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Abstract

Resource scarcity in Neural Machine Translation is a challenging problem in both industry applications and in the

support of less-spoken languages represented, in the worst case, by endangered and low-resource languages.

Many Data Augmentation methods rely on additional linguistic sources and software tools but these are often

not available in less favoured language. For this reason, we present USKI (Unaligned Sentences Keytokens

pre-training), a pre-training strategy that leverages the relationships and similarities that exist between unaligned

sentences. By doing so, we increase the dataset size of endangered and low-resource languages by the square of

the initial quantity, matching the typical size of high-resource language datasets such as WMT14 En-Fr. Results

showcase the effectiveness of our approach with an increase on average of 0.9 BLEU across the benchmarks using

a small fraction of the entire unaligned corpus, suggesting the importance of the research topic and the potential of

a currently under-utilized resource and under-explored approach.

Keywords:Low-resource, Translation, Pre-training.

1. Introduction

Over the past years, Deep Learning methods

achieved outstanding results in Neural Machine

Translation (NMT), however, the performances of

these systems are not equally distributed across

all languages. Popular languages such as En-

glish, Chinese, Russian, and Spanish benefit from

the availability of massive amounts of training

data in contrast to Endangered Languages (ELs)

and Low-Resource Languages (LRLs). To out-

line the severity of the problem, there are about

7000 currently spoken languages (Moseley, 2010)

but more than half of them are estimated to be

severely endangered or dead by the year 2100

(Sallabank and Austin, 2011). In addition to that,

only 20 are spoken by 50% of the world’s popula-

tion, whereasmost of the remaining languages are

spoken by less than ten thousand people (Salla-

bank and Austin, 2011). In these cases, the devel-

opment of a translation system, or the integration

of less-spoken languages into systems based on

more popular ones such as English, Chinese, Ara-

bic, andHindi, can increase the economic opportu-

nities for the speaking minorities as well as provide

ways to improve the preservation and revitalization

of endangered languages. In addition to that im-

portant Natural Language Processing (NLP) tools

and projects such as WordNet (Fellbaum, 2010)

and CoreNLP (Manning et al., 2014) exist for En-

glish but other languages need to be translated

first to access them. Finally, in addition to ELs and

LRLs, the lack of resources is a common issue in

industrial applications, where, for instance, Large

Language Models might need to be fine-tuned on

Figure 1: Overview of most popular approaches

compared to our proposal: a) Word replacement.

b) Back-translation and Self-Learning; c) Data

Augmentation based on NLP tools; d) Our pro-

posed approach.

small and domain-specific data such as product

reviews collected by a young company.

Overall, the lack of data is an important and sig-

nificant problem in Natural Language Processing
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(NLP) that affects many languages and many pos-

sible circumstances. To mitigate the issue works

in literature proposed a variety of Data Augmen-

tation techniques. Established works can be cat-

egorized into three approaches that are not mutu-

ally exclusive. The Figure 1 shows, in brief, these

strategies. One approach is based on creating

synthetic training data (Fadaee et al., 2017), by re-

placing a single word in sentences. This method is

particularly effective in NMT because models can

leverage the translation of semantically improba-

ble sentences as long as the linguistic structure is

well preserved. Another stream of work approach

consists of generating additional data from mono-

lingual sources using Back-Translation and Self-

Learning methods (Bojar and Tamchyna, 2011;

Goutte, 2009; Hoang et al., 2018; Li and Specia,

2019). While these methods are proven to be

very effective, many of them require additional re-

sources such as monolingual sources, in-domain

dictionaries (Peng et al., 2020), alignment models,

or NLP software (Duan et al., 2023), which can be

a significant limiting factor, especially with endan-

gered and low-resource languages.

Given a high-resource Language dataset and a

low-resource one, the size of the first is often

in the order of millions, in contrast to the size

of the latter, which is typically in the order of

thousands. This means that if models can learn

from unaligned sentences, they can exploit the

information from millions of training points in the

low-resource as well which can alleviate the data

amount gap compared to high-resource datasets.

