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Abstract
Gradient-based explanation methods are increasingly used to interpret neural models in natural language pro-
cessing (NLP) due to their high fidelity. Such methods determine word-level importance using dimension-level
gradient values through a norm function, often presuming equal significance for all gradient dimensions. However,
in the context of Aspect-based Sentiment Analysis (ABSA), our preliminary research suggests that only specific
dimensions are pertinent. To address this, we propose the Information Bottleneck-based Gradient (IBG) explanation
framework for ABSA. This framework leverages an information bottleneck to refine word embeddings into a concise
intrinsic dimension, maintaining essential features and omitting unrelated information. Comprehensive tests show
that our IBG approach considerably improves both the models’ performance and interpretability by identifying
sentiment-aware features.
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1. Introduction

The domain of natural language processing (NLP)
has witnessed the rise of neural models that of-
fer remarkable capabilities. Yet, the intricacies
of these models often remain cloaked in lay-
ers of complexity, raising questions about their
interpretability (Danilevsky et al., 2020; Ribeiro
et al., 2016; Lundberg and Lee, 2017). Gradient-
based explanation methods (Simonyan et al.,
2014; Smilkov et al., 2017; Sundararajan et al.,
2017) have emerged as a prominent solution to
this interpretability conundrum, offering insights
into how neural models function (Doshi-Velez and
Kim, 2017), especially in terms of their fidelity.

These methods pivot on the idea of ascertain-
ing the importance of words by utilizing dimension-
level gradient values, processed through a norm
function. Formally, Gradient-based explanation
methods estimate the contribution of input x to-
wards output y by computing the partial derivative
of y w.r.t x. These saliency methods can be used
to enable feature importance explainability, es-
pecially on word/token-level features (Aubakirova
and Bansal, 2016; Karlekar et al., 2018). Then,
Smooth Gradient (Smilkov et al., 2017) and Inte-
grated Gradients (Sundararajan et al., 2017) are
proposed to improve the original gradients. A
prevalent assumption made during this process is
the uniform significance attributed to every gradi-
ent dimension.

However, while this might hold true for many
applications, the nuances of Aspect-based Sen-
timent Analysis (ABSA) present a more complex
scenario. In our preliminary analysis of aspect-
based sentiment classification tasks (Section 2),
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Figure 1: IBG compresses the 100 noisy dimen-
sions of token gradient into 8 intrinsic dimensions
via information bottleneck.

we have found that this assumption is not always
valid. First, not all dimensions are equally signifi-
cant. Second, while the number of important di-
mensions varies across datasets, only a few di-
mensions prove essential (intrinsic dimension (Li
et al., 2018)). Third, the key dimensions exhibit
similarity within a dataset but vary across differ-
ent datasets. For example, dimension 401 ranks
among the top 100 important dimensions for 89%
instances in the Res14 dataset. Further elabo-
ration on these findings can be found in Section
2. This observation calls for a more discerning
approach to gradient-based explanations in the
ABSA context.

In this paper, we aim to answer the question:
“How can important dimensions be dynamically se-
lected?” We propose an Information Bottleneck-
based Gradient explanation framework (IBG) for
ABSA to learn the intrinsic dimension. To be spe-
cific, we propose an Information Bottleneck-based
Intrinsic Learning (iBiL) structure to distill word em-
beddings into an intrinsic dimension that is both
concise and replete with pertinent information, en-
suring that irrelevant data is judiciously pruned
(Figure 1). Our model is model-agnostic, we in-
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(a) Lap14 (b) Res14 (c) Res15 (d) Res16
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Figure 2: Visualization of the gradients on hidden dimension over four classic ABSA datasets.

tegrate it with several state-of-the-art baselines,
such as BERT-SPC (Kenton and Toutanova, 2019)
and DualGCN (Li et al., 2021). Our comprehen-
sive evaluations and tests provide substantial evi-
dence of the effectiveness of the IBG framework.
As detailed in the following sections, IBG not only
enhances the performance metrics but also im-
proves the clarity of interpretations, shedding light
on sentiment-aware features.

The key contributions of this paper are listed as
follows1.

