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Abstract

Recent work shows large language models can be prompted to generate useful rationales for commonsense
question answering (CQA), which can improve the performance of both themselves and other models. However,
the cost of deployment and further tuning is relatively expensive for the large models. Some work explores to
distill the the rationale-generation ability to convenient small-sized models, yet it typically requires human-authored
QA instances during the distillation. In this paper, we propose a novel framework that leverages both knowledge
graphs and large language models to synthesize rationale-augmented CQA data. Based on it, we train Leros,
a model that can generate helpful rationales to assist generic QA models to accomplish unseen CQA tasks.
Empirical results demonstrate Leros can substantially enhance the performance of QA models on five unseen CQA
benchmarks, providing better gains than both same-sized counterpart models trained with downstream data and
10x larger language models. Our work reveals a novel way to integrate knowledge from both knowledge graphs
and large language models into smaller models. The codes and synthesized resources are publicly available at
https://github.com/wchrepo/leros.
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1. Introduction

Commonsense question answering (CQA) is a
challenging natural language processing task. It
requires the understanding of questions based
on unstated background knowledge. In compar-
ison with directly predicting the answers, previ-
ous work shows that adding useful rationales
(e.g. relevant knowledge and reasoning details)
beforehand can lead to better performance and
interpretability (Shwartz et al., 2020; Liu et al.,
2022b), which forms a Question-Rationale-Answer
paradigm dubbed as explicit reasoning. For ex-
ample, as shown in Figure 1, for the question
“What can owls do”, adding a rationale such as
“Owls are birds. Birds can fly.” can help
the model predict the answer.

However, obtaining high-quality rationales is non-
trivial. Previous work (Mitra et al., 2019; Chen
et al., 2020; Xu et al., 2022) attempts to extract
knowledge from commonsense knowledge graphs
(CKG) (Speer et al., 2017; Hwang et al., 2021) and
other sources, which is limited by the coverage
and retrieval availability of the knowledge sources.
Some other work explores to use neural models to
generate rationales on-the-fly (Rajani et al., 2019;
Shwartz et al., 2020; Bansal et al., 2022). Espe-
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cially, recent work elicits large language models
(LLM) to generate “Chain-of-Thoughts” (Wei et al.,
2022), which can not only boost their own QA per-
formance, but also provide transferable rationales
for assisting other models (Liu et al., 2022b; Saha
et al., 2023). However, such ability only emerges
on models with large sizes (typically >10B parame-
ters), which are expensive to deploy and incon-
venient to further tune when needed (e.g. op-
timizing for special use). Therefore, some work
develops more convenient and controllable small-
sized models by distilling the rationale-generating
ability from LLMs (Liu et al., 2022a; Wang et al.,
2022b; Li et al., 2023), yet such work relies on
expensive human-authored QA instances for
distillation.

To address the limitations of the above work,
we propose a novel framework that enables small
models to learn explicit reasoning on synthesized
data. As our work relies solely on synthesized
data, it can (1) avoid the use of expensive human-
authored QA instances, (2) show generalization per-
formance on CQA benchmarks in zero-shot setting,
and (3) provide a strong start point for further tun-
ing. To achieve that, we take the best of both com-
monsense knowledge graphs and large language
models to synthesize rationale-augmented QA in-
stances, and train a rational-generation model,

https://github.com/wchrepo/leros
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What can owls do?
(A) fly (B) speak 
(C) read (D) swim

Rationale

Question

(A) fly

Answer

Owls are birds. 
Birds can fly.

Figure 1: The illustration of explicit reasoning. The
rationales are obtained from a source. Then the
answers are predicted based on the rationales.

Leros. Specifically, to ensure the quality of syn-
thesized instances, we propose model-feedback-
based prompting and refining strategies to obtain
instances with high consistency and helpfulness.
To make Leros ready for providing on-demand
rationales for given questions, we propose a two-
stage training process, ensuring Leros learn both
adequate knowledge from CKGs and the general-
ized rationalization ability from LLMs. Finally, the
trained Leros can generate helpful and readable
commonsense rationales, assisting a generic QA
model to accomplish unseen CQA tasks. When
specialized data are available, Leros can be fur-
ther tuned to generate better rationales.

