
Penn Treebank. Computational Linguistics,
33(3):355–396.

Matthew Honnibal, James R. Curran, and Johan
Bos. 2010. Rebanking CCGbank for improved np
interpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 207–215, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Frederick Hoyt and Jason Baldridge. 2008. A logi-
cal basis for the D combinator and normal form
in ccg. In Proceedings of acl-08: hlt, pages
326–334, Columbus, Ohio. Association for Com-
putational Linguistics.

Konstantinos Kogkalidis and Michael Moortgat.
2023. Geometry-aware supertagging with het-
erogeneous dynamic convolutions. In Proceed-
ings of the 2023 clasp Conference on Learning
with Small Data (lsd), pages 107–119, Gothen-
burg, Sweden. Association for Computational
Linguistics.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020a. ÆTHEL: Automatically
extracted typelogical derivations for dutch. In Pro-
ceedings of the Twelfth Language Resources and
Evaluation Conference, pages 5257–5266, Mar-
seille, France. European Language Resources
Association.

https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://doi.org/10.2307/410452
https://doi.org/10.2307/410452
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.2
https://doi.org/10.18653/v1/2021.iwpt-1.2
https://doi.org/10.18653/v1/2023.acl-short.89
https://doi.org/10.18653/v1/2023.acl-short.89
https://esslli2009.labri.fr/documents/esslli_2009_student_session_proceedings.pdf
https://esslli2009.labri.fr/documents/esslli_2009_student_session_proceedings.pdf
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://www.cs.toronto.edu/~tfowler/parsingwithcg/BookOfAbstracts.pdf
https://www.cs.toronto.edu/~tfowler/parsingwithcg/BookOfAbstracts.pdf
https://doi.org/10.1007/978-3-642-14322-9_4
https://doi.org/10.1007/978-3-642-14322-9_4
https://doi.org/10.1007/978-3-642-14322-9_4
https://hdl.handle.net/1807/73006
https://hdl.handle.net/1807/73006
https://aclanthology.org/P10-1035
https://aclanthology.org/P10-1035
https://aclanthology.org/P10-1035
https://doi.org/10.1016/0304-3975(87)90045-4
https://aclanthology.org/C10-1053
https://aclanthology.org/C10-1053
https://aclanthology.org/C10-1053
https://aclanthology.org/J07-3004
https://aclanthology.org/J07-3004
https://aclanthology.org/J07-3004
https://aclanthology.org/P10-1022
https://aclanthology.org/P10-1022
https://aclanthology.org/P08-1038
https://aclanthology.org/P08-1038
https://aclanthology.org/P08-1038
https://aclanthology.org/2023.clasp-1.13
https://aclanthology.org/2023.clasp-1.13
https://aclanthology.org/2020.lrec-1.647
https://aclanthology.org/2020.lrec-1.647

10235

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020b. Neural proof nets. In Pro-
ceedings of the 24th Conference on Computa-
tional Natural Language Learning, pages 26–40,
Online. Association for Computational Linguis-
tics.

Joachim Lambek. 1958. The mathematics of sen-
tence structure. The American Mathematical
Monthly, 65(3):154–170.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer.
2016. LSTM ccg parsing. In Proceedings of the
2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 221–231,
San Diego, California. Association for Computa-
tional Linguistics.

Mike Lewis and Mark Steedman. 2014. A* ccg pars-
ing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (emnlp),
pages 990–1000, Doha, Qatar. Association for
Computational Linguistics.

Gaëtan Margueritte, Daisuke Bekki, and Koji Mi-
neshima. 2023. Multi-purpose neural network
for French categorial grammars. In Proceedings
of the 15th International Conference on Computa-
tional Semantics, pages 78–82, Nancy, France.
Association for Computational Linguistics.

Richard Moot. 2015. A type-logical treebank
for French. Journal of Language Modelling,
3(1):229–264.

Richard Moot and Christian Retoré. 2012. The
Logic of categorial grammars: A deductive ac-
count of natural language syntax and semantics.
Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg.

Glyn Morrill. 1996. Memoisation of categorial proof
nets: parallelism in categorial processing. In
Proofs and Linguistic Categories: Proceedings
1996 Roma Workshop, pages 157–169.

Masakazu Nasu and Namio Honda. 1971. A context-
free language which is not acceptable by a prob-
abilistic automaton. Information and Control,
18(3):233–236.

Gerald Penn. 2004. A graph-theoretic approach
to sequent derivability in the Lambek calculus.
Electronic Notes in Theoretical Computer Sci-
ence, 53:274–295.

Mati Pentus. 1997. Product-free Lambek calcu-
lus and context-free grammars. The Journal of
Symbolic Logic, 62(2):648–660.

Mati Pentus. 2006. Lambek calculus is NP-
complete. Theoretical Computer Science, 357(1-
3):186–201.

Mati Pentus. 2010. A polynomial-time algorithm for
Lambek grammars of bounded order. Linguistic
Analysis, 36(1-4):441–472.

Slav Petrov and Dan Klein. 2007. Improved Infer-
ence for Unlexicalized Parsing. In Human Lan-
guage Technologies 2007: The Conference of
the North American Chapter of the Association
for Computational Linguistics; Proceedings of the
Main Conference, pages 404–411, Rochester,
New York. Association for Computational Lin-
guistics.