• We propose the Information Bottleneck-based
Gradient (IBG) explanation framework to find
the low-dimensional intrinsic space since we dis-
cover that not all dimensions of the embedding
are equally important in completing the ABSA
task through preliminary analyses.

• We introduce the iBiL structure, forcing the
model to learn its intrinsic sentiment embed-
ding by effectively removing irrelevant informa-
tion while retaining sentiment-related details via
information bottleneck.

• Through extensive experiments, we demon-
strate that our framework is capable of enhanc-
ing both the performance and the interpretability
of the original model significantly.

2. Preliminary Analysis

In this section, we mainly conduct preliminary anal-
ysis to answer the following three questions.

1Our code is publicly available at https://github.
com/sofistikate/IBG

(a) Lap14 (b) Res14

(c) Res15 (d) Res16

Figure 3: The influence of top k hidden dimension

Question 1: Are all the hidden dimensions
equally important? In Figure 2, we visualize the
gradients of the hidden dimensions. Specifically,
we train a sentiment classifier for aspect-based
sentiment analysis, which inputs the sentence and
aspect into a classifier to predict the sentiment po-
larity. Then we compute the gradients of the opin-
ion words concerning the given aspects as well as
all the words in the sentence. The classifier we
used is the Bert-SPC model, which is a very clas-
sic and fundamental baseline.

Our observations from these figures can be sum-
marized as follows: First, we note substantial vari-
ations in the values along the dimensions. Sev-
eral gradient values are notably larger than oth-
ers, indicating that only a small fraction of dimen-

https://github.com/sofistikate/IBG
https://github.com/sofistikate/IBG
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Figure 4: Percentage of Samples Where Each Di-
mension is in the Top 100 Importance

sions consistently contributes significantly to the
model’s predictions for each sample. Most dimen-
sions have limited influence. Second, the values
of the opinion words are considerably larger than
those of general words. This suggests that gradi-
ents can assist in identifying key words.

Question 2: How many dimensions are nec-
essary? The fact that all dimensions do not have
equal importance implies that there exist certain
dimensions that are really important. Therefore, in
this subsection, we will discuss what is the exact
number of key dimensions among all dimensions.
Specifically, we employ gradient-based explana-
tion methods to select the top-k important dimen-
sions for predicting sentiment polarity with respect
to a given aspect (see Figure 3).

Our observations reveal the following: First, uti-
lizing approximately the top 100-300 dimensions
often yields similar results to using all dimensions
in most cases. Second, in certain instances, em-
ploying the top-k dimensions can lead to perfor-
mance improvements compared to using all dimen-
sions.

Question 3: Which dimensions are impor-
tant? Therefore, aiming to ascertain whether cer-
tain dimensions consistently play a crucial role
in ABSA, we conduct a statistical analysis focus-
ing on the top-100 important dimension indices in
each sample’s prediction, as detailed in Figure 4.

Our findings indicate the following: First, it is
noteworthy that across more than 50% of sam-
ples within each dataset, approximately 80 dimen-
sions consistently maintain their positions within
the top-100 important dimension indices. Second,
several dimension indices consistently demon-
strate significance in nearly every sample within a
dataset. For instance, the top-3 significant dimen-
sions are (145, 124, 401), (443, 175, 401), (401,
168, 218) and (419, 145, 219) in the Lap14, Res14,
Res15 and Res16 datasets, respectively. How-

ever, it is essential to recognize that the specific im-
portant dimensions vary among different datasets.

3. Our Approach

In this paper, we propose the IBG explana-
tion framework for ABSA by learning the low-
dimensional intrinsic features via information bot-
tleneck (Figure 5). Our framework explains the
sentiment classifier by extracting the aspect-aware
opinion words via the gradient method (Section
3.1). It calculates the important weights according
to the gradients on the embedding level, which con-
tains redundancy information. Thus, we introduce
our self-designed Information Bottleneck-based In-
trinsic Learning (iBiL) structure between the em-
bedding layer and encoder layer of the traditional
language model (Section 3.2). This incorporation
utilizes the information bottleneck principle to com-
press the embedding layer to get the intrinsic rep-
resentations, thereby eliminating redundant infor-
mation in the original embedding and retaining es-
sential information.