We summarize our contribution as follows.

• We propose a novel framework to synthesize
rationale-augmented CQA data and train small
rationale-generation models. It combines the
strengths of both CKGs and LLMs, avoiding
the use of human-authored QA data.

• With solely the synthesized data, we train
Leros, a model capable of generating helpful
and readable rationales for unseen common-
sense questions, using only 0.7B parameters
(approximately 0.5% of GPT-3 175B).

• Experiment results show Leros can substan-
tially improve the performance of QA models
on five unseen CQA benchmarks. (1) Trained
with synthesized data at an API cost of ∼$100,
it can directly bring more average performance
gains than 10x larger language models and
previous rationale models that are trained with
human-authored CQA data. (2) When feed-
back of downstream QA benchmarks and fur-
ther tuning are available, Leros shows even
better improvement. (3) The rationales gen-
erated by Leros are useful for different QA
models, including the models that are not used
during training Leros, such as LLaMA2-7B.

2. Related Work

2.1. Exploiting Knowledge for
Commonsense Question Answering

Incorporating knowledge is a common practice in
CQA tasks. Most previous work (Lin et al., 2019;
Feng et al., 2020; Yasunaga et al., 2021; Guan
et al., 2022) exploits knowledge from common-
sense knowledge graphs, which have limited cover-
age and require well-designed retrieval heuristics.
To directly acquire relevant knowledge given the
questions, some work trains rationale generation
models using human-annotated QA rationales (Ra-
jani et al., 2019; Jhamtani and Clark, 2020; Ag-
garwal et al., 2021), commonsense knowledge
graphs (Wang et al., 2020) or encyclopedia cor-
pora (Bansal et al., 2022). Recently, large language
models become another competitive source to gen-
erate rationales (Liu et al., 2022b). Some work
further trains flexible smaller rationale generation
models (Liu et al., 2022a; Wang et al., 2022b; Li
et al., 2023) through distilling LLMs. Our methods
pursue a similar target but avoid using the human-
authored training data of target benchmarks.

Zero-shot commonsense question answering is a
closely related field, which focuses on the inference
and pretraining approaches to improve the gener-
alized performance on unseen CQA benchmarks
without the supervision of corresponding training
data (Shwartz et al., 2020; Bosselut et al., 2021;
Dou and Peng, 2022; Li et al., 2022). An effective
way is to utilize the commonsense knowledge to
synthesize QA instances and train a zero-shot QA
model (Ma et al., 2021; Zhang et al., 2022; Kim
et al., 2022; Wang et al., 2023a). These methods
focus on optimizing a QA model to directly rank
QA pairs, while our work improves the zero-shot
QA performance via building the rationale genera-
tion models, which can provide rationales that are
readable and usable for different QA models.

2.2. Synthesizing Data via Eliciting Large
Language Models

The knowledge and ability of Large language mod-
els can be elicited with appropriate prompts (Petroni
et al., 2019; Sung et al., 2021; Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2023b). The ad-
vances in this line also open new doors to data
synthesizing. There have been efforts to syn-
thesize various language resources by prompt-
ing LLMs, including both symbolic commonsense
knowledge (West et al., 2022; Wang et al., 2022a)
and wide-range training data (Sclar et al., 2022;
Wang et al., 2022c; Honovich et al., 2022). Such
resources can be used for constructing smaller
models for special purposes. In this work, we uti-
lize synthesized commonsense questions to distill
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reasoning rationales from large language models,
which are valuable resources for enhancing the
generalized reasoning ability of smaller models.