We believe that unaligned sentences are currently

an under-exploited resource of theMachine Trans-

lation field. Motivated by the importance of sup-

porting less favoured languages and the lack of

work in that same research direction as our pro-

posed method. In this work, we present USKI,

which is short for Unaligned Sentences Keyto-

kens pre-traIning, a simple pre-training method

that leverages the relationship that exists between

unaligned sentences. In particular, we pre-train

models to predict matching tokens between un-

aligned translation sentences. By doing so, results

showcase an increase in accuracy over groups

of sub-words arbitrarily distributed in sentences,

leading to an overall improvement of 0.9 BLEU on

average across the resource-lacking setups.

In Section 2, we provide an overview of the related

works for the topic. In Section 3, we present our

method, the experimental setup is introduced in

Section 4, and results are showcased in Section 5.

Finally, in Section 6, we draw the conclusions.

2. Related Works

There are many proposals for Data Augmenta-

tion in Natural Machine Translation. (Fadaee

et al., 2017) proposed to create additional training

data by replacing some words in translation sen-

tence pairs without changing the linguistic struc-

ture. In SwitchOut (Wang et al., 2018) the au-

thors trained themodel with a new optimization for-

mula based on training data in which words in both

source and target sentences are replaced with

other words sampled from the respective vocabu-

laries. (Nishimura et al., 2018) proposed to fill and

replace the sentences in one source with elements

from other source languages. (Gao et al., 2019)

to combat the potential loss in semantics during

word replacing proposed to sample words to be re-

placed according to a special distribution over the

vocabulary that takes into account the similarity of

the original word. Another popular method con-

sists of Back-Translation and Self-Learning (Bo-

jar and Tamchyna, 2011; Goutte, 2009; Hoang

et al., 2018; Li et al., 2020), which produces a syn-

thetic parallel corpus from additional monolingual

datasets for the target and source languages. This

method has been proven successful in several

NMT systems (Berard et al., 2019; Zheng et al.,

2019; Helcl et al., 2019). (Li and Specia, 2019)

extends the back-translation by studying the effec-

tiveness of injecting different forms of noise to in-

crease robustness. (Li et al., 2020) refined these

methods using sampling strategies that encour-

age diversity. (Peng et al., 2020) leveraged an

in-domain dictionary-based data augmentation to

reduce the model performance gap on in-domain

and out-of-domain data. (Liu et al., 2021) followed

the idea of word replacement but accomplished

the goal with an alignment model and a masked

language model. (Kondo et al., 2021) proposed a

simple but effective data augmentation based on

the concatenation of unrelated training sentences.

MTL (Sánchez-Cartagena et al., 2021) proves the

effectiveness of combining multiple Data Augmen-

tation strategies. (Duan et al., 2023) adopts the

distance in a dependency tree to operate word-

level editing strategies.

In contrast to most previous works, our proposal

does not rely on additional monolingual resources.

It does not create different targets using noise or

sampling strategies such as word replacement,

nor does it require external tools or models for

alignment or dependency parsing. Our model pro-

poses a novel pre-training stage that leverages

the syntactic relationships in the training set be-

tween unaligned sentences. By doing so, the pre-

training step increases the size of the dataset by

the square of its quantity, and the model can better

extract the valuable content that is currently under-

utilized by the standard training practice and the

established Data Augmentation methodologies.

This approach contrasts with the popular methods

in the literature of extracting aligned sentences
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from unaligned corpus (Smith et al., 2010; Azpeitia

et al., 2018; Ding et al., 2021; Chen, 1993). The

most similar work to ours is (Kondo et al., 2021),

where the concatenation practice is used to mas-

sively increase the number of training samples.

However, while their method focuses on improv-

ing the quality of long translations, it leads to

mixed results in the case of shorter sequences.