Let s be a sentence with words tw1, w2, ..., w|s|u,
a be an aspect in the sentence s, and y P Y be
the sentiment label of a. Given a corpus D =

t(si, ai, yi)u
|D|
i=1, our task is to predict the sentiment

polarity y P tP,N,Ou of the sentence towards the
given aspect a. P , N , O represent positive, neg-
ative and neutral, respectively. The word embed-
dings of the sentence s are x = tx1, ..., xi, ..., x|s|u,
where xi is the word embedding of wi. More-
over, we aim to explain the model by extracting
the aspect-aware opinion words o that express the
sentiment w.r.t the aspect a.

3.1. Overview of IBG

In this section, we introduce the overall structure
of our IBG. It is a gradient-based explanation
method based on an aspect-based sentiment clas-
sifier, which computes the importance scores for
each token based on the embedding to find the
aspect-specific opinion words (e.g., delicious) To
improve the interpretability, it incorporates our de-
signed iBiL structure between the embedding and
encoder layers. This structure is employed to ac-
quire intrinsic representations at the embedding
level, eliminating redundant information while re-
taining emotion-related essential information.

The prevailing paradigm of gradient-based
model interpretation methods in NLP consists of
two main steps. First, a pre-trained language
model, including the embedding layer, is fine-
tuned for specific downstream tasks. Subse-
quently, importance scores for each token are
computed, primarily through the embedding layer.
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Figure 5: The framework of our IBG approach.

Particularly, we train a sentiment classifier using
our iBiL for ABSA, which aims to predict the senti-
ment of the sentence concerning the given aspect.
Let F be a sentiment classifier with embedding
and encoder layers that predicts the sentiment dis-
tribution P (y|s, a) based on the sentence s and as-
pect a.

P (y|s, a) = F(s, a) (1)

It is worth noting that, given our framework’s
model-agnostic nature, the sentiment classifier F
can be any existing ABSA model. In this pa-
per, we mainly conduct the experiments on BERT-
SPC (Kenton and Toutanova, 2019) and DualGCN-
BERT (Li et al., 2021).

After the words w in the sentence s passing
through the embedding layer, we obtain embed-
dings x = tx1, ..., xi, ..., x|s|u, where xi P RHigh is
the high dimension embedding of word wi. After-
ward, we employ iBiL structures to learn distinct in-
trinsic dimensional representations via the informa-
tion bottleneck structure, which will be introduced
in Section 3.2. Through iBiL, we also obtain the
“intrinsic representation” x̂ = tx̂1, ..., x̂i, ..., x̂|s|u,
where x̂i P RLow is the low dimension represen-
tation of word wi. Here, High is the dimensionality
of the hidden layer in the original embedding, while
Low represents the size of the intrinsic dimension-
ality, where High (e.g., 768) is much larger than
Low (e.g., 10, 20). To input the final word represen-
tation x1 into the encoder layer, we upsample the

intrinsic representation into a hidden dimension.

x1 = x+Wupx̂ (2)

where Wup represents a learnable upsampling ma-
trix. Throughout the entire training process, x re-
mains frozen and unchanged.

Subsequently, a novel attribution method is em-
ployed to determine the importance scores for
each token based on both the original embeddings
and intrinsic representations, ultimately leading to
improvements in models’ performance and inter-
pretability. Similar to prior work (Simonyan et al.,
2014), we compute importance scores by dotting
the gradients on the model’s prediction with the
corresponding vectors:

γ(wi) =

ˇ

ˇ

ˇ

ˇ

xi ˆ
BF(s, a)

Bxi

ˇ

ˇ

ˇ

ˇ

γ̂(wi) =

ˇ

ˇ

ˇ

ˇ

x̂i ˆ
BF(s, a)

Bx̂i

ˇ

ˇ

ˇ

ˇ

(3)

where γ and γ̂ are the importance weights for each
token in the embedding layer and the intrinsic rep-
resentation layer.