3. Methods

3.1. Overview
For clarity, we let an instance of multiple-choice
CQA be a textual pair (q, a∗), where q includes the
question stem q̂ and a set of answer choices A, and
a∗ ∈ A is the correct answer. We assume there
is a generic QA model1 MQA that can predict the
probability of each answer p(a|q), a ∈ A. When the
rationales k are provided and concatenated with
q, the QA model MQA may yield a different prob-
ability prediction, denoted as p(a|q ◦ k). Leaving
MQA unchanged, our methods train a model MQK

to generate helpful k for a given q, optimizing the
probability of the correct answer p(a∗|q ◦ k). In this
paper, we assume the zero-shot setup. The models
have no access to the training data of target bench-
marks. Instead, we synthesize a set of instances
D = (qi, a

∗
i , ki)

|D|
i=1 for training model MQK , and

directly evaluate it with MQA on the target bench-
marks. The overall framework is shown in Figure 2,
including three parts: data preparation, model train-
ing, and inference.

3.2. Data Preparation
The first step is to prepare synthetic (q, a∗, k) in-
stances. To take the best of CKGs and LLMs, we
decompose the procedure into synthesizing CQA
instances (q, a∗), augmenting rationales k, and re-
fining high-quality instances (upper left in Figure 2).
Synthesizing QA Instances Inspired by previ-
ous zero-shot CQA research based on synthetic
data (Ma et al., 2021), we utilize the knowledge
from CKGs to synthesize CQA instances. Specifi-
cally, we sample knowledge triples of (h, r, t) format,
e.g. (owls, capableOf, fly). According to the
type of relation r, we use verbalizing templates to
convert the (h, r) into a question stem, e.g. “What
can owls do?”, and take t as the correct answer
a∗. We sample several other triples (h′

i, r, t
′
i) that

share the same relation r with (h, r, t) but have dif-
ferent heads and tails, and take t′i as a distractor for
the question. We then concatenate the question
stems and shuffled choices to obtain q, such as
“What can owls do? (A) fly (B) speak”.
Augmenting Rationales For each synthesized
QA instance, a primitive way to provide rationale is

1In terms of implementation, MQA can be QA models
trained on generic QA data or large language models
prompted with in-context learning, which are not special-
ized on target CQA benchmarks.

to verbalize the source CKG triple (h, r, t) into a tex-
tual statement ksource, such as “Owls can fly”.
Since it simply retells the source knowledge for the
question, training with it can make the model gulp
down knowledge from CKGs, but that is not ade-
quate for generalization. Therefore, we query an
LLM (e.g. GPT-3.5) to obtain additional rationales.
Specifically, as shown in Figure 3, we start with a
small set of seed examples in the format of q ◦k ◦a,
and prompt the LLM to complete k′ ◦a′ for a synthe-
sized question q′. It can generate rationales that
are relevant but not identical to ksource, e.g. “Owls
are birds”, which could be useful for learning
generalized reasoning. Such rationales generated
by LLMs are denoted as kllm. Also, we let the
generated answer be allm, and allow the model to
answer “None” if there is no proper choice.
Consistency and Helpfulness Refining So far,
we have synthesized rationale-augmented QA in-
stances. However, there may be errors in the CKGs
and the responses of LLMs, which result in flawed
instances. Therefore, we introduce two refining
strategies based on the feedback of models.

First, in the previous step, we deliberately make
the LLM generate both the rationale kllm and the
answer allm. We assume that kllm is usable only
when allm is equal to the correct answer a∗. We will
remove the instance if allm = None or allm ̸= a∗,
because it indicates either the instance is flawed or
the LLM is unable to handle the question. We call
this strategy consistency refining.

Second, even if the LLM gives the correct answer,
the generated rationale kllm could be irrelevant and
unhelpful. Hence, we use the generic QA model
MQA to predict p(a|q) and p(a|q◦k), which are used
for calculating the feedback score of helpfulness.
Specifically, inspired by the knowledge reward of
Liu et al. (2022a), we define the helpfulness score
S ∈ (−1, 1) as:
S(k|q, a∗, A) = 1

2tanh
log p(a∗|q ◦ k)− max

a′∈A
a′ ̸=a∗

log p(a′|q ◦ k)


− tanh

log p(a∗|q)− max
a′∈A
a′ ̸=a∗

log p(a′|q)


(1)

where larger S > 0 indicates that the rationale can
help the QA model favour the correct answer over
the distractors more. Let S0 be a threshold, we
reserve the instances when S > S0. We call this
strategy helpfulness refining.