Overall, our method is orthogonal to the previous

approaches, and it can be combined with exist-

ing methods to increase models’ performance in

resource-lacking conditions.

3. Method

Given a parallel training corpusDLX ,LY
where LX

is the source language and LY denotes the tar-

get language. The standard translation training

consists of sampling paired sentences (X,Y ) ∈
DLX ,LY

and requires a model, whose parameters

are denoted with θ, to minimize the Cross-Entropy
loss function:

−
T∑
t

log(pθ(yt = gt|y1:t−1, X)) (1)

where y1, . . . , yT are tokens in the predicted se-

quence, gt is the ground-truth token for time step

t and pθ denotes the output distribution of the

model. In contrast, the main idea of our pre-

trainingmethod consists of leveraging the informa-

tion contained in arbitrary source and target sen-

tences (Xi, Yj) ∈ DLX
× DLY

. As a result, sam-

pled pairs are mostly unaligned, in other words,

the predictions are incorrect or wrong in a trans-

lation setup. However, we believe that involving

such data in the training of translation models can

be beneficial for two reasons:

- Full Data Exploitation. In real applications, the

amount of translation data can be scarce for a va-

riety of reasons, such as in the case of endan-

gered languages. Therefore, it is desirable to get

as much information content as possible out of

the available data. Given all permutations of two

independent and identically distributed translation

samples ∀(Xi, Yi), (Xj , Yj) ∈ DLX ,LY
×DLX ,LY

, it

is reasonable to expect the presence of similar lin-

guistic structures or sub-sets of correct alignments

between the two pairs for i 6= j as depicted in Fig-
ure 2. These structures are only partially exploited

or leveraged in an indirect manner when models

are trained exclusively on correct pairs.

- Robustness. Neural networks suffer from the

train-inference discrepancy. In the translation

case, the problem is amplified by the fact that er-

roneous predictions in the early steps increase the

likelihood of worse predictions in the subsequent

steps. By showing incorrect pairs to the networks,

the latter are encouraged to make correct predic-

tions out of noisy and unexpected or incorrect sen-

tence fragments.

While these aspects describe the potential and

theoretical goals of leveraging unaligned transla-

tion pairs, in Section 3.1 we propose our imple-

mentation which represents only one possible so-

lution. We test our method on the popular Trans-

former architecture (Vaswani et al., 2017)

Figure 2: Example of similarity between two arbi-

trary translation samples (from Italian to English).

3.1. USKI

Pre-training is a popular technique leveraged by

many Large Language Models, which are trained

over a massive collection of linguistic sources

and then fine-tuned on translation over smaller

datasets (Liu et al., 2020; Raffel et al., 2020;

Costa-jussà et al., 2022; Junczys-Dowmunt et al.,

2018). Inspired by this approach, in this Section,

we present a pre-training method that leverages

unaligned pairs of source and target predictions

and is applied to the model before the training on

the translation task.

Dataset

Given the training corpus DLX ,LY
, we define

DLX
and DLY

the collections of sentences in

the source language LX and target language

LY . We then construct the Augmented Dataset

D̃ = DLX
× DLY

made of all possible pairings

of source and target language sentences. Since

|D̃| = |DLX ,LY
|2 training directly on D̃ can be

very expensive and time consuming. For this

reason, in practice, we will consider a portion of

the augmented training set D̃ in the experiments.

Pre-Training Strategy

Given two arbitrary samples in source and target

language Xi ∈ DLX
and Yj ∈ DLY

we define a

Key-Token as a matching token between two dif-

ferent sentences Yj and Yi in the target language.

We denote with Ki,j the set of all key-tokens be-

tween the target Yi and Yj , formallyKi,j = Yi∩Yj .