Finally, for each token’s γ and γ̂, we introduce a
hyperparameter α to balance the weights between
the two scores. For each word wi, the final impor-
tance score is calculated as:

FScore(wi) = (1 ´ α)γ(wi) + αγ̂(wi) (4)

Finally, we use FScore(wi) to select the opinion
words of aspect.
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3.2. Information Bottleneck-based
Intrinsic Learning

In our proposed IBG framework, one of the
key innovations lies in the design of Information
Bottleneck-based Intrinsic Learning (iBiL). This in-
volves compressing the pre-trained embedding x
into a lower-dimensional space x̂ to learn the in-
trinsic sentiment representation in the embedding
layer. The primary goal is to retain essential in-
formation in the embedding while removing redun-
dant noise.

According to the original IB theory (Alemi et al.,
2016), the main objective is to learn a compressed
representation Z by maximizing the mutual infor-
mation between Z and output Y and minimizing
the mutual information between Z and input X. In
our work, to learn the intrinsic representation x̂, we
aim to preserve the information of x̂ with respect to
the sentiment polarity y while minimizing the mu-
tual information between x̂ and the original word
vectors x. Therefore, our goal is to minimize the
following loss:

L = βI(x; x̂) ´ I(y; x̂) (5)

where I(., .) represents the mutual information.
However, in practical operations, directly calcu-

lating the mutual information x and x̂ is not feasi-
ble. We employ the Variational Inference method
(Li and Eisner, 2019) to estimate the final loss func-
tion. Specifically, the upper bound of I(x; x̂) can
be obtained through the following method,

I(x; x̂) ď

ż

dx̂dxp(x)p(x, x̂) log p(x̂ | x)

q(x̂)
(6)

Since

KL[p(x̂), q(x̂)] ě 0

ùñ

ż

dx̂p(x̂) log p(x̂) ě

ż

dx̂p(x̂) log q(x̂)
(7)

In actual computation process, we first sample x̂
from the original word vectors using the reparame-
terization method (Kingma and Welling, 2014):

p(x̂ | x) = fµ(x) + fξ(x) ¨ z (8)

where z „ N (0, I). Here, fµ and fξ correspond to
two linear layers, which are trainable. And q(x̂) in
Equation 6 is assumed to follow the standard nor-
mal distribution. Therefore, I(x; x̂) in Equation 5
can be directly replaced with the KL loss in Equa-
tion 6 and be easily calculated.

The lower bound of I(y; x̂) can also be obtained
as follows,

I(y; x̂) ě

ż

dydx̂p(y, x̂) log q(y | x̂) ´

ż

dyp(y) log p(y)

(9)

Since

KL[p(y | x̂), q(y | x̂)] ě 0 ùñ
ż

dyp(y | x̂) log p(y | x̂) ě

ż

dyp(y | x̂) log q(y | x̂)

(10)
The

ş

dyp(y) log p(y) in Equation 9 is a constant,
and thus, we do not need to pay attention to it dur-
ing the optimization. If we consider q(y | x̂) as the
subsequent dimensionality-expanding matrix and
encoder structure of the model, then the process of
minimizing I(y; x̂) can be directly approximated as
optimizing the original sentiment classification loss
function. In other words, I(y; x̂) can be straightfor-
wardly replaced by a cross-entropy loss LCE . The
final loss function can be written as follows.

L = LCE + βKL[p(x̂ | x), q(x̂)] (11)

4. Experiment Setups

4.1. Datasets, Metrics and Settings
Datasets. To evaluate the performance and the
interpretability of our IBG framework, we conduct a
comprehensive series of experiments on four com-
mon datasets: Res14, Lap14, Res15 and Res16
(Fan et al., 2019), which labeled the opinion words
for each aspect.

Metrics. In order to assess the performance of
our framework, we employ the most widely used
metrics in the ABSA task: Accuracy and Macro
F1-score. Moreover, to verify the effectiveness of
our framework in improving models’ interpretabil-
ity, following (Chen and Ji, 2020), we adopt the
area over the perturbation curve (AOPC) (Nguyen,
2018; Samek et al., 2016) and Post-hoc Accuracy
(Ph-Acc) (Chen et al., 2018). AOPC computes
the average decrease in accuracy when the model
makes predictions after removing the top-k impor-
tant words for explanation. Ph-acc, on the other
hand, retains only the top-k words and masks the
remaining words to assess whether the model can
still make accurate predictions.