In order to improve the generation quality, the
refining is conducted for each LLM-querying round,
and the results are randomly added back to the
prompt examples in subsequent rounds. The strat-
egy is denoted as refining prompting.
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(owls, capableOf, fly)
What can owls do?
(A) fly (B) speak
Owls are birds.....

Knowledge: Owls are
birds. Birds can fly.
Answer: (A) fly.

4. Warming-up with
Commonsense

Input: What can owls do?
Output: Owls can fly

1. Synthesizing Questions

2. Augmenting Rationales

6. Evaluating on Unseen
QA Tasks

Input: What can owls do?
(A) fly (B) speak
Output: Owls are birds.....

3. Refining Instances

5. Imitating High-quality
Rationales

Question: ...

Question: ...
Knowledge: ...

Answer: ...

Data
Preparation

Model
Training

Inference

What can owls do?
(A) fly (B) speak

Large LM

LEROSSmall LM

QA Model
CKG

Figure 2: Overview of the proposed framework. Upper Left: Synthesizing questions and rationales.
Lower Left: Training the Leros model. Right: Zero-shot inference on target CQA benchemarks.

Use commonsense knowledge to choose the 
correct answer. Give `None` if there is no proper choice.
Question: How can I cut the handles of metal cutlery?
(A) Use a hand saw  (B) Use a hand drill 
Knowledge: A hand saw is used for making cuts. A hand
drill is used for making holes.
Answer: (A) Use a hand saw
......
Question: What can owls do?
(A) fly (B) speak
Knolwedge: Owls are birds. Birds can fly.
Answer: (A) fly

Prompt

LLM
Completion

Given
Question

Examples

Figure 3: The illustration of prompting a LLM to
complete rationales and answers.

3.3. Training Leros
After data preparation, we start to train Leros
based on a pretrained sequence-to-sequence lan-
guage model. The loss function is defined as:

L(θ) =
1

|y|

|y|∑
t=1

− log pθ(yt|x, y<t) (2)

where x is the input sequence and y is the target
output sequence. During the two training stages
(lower left in Figure 2), they are defined differently.
Stage 1: Warming-up with Commonsense To
make the model internalize abundant common-
sense knowledge from CKGs, we train the model to
generate the source knowledge given a synthetic
question stem, i.e. x = q̂, y = ksource. For exam-
ple, given “What can owls do?” as the input, the
model is trained to predict “owls can fly”. This
objective is similar to the generative commonsense

knowledge completion task (Bosselut et al., 2019),
which predicts t given (h, r).
Stage 2: Imitating High-quality Rationales To
make the model generate useful rationales for ques-
tions, we further train the model on the refined
question-rationale instances, i.e. x = q, y = kllm.
For example, given a question “What can owls
do \n (A) fly (B) speak” as the input, the tar-
get is to predict “Owls are birds. Birds can
fly”. In this way, the Leros model learns to imitate
the helpful rationales generated by LLMs.
Optional Further Tuning After the above stages,
Leros can be directly applied to unseen CQA tasks.
In addition, it can serve as a good base model for
further tuning. Besides fine-tuning with specialized
rationale data, we can optimize it through reinforce-
ment learning with the feedback of QA models on
downstream tasks, as did in Liu et al. (2022a). We
leave it as an optional step and discuss it in the
later experiment section.

3.4. Inference
During inference, following Liu et al. (2022b), for
each test question q, we first sample a set of ratio-
nales from Leros with an additional blank rationale.
The set is denoted as K(q). We then enhance the
generic QA model with K(q) to predict the answer.
Specifically, we concatenate the q with each k and
use the QA model to predict the probability of each
answer p(a|q ◦ k). The final predicted answer â is
given as:

â = argmax
a∈A

max
k∈K(q)

p(a|q ◦ k) (3)
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Initial Data
(Dsyn)

Queried
Data

Consistent
Data

Refined Data
(Drefine)

Train 823K 441K 303K 173K
Dev 67K / / 1K

Table 1: The statistics of synthetic datasets.

where each choice is linked with a rationale that
maximizes its probability, and the final prediction is
the choice with the highest probability.