Jakob Prange, Nathan Schneider, and Vivek Sriku-
mar. 2021. Supertagging the long tail with
tree-structured decoding of complex categories.
Transactions of the Association for Computa-
tional Linguistics, 9:243–260.

Michael O. Rabin. 1963. Probabilistic automata.
Information and Control, 6(3):230–245.

Dirk Roorda. 1992. Proof nets for Lambek calculus.
Journal of Logic and Computation, 2(2):211–231.

Yury Savateev. 2012. Product-free Lambek calcu-
lus is NP-complete. Annals of Pure and Applied
Logic, 163(7):775–788.

Miloš Stanojević and Mark Steedman. 2020. Max-
margin incremental ccg parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Ryosuke Yamaki, Tadahiro Taniguchi, and Daichi
Mochihashi. 2023. Holographic ccg parsing. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 262–276, Toronto,
Canada. Association for Computational Linguis-
tics.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Mat-
sumoto. 2017. A* ccg parsing with a supertag
and dependency factored model. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 277–287, Vancouver, Canada.
Association for Computational Linguistics.

8. Language resource references

Aditya Bhargava, Timothy A. D. Fowler, and Gerald
Penn. 2024. LCGbank. University of Toronto
Dataverse, ISLRN 454-336-063-423-0. PID
https://doi.org/10.5683/SP3/ZVGWQY.

https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.2307/2310058
https://doi.org/10.2307/2310058
https://doi.org/10.18653/v1/N16-1026
https://doi.org/10.3115/v1/D14-1107
https://doi.org/10.3115/v1/D14-1107
https://aclanthology.org/2023.iwcs-1.8
https://aclanthology.org/2023.iwcs-1.8
https://doi.org/10.15398/jlm.v3i1.92
https://doi.org/10.15398/jlm.v3i1.92
https://doi.org/10.1007/978-3-642-31555-8_7
https://doi.org/10.1007/978-3-642-31555-8_7
https://doi.org/10.1007/978-3-642-31555-8_7
https://sites.google.com/view/cstfrs-2021/program
https://sites.google.com/view/cstfrs-2021/program
https://doi.org/10.1016/S0019-9958(71)90373-1
https://doi.org/10.1016/S0019-9958(71)90373-1
https://doi.org/10.1016/S0019-9958(71)90373-1
https://doi.org/10.1016/S1571-0661(05)82589-7
https://doi.org/10.1016/S1571-0661(05)82589-7
https://doi.org/10.2307/2275553
https://doi.org/10.2307/2275553
https://doi.org/10.1016/j.tcs.2006.03.018
https://doi.org/10.1016/j.tcs.2006.03.018
https://aclanthology.org/N07-1051
https://aclanthology.org/N07-1051
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1093/logcom/2.2.211
https://doi.org/10.1016/j.apal.2011.09.017
https://doi.org/10.1016/j.apal.2011.09.017
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2023.acl-long.15
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.5683/SP3/ZVGWQY
https://www.islrn.org/resources/454-336-063-423-0
https://doi.org/10.5683/SP3/ZVGWQY

10236

C Cf L

Sentences 39,604 39,604 39,831
Lexical categories 1,285 470 1,020
Atomic categories 34* 11* 5
Avg. cat order 1.739 1.902 2.300
Exp. cat order 0.785 0.785 0.919
Word types 44,210 44,210 44,383

Uncased 39,384 39,384 39,541
Word-cat pairs 74,667 69,705 85,686

Uncased 69,114 64,151 80,066
Avg. cats per word 1.689 1.577 1.931

Uncased 1.755 1.629 2.025
Exp. cats per word 19.185 14.958 28.226

Uncased 20.855 16.231 29.987
*Six of the atomic categories are for punctuation.

Table 2: Basic statistics for sections 2–21 of CCG-
bank (C), CCGbank without features (Cf), and LCG-
bank (L). Expected values are frequency-weighted
while average values are not.

Julia Hockenmaier and Mark Steedman.
2005. CCGbank. Linguistic Data Con-
sortium, ISLRN 181-921-208-336-7. PID
https://doi.org/10.35111/a589-6d76.

A. Statistics on CCGbank’s training
split

As discussed in Section 5, LCGbank’s training set
additionally includes all sections from CCGbank
that were unassigned to any split. The statistics
in Table 1 were computed over LCGbank’s using
training set split; to facilitate comparisons against
CCGbank’s usual training set, Table 2 provides the
same statistics, but computed over the standard
CCGbank training split (i.e., sections 2–21).

https://doi.org/10.35111/a589-6d76
https://www.islrn.org/resources/181-921-208-336-7
https://doi.org/10.35111/a589-6d76

	Introduction
	Background
	Lambek categorial grammar
	Proof nets

	Term graphs: simplified proof nets
	Proof frame construction
	Linkages and term graph validity
	Converting LCG derivations to term graph linkages
	Initial graph construction
	Subcategorial match propagation
	Contracting match paths into links

	Related work

	From CCGbank derivations to LCG
	Category features
	Type-changing rules
	Crossed composition
	Coordination
	Manual annotations and new analyses

	LCGbank: a corpus of LCG proof net parses
	Corpus statistics

	Conclusion
	Future work
	Dependencies
	CCGrebank

	Bibliographical references
	Language resource references
	Statistics on CCGbank's training split