Settings. We use bert-base-uncased version
(Kenton and Toutanova, 2019) and Adam opti-
mizer for the original BERT and the additional com-
ponents we introduce with learning rates 1e-5 and
1e-4, respectively. In the selection of intrinsic di-
mensionality sizes, we consider dimensions of 5,
10, 20, 50, 100 and 300. The hyperparameter α
was set to 0.5.

4.2. Baselines
We compare our framework with the SOTA base-
lines to investigate its performance and inter-
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Model Lap14 Res14 Res15 Res16
Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc

AEN-BERT 81.80 56.07 - - 88.59 72.69 - - 86.44 63.73 - - 88.60 65.06 - -
LCF-BERT 81.83 58.23 - - 90.00 67.91 - - 85.94 67.53 - - 89.91 69.98 - -
ASCM4ABSA 81.93 57.34 - - 89.96 70.85 - - 86.81 66.32 - - 88.98 68.04 - -
ChatGPT 82.78 44.60 - - 90.62 51.72 - - 90.54 71.86 - - 93.63 76.70 - -
BERT-SPCIEGA 82.28 62.93 15.04 42.18 90.62 72.75 11.13 69.18 85.40 59.39 08.26 70.78 88.56 62.60 10.48 75.49
RGAT-BERTIEGA 82.58 65.10 13.58 66.52 91.64 77.50 15.67 63.29 87.09 69.36 16.07 72.98 90.78 67.34 12.71 80.04
BERT-SPCGrad 81.80 56.31 11.13 67.02 90.47 72.01 09.88 62.71 88.02 61.73 10.60 76.73 90.45 70.32 10.53 79.17
BERT-SPCInteGrad - - 09.85 74.09 - - 10.47 54.24 - - 16.59 80.88 - - 10.31 81.40
BERT-SPCSmoothGrad - - 09.21 69.81 - - 12.59 69.65 - - 12.67 78.11 - - 09.43 81.58
DualGCN-BERTGrad 84.27 67.07 18.84 64.60 91.41 76.62 11.65 77.65 88.71 69.82 13.36 73.04 91.67 76.97 13.60 73.46
DualGCN-BERTInteGrad - - 14.35 59.46 - - 13.06 74.35 - - 14.29 74.19 - - 14.91 71.71
DualGCN-BERTSmoothGrad - - 22.70 68.03 - - 15.53 80.24 - - 14.29 74.19 - - 16.23 75.00
BERT-SPCIBG 83.30 65.34 17.77 75.16 91.29 76.33 28.35 84.24 89.40 78.32 17.28 81.34 92.32 79.57 20.39 83.33
DualGCN-BERTIBG 85.22 72.99 26.89 66.17 92.58 80.22 27.18 78.71 90.63 77.68 25.58 75.81 93.64 84.61 20.83 82.24

Table 1: The main results of performance and interpretability.

pretability. To validate the performance, we select
the following baselines:

• BERT-SPC (Kenton and Toutanova, 2019) sim-
ply concatenates the raw sentences with the
corresponding aspect terms, subsequently feed-
ing these inputs directly into a pre-trained BERT
model for ABSA.

• AEN-BERT (Song et al., 2019) proposes an At-
tentional Encoder Network (AEN) and enhances
BERT with attention-based encoders to capture
context-specific information related to aspects.

• LCF-BERT (Zeng et al., 2019) designs a Lo-
cal Context Focus (LCF) mechanism which uses
multi-head self-attention to force the model to
pay attention to the local context words.

• RGAT-BERT (Wang et al., 2020) is the first
work that uses the Graph Convolutional Network
(GCN) in ABSA to utilize the syntactical depen-
dency structures in the sentences.

• DualGCN-BERT (Li et al., 2021) is a Dual GCN,
employing two GCNs, which can simultaneously
capture both syntax and semantic information.