For instance, assuming the target sentences of

two generic unaligned pairs being: Yi={‘a’, ‘piece’,

‘of’, ‘furniture’, ‘with’, ‘four’, ‘legs’, ‘used’, ‘for’, ‘eat-
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Figure 3: Pre-Training operating principle.

ing’} and Yj={‘a’, ‘dog’, ‘is’, ‘eating’, ‘a’, ‘piece’, ‘of’,

‘chicken’}. KeyTokens Ki,j denote a set of tokens

contained in both the correct translation Yi and the

arbitrary one Yj : Ki,j = {‘a’, ‘piece’, ‘eating’, ‘of’}.

Given a training sample (Xi, Yj) ⊂ (Xi, Yi, XjYj),

(Xi, Yi, XjYj) ∈ D̃ the Pre-Training minimizes the

following formula:

−
T∑
t

1(gt) · log(pθ(yt = gt|y1:t−1, Xi)) ·w(gt) (2)

where y1, . . . , yT are tokens in the prediction,

g1, . . . gT are the ground-truth tokens of Yj and

1 : V → R and w : V → R are functions that

map tokens from the vocabulary V to R. 1 is de-

scribed by the following equations:{
1 if gt ∈ Ki,j

0 if gt /∈ Ki,j

(3)

wheres w denotes the Inverse-Document-

Frequency (IDF) function. To compute the IDF

term w(g), g ∈ V we first define the un-normalized

version w̃(g):

w̃(g) = log(
|DLX ,LY

| · α
max(1, φ(g))

) (4)

where α is a corpus size correction coefficient and

φ : V → N is a function that counts the number of

occurrences of g in the target training set:

f(g) =

|DLY
|∑

z

min(1, cgz) (5)

where cgz is the number of occurrences of g in the
sequence Yz. The term w(g) is then defined as:

w(g) =
w̃(g)∑

q∈V w̃(q)
+ γ (6)

where γ is an offset weight, and together with α
they are configurable parameters.

The IDF term w is introduced to prevent the model

from focusing on function words of the language

LY which are the most likely words to co-occur in

two arbitrary sentences. At the same time, since it

induces bias over less frequent sub-words it might

not always be the optimal choice in some trans-

lation tasks and increases the convergence time.

Therefore, during the experiments, the IDF term is

not always adopted. In these cases, we consider

w(g)=1 ∀g ∈ V .

The Pre-Training process is depicted in Figure 3.

USKI Benefits

One notable aspect of the pre-training method

is that it does not make assumptions about the

source and target languages. In particular, the

fact that the source and target languages might

present very different structures (e.g., Chinese

and English) does not affect our proposed ap-

proach. Since the KeyTokens are defined by sen-

tences belonging to the same language.

We designed the pre-training method to increase

the robustness and accuracy of the model over

KeyTokens. In particular, we expect the model to

achieve better performances since training on ar-

bitrarily distributed KeyTokens in the decoded out-

put should mitigate the phenomena of error prop-

agation in autoregressive architectures. In detail,

when an auto-regressive model is trained to pre-

dict the ground-truth token for position q, it is based
upon the assumption that all the previous tokens

in position t < q are correct. As a result, if the

model predicts an incorrect token at certain time

j, all the following predictions for t > j will be af-
fected by this mistake. In contrast, during our pre-

training strategy, we leverage wrong target sen-

tences and train the model to correctly predict a

special set of tokens (the KeyTokens) regardless
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Language pair Type # training (# training)2 # validation # test Vocab. size

Sel-Ru EL-H 7251 52.57 ·106 200 200 4255

Ev-Ru EL-H 2136 4.56 ·106 100 400 3907

Gk-It EL-H 8136 66.19 ·106 200 1000 4068

Uz-En LRL-H 3689 13.60 ·106 99 199 4356

Wol-It LRL-H 5916 34.99 ·106 200 1000 4006

Table 1: Translation datasets statistics. Type refers to EL=Endangered Language, LRL=Low Resource

Language, H=High Resource Language.

of the uncorrelated tokens (not KeyTokens) ob-

served in the previous steps. This increases the

robustness against unexpected tokens or incorrect

predictions in the auto-regressive procedure.