• ASCM4ABSA (Ma et al., 2022) proposes three
aspect-specific input methods and exploits these
transformations to promote the language models
to pay more attention to the aspect-specific con-
text in ABSA.

• ChatGPT (Wang et al., 2023) designs a prompt
specifically for ABSA, using the GPT-3.5-turbo
model to generate the results and analyze its per-
formance.

• IEGA (Cheng et al., 2023) is a model agnostic
Interpretation-Enhanced Gradient-based frame-
work for ABSA, which guides the model’s atten-
tion towards important words like opinion words.

In addition, to verify the interpretability, we select
some classic gradient-based explanation strate-
gies for comparison.

• Simple Gradient (Simonyan et al., 2014) calcu-
lates the gradient of the model’s output w.r.t. the
input by taking the dot product of these gradients
with the corresponding feature values.

• Smooth Gradient (Smilkov et al., 2017) is an en-
hancement of the Simple Gradient that reduces
noise and provides more stable explanations by
computing the gradient at multiple points along
the path to the actual input.

• Integrated Gradients (Sundararajan et al., 2017)
considers a baseline input and calculates the
gradient at multiple points along the straight-line
path, connecting the baseline to the actual input.

5. Results and Analyses

5.1. Main Results

To demonstrate that our framework can both en-
hance models’ performance and interpretability,
we conducted extensive comparative experiments
(Table 1). The results yield the following findings:

First, IBG outperforms other models in terms
of both performance and interpretability. Regard-
ing performance, our framework performs better
than the strong models like RGAT and DualGCN,
as well as the latest ChatGPT model. As for in-
terpretability, IBG also better captures meaning-
ful words compared to classical gradient-based
strategies and model-agnostic methods like IEGA.
This indicates that IBG can effectively capture the
sentiment-related low-dimensional features.

Second, IBG is capable of further enhancing
both the performance and interpretability based on
the existing models. We can see that our IBG
results in a 1-2 points improvement in accuracy
on each dataset. Taking BERT-SPC as an exam-
ple, after integrating our framework, the Macro-
F1 is improved by more than 10 points on the
Lap14, Res15 and Res16 datasets. Even though
Dual-GCN already performs well, Dual-GCNIBG
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Model Lap14 Res14 Res15 Res16
Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc Acc F1 AOPC Ph-Acc

BERT-SPCIBG 83.30 65.34 17.77 75.16 91.29 76.33 28.35 84.24 89.40 78.32 17.28 81.34 92.32 79.57 20.39 83.33
w/o IB 82.87 64.66 18.63 71.09 90.94 74.62 28.94 72.71 89.40 76.14 17.28 78.57 91.45 78.54 17.76 82.46
w/o iBiL 81.80 56.31 11.13 67.02 90.47 72.01 09.88 62.71 88.02 61.73 10.60 76.73 90.45 70.32 10.53 79.17

Table 2: The results of ablation studies.

still achieves an approximately 1% increase in ac-
curacy and 5% improvement in F1 score over all
datasets. We also notice that our framework ex-
hibits a higher improvement in Macro-F1. This in-
dicates that the representations obtained by infor-
mation bottleneck demonstrate higher sensitivity
to different polarities, including neutral sentiment.
On the other hand, the effect of IBG on enhancing
model interpretability is also significant. The mod-
els exhibit substantial increases in both AOPC and
Ph-Acc after the incorporation of IBG. Compared
to IEGA, the AOPC of BERT-SPCIBG surpasses
BERT-SPCIEGA by 17.22%, 9.02% and 9.91% on
the Res14, Res15 and Res16 datasets, respec-
tively. These results further verify our IBG’s abil-
ity to better capture keywords like opinion words
through learning the intrinsic dimension.

Third, IBG offers a better explanation in com-
parison to traditional gradient-based model inter-
pretation strategies (Simple Gradient, Smooth Gra-
dient and Integrated Gradient). BERT-SPC with
IBG demonstrates more than twofold improvement
in AOPC on the Res14 and Res16 datasets. Ph-
Acc shows a remarkable 40.00% improvement
on Res14 compared with the Integrated Gradi-
ent method. Similarly, DualGCN-BERTIBG exhibits
noticeable enhancements in AOPC compared to
these three interpretation strategies, with the great-
est improvements of 12.54%, 15.53%, 12.22%
and 7.23% on the four datasets. However, the im-
provement in Ph-Acc on DualGCN-BERT is less
pronounced. This can be attributed to the fact that
DualGCN leverages GCN to capture the depen-
dency relationships among words. Consequently,
masking excessive words within a sentence can
disrupt the integrity of the graph’s structure, thus
impacting the final prediction. In summary, the in-
corporation of our framework is capable of enhanc-
ing models’ ability to focus on contextually implicit
sentiment information in words through gradient
analysis, thereby improving its explanation.

5.2. Ablation Studies
We also conduct ablation experiments (Table 2)
to validate our framework from two perspectives:
First, removing the iBiL (w/o iBiL) reduces per-
formance, which indicates that compressing the
model into a low-dimensional space for learning in-
trinsic dimension does benefit the ABSA task. Sec-
ond, the information bottleneck module has a sig-
nificant impact on the model’s final performance

(a) Lap14 (b) Lap14

(c) Res16 (d) Res16

Figure 6: The influence of compressed size Low.

and interpretability. After removing the information
bottleneck structure (w/o IB), the model’s accuracy
and F1-score both decline, even with a decrease
of 4.07% and 11.53% in Ph-Acc on the Lap14
and Res14 datasets, respectively. This indicates
that simply compressing embeddings to a lower
dimensionality introduces noise, which affects the
model’s classification ability. Introducing an infor-
mation bottleneck, on the other hand, does enable
the model to forget irrelevant information and re-
tain important features for sentiment classification.

5.3. Further Analysis

The Influence of Compressed Size Low. We
further explore the variation in model performance
and interpretability when compressing the pre-
trained BERT embeddings into different dimen-
sions. Two key findings can be deduced from Fig-
ure 6: First, with the continuous increase in dimen-
sions, both models’ performance and interpretabil-
ity exhibit a trend of initially increasing and then de-
creasing. Second, the optimal state of the model
consistently reaches at 10 or 20 dimensions and
the performance is even better than the original
model without compressing. This suggests that
our framework can effectively capture essential in-
formation in models’ embeddings and eliminate re-
dundant information.
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(a) AOPC (b) Ph-Acc

Figure 7: The influence of α on four datasets

The Influence of α. We conduct experiments to
observe the impact of varying α values in Equa-
tion 4, which are used to balance the weights be-
tween the important scores obtained from intrinsic
features and the original word embeddings (Fig-
ure 7). We can see that both the intrinsic repre-
sentations and the original word embeddings are
useful for the model’s explanation. Relatively, as-
signing a higher weight to intrinsic dimension re-
sults in slightly higher AOPC and Ph-Acc com-
pared with assigning a higher weight to word em-
beddings. It shows intrinsic vectors successfully
learn the aspect-aware sentiment features, which
is important for ABSA.

6. Related Work

6.1. Intrinsic Dimension

Oymak et al. (2021) showed that trained neural
networks often exhibit a low-rank property, giv-
ing rise to the concept of “intrinsic dimension” (Li
et al., 2018), which represents the minimum sub-
space dimension capable of encoding effective in-
formation or solving a problem. Following this con-
cept, Pope et al. (2020) applied dimension esti-
mation techniques to high-dimensional image data
and discovered that natural image datasets have
low intrinsic dimension. Significantly, Aghajanyan
et al. (2021) first introduced the intrinsic dimension
into the field of natural language processing, re-
vealing that the size of the large pre-trained lan-
guage models’ intrinsic dimension is much smaller
compared to that of their whole parameters. After
this, many studies started to incorporate low-rank
structures into large models, achieving parameter-
efficient learning by only tuning a small subspace
based on the intrinsic dimension Qin et al. (2021);
Sun et al. (2022b,a); Houlsby et al. (2019); Wang
et al. (2022); Hu et al. (2021). Differing from pre-
decessors’ attempts to compress or tune models
using intrinsic dimension, our work learns the in-
trinsic dimension of the large language models via
information bottleneck, exploring how to better in-
terpret the model’s predictions in ABSA.