Figure 4: Translation examples sampled from the

experimental datasets.

4. Experimental setup

4.1. Datasets

To evaluate our method we select several lan-

guage pairs and dataset sizes to encompass a

variety of resource-lacking situations. In addition

to more popular languages such as Russian, En-

glish, and Ukrainian, we also involve 2 LRLs and 3

ELs. A lack of agreement over the exact definition

of LRL was pointed out in (Hämäläinen, 2021). In

our work, we will use the term LRL1 to refer to a

language that is not endangered and is involved

in a translation dataset made of a few thousand

samples, which generally outlines the lack of large,

organized and well-known corpora but does not

necessarily imply the lack of available data in the

“wild”. Endangered Languages were identified ac-

cording to the UNESCO 2.

Overall, we select Uzbek-English (Uz-En) pairs

from the QED (QCRI Educational Domain) Cor-

pus (Tiedemann, 2012), theWolof-Ukrainian (Wol-

Uk) from the Parallel Bible Corpus (Mayer and

1Endangered languages are also low-resourced, but

we will denote them as EL for disambiguation.
2https://en.wal.unesco.org

Cysouw, 2014). Regarding ELs, inspired by the

work of (Mossolova and Smaïli, 2022), we choose

the Selkup-Russian (Sel-Ru) and the Evenki-

Russian (Ev-Ru). The first is represented by the

SelkupCorpus (Maria Brykina, Svetlana Orlova

and Beáta Wagner-Nagy, 2018)3, whereas the

second dataset is extracted from the “Minority lan-

guages of Siberia as our cultural heritage” project

(Olga Kazakevich et. al.)4. Finally, we con-

sider the Griko-Italian (Gk-It) dataset from (Anas-

tasopoulos et al., 2018). Since we did not find a

short identifier for the Griko dialect, with an abuse

of notation, we will refer to it with the code “Gk”.

Details of each unfiltered dataset can be found in

Table 1. Examples of translations are depicted in

Figure 4.

4.2. Sentence Processing

Sentences are involved in a simple pre-processing

pipeline. First, they are tokenized using Byte-Pair

Encoding (BPE) (Sennrich et al., 2016) with 4000

codes and it is applied to both source and target

language to create a shared vocabulary. Tokens

are lowercase and punctuation is preserved. Sen-

tences whose post-tokenization length is smaller

than TMin=2 or higher than TMin=100 are dis-

carded. The length filtering contributes to the re-

moval of a few misaligned sentences and a more

computationally friendly dataset.

4.3. Model Configuration

The Transformer architecture (Vaswani et al.,

2017) is adopted across all translation tasks and it

is configured with a hidden size of 128. The inter-

mediate size is 256 (F=256), one attention head,
three encoders and decoders (N=3). The model

was designed with limited representation abilities

to prevent overfitting on the limited training size.

Preliminary experiments showcased that a hidden

dimension greater than 384 easily led to overfit-

ting. Whereas a hidden dimension of 256 and in-

creasing the number of layers N did not lead to

notable differences.

3http://hdl.handle.net/11022/0000-0007-CAE5-3
4https://siberian-lang.srcc.msu.ru/en/
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Figure 5: IoU histogram across different translation datasets.

4.4. Training and Evaluation Details

The model is first trained in the pre-training stage

with the Adam (Kingma and Ba, 2014) optimizer

(β1=0.99, β2=0.98), a fixed learning rate of 1e-3

and a sentence batch size of 256. We set α=1.2,
γ=0.0001 and for each languagewe train for a vari-
able number of iterations. In particular, the model

is pre-trained up to 5 epochs in the case of Gk-It,

Uz-En, Sel-Ru, Wol-Uk and 25 in the case of Ev-

Ru. During the training on the translation tasks,

the model is trained for 300 epochs with a token

batch size of 4096 and the learning rate is set as

follows:

γ(it) = H−0.5 ·min(it−0.5, it · w−1.5) (7)

where it is the number of iterations, whereasw de-

notes the warmup and is set to 400. During both

pre-training and translation training the Cross-

Entropy loss is adopted with a Label Smoothing

coefficient of 0.1. During evaluation, predictions

are generated with the BeamSearch Algorithm us-

ing a beam size of 4 and the BPE de-tokenization

is applied to the result. In the translation task,

the BLEU (Papineni et al., 2002) score is reported

as the evaluation metric in particular, we adopt

the SacreBLEU (Post, 2018) library5. To evaluate

each translation, we report the mean and standard

deviation of the 10 BLEU scores periodically sam-

pled from the last 100 training epochs.

Table 1 reports the number of training samples

available for the pre-training strategy. However,

we note that involving all possible pairings in the

augmented dataset can be too expensive. To re-

duce the training cost and maximize the informa-

tion carried in each iteration batch, we select only

the pairs characterized by an Intersection over

Union (IoU) greater than 0.1. Given two sam-

ples in source and target language Xi and Yj we

5SacreBLEU signature: BLEU+case.mixed+

lang.[source-lang]-[target-lang]+numrefs.1+

smooth.exp+tok.13a+version.2.0.0

compute the IoU(Xi, Yj) as the number of unique
matching tokens between Yj and Yi divided by the

sum of unique tokens in Yj and Yi. By doing so,

we discard a significant portion of the augmented

dataset as can be seen from Figure 5. For in-

stance, in the case of Uz→En, we consider only

12.7 % of all possible pairings. However, the dis-

carded portion is made of samples that contribute

the least according to the loss defined in our train-

ing strategy.

5. Results

5.1. USKI Results

In Table 2, in the second column, we showcase

the performances of the baseline architecture. In

the third column, we report the scores of the

model when our proposed pre-training is applied

before the standard translation training. In Ta-

ble 2, it can be observed that the pre-training

method increases the model performances across

all languages. The maximum improvement of 1.83

BLEU is observed in the case of Ru←Sel, whereas

the lowest one, of 0.37 BLEU, is showcased in

the Wol←Uk case. The magnitude of the improve-

ments is variable and does not seem to relate to

the data size, the language family, or the similar-

ity between the source and target language fam-

ily. For instance, the dataset of the Uz-En case is

double the amount of Ev-Ru, yet the increase is

similar.

In Table 3 it is reported the accuracy computed

over the first KeyTokens in the vocabulary, ranked

by the IDF-term. In particular, we compute Key-

Tokens Accuracy in the following way. Let T =
{(Xi, Yi) ∀i ∈ {1, . . . , |T |}} be the translation test
set. We denote Kn the set of the first n to-

kens from the vocabulary, sorted according to the

weight function of Equation 4 in the definition of

KeyTokens prediction pre-training stage (Section

3.1). We define S as the set of translation pairs

(Xi, Yi) ∈ T , such that Yi is made of at least one
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Task Baseline w/ USKI δ ↑
Sel→Ru 7.05±0.50 8.19±0.38 1.14

Sel←Ru 4.15±0.45 5.98±0.34 1.83

Ev→Ru 6.58±0.48 7.26±0.39 0.68

Ev←Ru 7.36±0.85 8.65±0.90 1.29

Gk→It 5.91±0.10 6.23±0,.10 0.32

Gk←It 4.43±0.07 5.58±0.17 1.15

Uz→En 18.82±0.74 19.94±0.38 1.12

Uz←En 18.40±0.43 19.07±0.38 0.67

Wol→Uk 4.60±0.13 5.00±0.12 0.40

Wol←Uk 8.25±0.05 8.62±0.14 0.37

Table 2: Model’s baseline test set BLEU scores

across different language pairs. The source of the

arrow denotes the source language and points to

the target language of the translation task. Values

represent the average of 10 BLEU scores sampled

periodically over the last 100 epochs of training ±
the standard deviance. δ ↑ denotes the difference
between the baseline and the model pre-trained

with our proposal.