6.2. Gradient-based Explanation
Algorithms

Literature on explanation and attribution methods
has grown in the last few years, with a few broad
categories of approaches: perturbing the input
(Fong et al., 2019; Ribeiro et al., 2016); utiliz-
ing gradient (Baehrens et al., 2010; Binder et al.,
2016; Selvaraju et al., 2017); visualizing interme-
diate layers (Zeiler and Fergus, 2014). Our work
extends and improves upon the gradient-based
method (Simonyan et al., 2014), a popular tech-
nique applicable to many different types of mod-
els. Several works were proposed to improve the
original gradient-based methods, such as Smooth-
Grad (Smilkov et al., 2017) and Integrated Gra-
dient (Sundararajan et al., 2017). Different from
them, we optimize to compute gradient scores
based on an intrinsic space, enabling a more ef-
fective model interpretation method.

6.3. Information Bottleneck
A series of studies motivated us to utilize IB (Li
and Eisner, 2019; Zhou et al., 2021, 2022) to im-
prove the explanations of gradient-based explana-
tion methods. Li and Eisner (2019) compressed
the pre-trained embedding (e.g., BERT, ELMO),
remaining only the information that helps a discrim-
inative parser through variational IB. Zhmoginov
et al. (2021) utilized the IB approach to discover
the salient region. Some works (Jiang et al., 2020;
Chen et al., 2018; Guan et al., 2019; Schulz et al.,
2020; Bang et al., 2021) proposed to identify vital
features or attributions via IB. Moreover, Chen and
Ji (2020) designed a variational mask strategy to
delete the useless words in the text. In this paper,
we utilize IB to learn the intrinsic space to improve
the models’ explanation.

6.4. Aspect-based Sentiment Analysis
Aspect-based Sentiment Analysis (ABSA) in-
volves the extraction of aspect terms and opin-
ion words from a sentence and the prediction of
sentiment polarity (Zhang et al., 2022a). In our
study, we focus on the subtask Aspect-based Sen-
timent Classification (ABSC), which entails predict-
ing sentiment labels for a given sentence and its
associated aspect. To consider the complex con-
textual relationships in sentences, some ABSC re-
search combined attention mechanisms with large
pre-trained language models, such as BERT-SPC
(Kenton and Toutanova, 2019), AEN-BERT (Song
et al., 2019) and LCF-BERT (Zeng et al., 2019).
There is another trend of combining dependency
trees and Graph Convolutional Networks (GCNs),
exploiting syntax information explicitly, like RGAT
(Wang et al., 2020), DualGCN (Li et al., 2021) and
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SSEGCN (Zhang et al., 2022b). However, even
when employing methods such as dependency
trees to align aspect terms with their correspond-
ing opinion words, in practice, we still observe that
the model may focus on the wrong aspect, es-
pecially in sentences containing multiple aspects.
Therefore, research on Explainable Aspect-based
Sentiment Analysis is essential. Cheng et al.
(2023) leveraged annotated opinion words to force
the model to pay greater attention to these words
in terms of gradients, enhancing the models’ inter-
pretability, but the cost of annotation is high. In this
paper, we propose a model-agnostic framework
to enhance both performance and interpretability
without additional labels.

7. Conclusions and Further Work

This paper conducts preliminary experiments,
demonstrating the uneven importance of word em-
bedding dimensions in ABSA. However, the cur-
rent gradient-based explanation methods do not
take this difference into account. Thus, we pro-
pose an Information Bottleneck-based Gradient
(IBG) explanation framework for ABSA, leveraging
the information bottleneck principle to compel the
model to learn intrinsic information. By integrat-
ing our framework with the latest models, we con-
duct extensive comparative experiments, confirm-
ing that our proposed IBG framework significantly
enhances both the performance and interpretabil-
ity of the original models. Through ablation experi-
ments, we demonstrate the beneficial impact of the
information bottleneck structure and the attempt to
map the embedding layer to a low-dimensional in-
trinsic space. Future research will explore applying
IBG to large-scale language models (e.g., LLaMA)
and other NLP tasks.
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