token contained in Kn. The KeyTokens accuracy

of a model over the tokens Kn for the dataset T ,
is given by:

∑|T |
i=1 Ci/|S| where Ci equals one if

the model correctly predicted at least one token

that was contained in both Kn and the ground-

truth translation Yi, and zero otherwise. In other

words, the KeyTokens accuracy is computed over

the n tokens on which USKI focused the most, de-
noted by Kn. Let A250, A500 and A1000 denote

the KeyTokens Accuracy over the first KeyTokens

in the 250, 500 and 1000 rankings respectively

(K250,K500 andK1000). In Table 3 we observe that

while the majority of the language setups show-

case an increase of accuracy over the KeyTokens,

there are few cases, as depicted in Figure 6, in

which the increase is not that significant or even

worse, such as the A250 in Sel←Ru and A1000 in

Ev→Ru and Gk→Uk. These instances are impor-

tant to highlight the difficulty in providing an unbi-

ased interpretation of the accuracy improvements.

From one perspective, the increase is expected

as a result of the pre-training formulation. On the

other hand, the accuracy increase may be simply

a consequence of the performance increase, and

the case of Ev→Ru and Gk←Uk underlines possi-

bly the phenomena known as “catastrophic forget-

ting” in Neural Networks. Either way, we conclude

that, overall, the pre-training provides a more prof-

itable and robust starting point in the latent space

for the translation task, but we hypothesize that, in

some instances, the model finds better results in

partially forgetting the initial focus over the KeyTo-

kens.

Task PT A250 A500 A1000

Sel→Ru
3 10.00% 15.13% 32.37%

7 7.00% 11.51% 31.58%

Sel←Ru
3 13.45% 10.44% 17.85%

7 16.34% 10.14% 16.09%

Ev→Ru
3 0.7% 1.0% 28.02%

7 0.0% 0.5% 30.0%

Ev←Ru
3 0.71% 1.22% 3.03%

7 0.71% 0.61% 2.11%

Gk→It
3 19.49% 22.80% 23.78%

7 18.43% 22.48% 24.28%

Gk←It
3 4.95% 17.0% 20.67%

7 3.96% 14.8% 18.70%

Uz→En
3 12.63% 18.76% 23.42%

7 9.47% 16.62% 22.45%

Uz←En
3 30.76% 32.03% 29.92%

7 29.23% 29.68% 27.96%

Wol→Uk
3 16.05% 16.45% 28.34%

7 14.04% 14.37% 27.39%

Wol←Uk
3 18.01% 17.35% 32.45%

7 17.08% 16.56% 32.29%

Table 3: KeyTokens test set accuracy compari-

son between a model pre-trained first on the Aug-

mented Dataset and one trained directly on the

translation task. An denote the accuracy over the

first n KeyTokens based on the IDF term. PT indi-

cates whether it is pre-trained with USKI.

Figure 6: Accuracy differences between the base-

line models and pre-trained ones on the test set

KeyTokens. An denote the accuracy over the first

n KeyTokens ranked according to the IDF term.

5.2. KeyTokens Granularity

The number of merge operations in the sub-word

tokenization method (in this case the BPE) is pro-

portional to the vocabulary size and affects the

granularity of sentences. This directly impacts the

size of the pre-training set because it affects the

number of aligned sentences with an IoU higher

than 0.10. In Table 4 we found out that the pre-

training set is inversely proportional to the vocabu-

lary size. However, the increase in the pre-training
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dataset size (denoted by γ) does not lead to an in-
crease in improvements (δ). This suggests that

focusing on KeyTokens made of more complete

sub-words or entire words is less effective com-

pared to the case of KeyTokens made of shorter

sub-words. This factor might outweigh the in-

crease in the pre-training size. This result pro-

vides an explanation of the significant improve-

ment difference, in Table 2, between the transla-

tion from the first language into the second and

vice versa within the same translation pair, since

sub-words are not distributed equally between two

languages.

|V | γ Baseline w/ USKI δ ↑
4356 1.7M 19.07 19.64 0.57

7983 2.2M 19.68 20.08 0.40

11385 2.5M 19.49 19.95 0.46

13901 2.6M 20.06 20.29 0.23

Table 4: BLEU score on Uz→En task for differ-

ent vocabulary sizes. |V | denotes the vocabulary
size. γ denotes the pre-training dataset size. δ
↑ denotes the difference between the fourth and

third columns. Results are obtained by averaging

the BLEU scores across 5 seeds.

5.3. Comparison With mBART

In this Section, we compare our results with a

popular large pre-trained language model called

mBART (mbart-large-cc25) (Liu et al., 2020),

which is a pre-trained model over a massive

amount of multi-lingual data. Additionally, we pro-

vide an example of how to integrate our method

into these large models. In our experiments, the

model is fine-tuned on each translation task for 50

epochs with a learning size of 0.0001, weight de-

cay of 0.01, and batch size of 32.

In Table 5 we report a comparison between our

best results and mBART. As expected, our pro-

posed architectures perform significantly worse

across almost all translations. This highlights the

fact that our models were designed for experi-

mental development instead of competitiveness

as they are not trained on much less training data

and are 440× smaller. Despite worse results,

USKI can be integrated and applied to mBART. In

particular, to prevent catastrophic forgetting, our

method can be applied on a set of properly de-

signed additional layers of learnable parameters

(Hu et al., 2021) placed on top of each layer in the

language model, so that it can benefit from both

the massive multi-lingual knowledge and the Key-

Tokens pre-training during the fine-tuning task.

Task Baseline w/ USKI mBART

Sel→Ru 7.05 8.19 18.50

Ev→Ru 6.58 7.26 26.03

Gk→It 5.91 6.23 9.12

Uz→En 18.82 19.94 20.88

Wol→Uk 4.69 5.00 6.24

Table 5: BLEU score comparison between

the baseline, our best pre-training results, and

mBART.

6. Conclusion and Future Works

In this work, we tackled the problem of data

scarcity in NMT, with a particular focus on endan-

gered and low-resource languages. In particular,

in USKI, we first proposed to construct an aug-

mented version of the initial dataset that exhibits

the property of being made of square the num-

ber of training elements. We then proposed a pre-

training method, based on matching tokens, called

KeyTokens, to leverage unaligned sentences in

the first dataset. Results showcased that our

method led to an average improvement of 0.9

BLEU across all the selected translation tasks de-

spite using about one-tenth of the entire unaligned

corpus.

The main limitations of our proposed method are

twofold. First, although the pre-training can be

made of millions or hundreds of thousands of

samples, they are trivially not as effective as the

aligned sentences for the translation task. On top

of that, most tokens in each sentence are still un-

derutilized in the KeyTokens pre-training formula-

tion. Future works will focus on developing better

methods to increase the value of each unaligned

pair. Second, the pre-training step can be time-

consuming if not carefully addressed, for this rea-

son, we trained only over a smaller portion of the

entire dataset. In future works, existing strategies

such as Bucketing can be adapted to increase ef-

ficiency.

In conclusion, while the performance improvement

generated by our solution alone is not impressive,

especially when compared with other standard ap-

proaches that involve Large LanguageModels (Liu

et al., 2020; Raffel et al., 2020; Costa-jussà et al.,

2022; Junczys-Dowmunt et al., 2018), it show-

cases a small example of the capabilities and po-

tential of leveraging unaligned sentences. Overall,

we believe this work makes a step towards the de-

velopment of important but currently under-utilized

resources.
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