4. Experiments Setup

In this section, we describe the experimental setting
for evaluating the proposed framework.

4.1. Data
Knowledge Source For synthesizing data, We
use ATOMIC-2020 (Hwang et al., 2021) and CWWV
subset of CSKG (Ma et al., 2021) as the source
CKGs. ATOMIC2020 contains knowledge triples
across 23 relations, involving commonsense about
social interaction, physical entities and general
events. CWWV contains aligned commonsense
knowledge across 14 relations from ConceptNet,
WordNet, Wikidata and VisualGenome.
Synthesized Instances For ATOMIC2020, we
extract knowledge triples from the official training
and development set and synthesize 666K and 59K
QA instances respectively. For CWWV, we reuse
the synthesized instances from Ma et al. (2021),
which contain 157K instances for training and 8K
for validation. We pair these instances with their
source knowledge. The combined synthetic QA
dataset is named as Dsyn. In addition, we aug-
ment rationales for 441K instances from Dsyn by
querying gpt-3.5-turbo-03012 with the default
generation setting. We use 12 human-authored ex-
amples and 10 synthesized instances with the high-
est helpfulness in previous rounds for prompting.
During querying, the prompt contains random 3 ex-
amples and random 10 questions to be answered.
We only generate one rationale and one answer for
each question. After consistency and helpfulness
refining (S0 = 0.01), we obtain 174K high-quality
QA instances with rationales, from which we sam-
ple 173K and 1K instances respectively for training
and validation. We name the dataset as Drefine.
The statistics are summarized in Table 1.
Evaluation Benchmarks For zero-shot evalua-
tion, we evaluate the models on the following five
benchmarks: CommonsenseQA (CSQA) (Talmor
et al., 2019), QASC (Khot et al., 2020), PhysicalIQA
(PIQA) (Bisk et al., 2020), SocialIQA (SIQA) (Sap

2https://platform.openai.com/docs/api-
reference/chat/

et al., 2019), and WinoGrande (WG) (Sakaguchi
et al., 2020). As their test sets are hidden and
have submission restrictions, we mainly report the
accuracy on their development sets.

4.2. Model Implementation
Generic QA Models For the feedback in data
synthesizing and most of the evaluation experi-
ments, we use UnifiedQA-large3 (Khashabi
et al., 2020) as the QA model. It is a generic
QA model based on T5-large4 (770M parame-
ters) (Raffel et al., 2019) and trained on eight QA
tasks. These tasks do not include the evaluation
benchmarks used in our experiments and thus the
model is evaluated in the zero-shot setting.
Training Leros We initialize Leros based on
T5-large. For warming-up with commonsense,
we train the model on Dsyn for 50, 000 steps and
set batch size to 128, learning rate to 1× 10−5. The
learning rate is warmed up in the first 100 steps and
linearly decayed to 0 in the remaining steps. For
imitating high-quality rationales, we train the model
on Drefine with the same hyperparameters. During
each of the training stages, we save checkpoints
with the lowest loss on the validation data.
Inference Setting During inference, we use nu-
cleus sampling (Holtzman et al., 2019) (p = 0.7)
to sample 10 rationales from Leros for each ques-
tion. For the QA model, the concatenated question-
rationale input format is “{q} \n {k}”, which is in
line with the context format of UnifiedQA. We feed
the concatenated input to the QA model and nor-
malize the average log-likelihood for each choice to
obtain the probability p(a|q ◦k). The final prediction
is given with Equation 3.

4.3. Baselines and Model Variants
We include the following zero-shot baselines in the
experiments.

• UQA represents the UnifiedQA-large
model without the rationale input, which pro-
vides the base performance.

• UQAsyn represents a UnifiedQA-large
variant which is fine-tuned on Dsyn to predict
answer without the rationale input. It is similar
to previous zero-shot CQA methods based on
synthetic data (Ma et al., 2021).

• Few-shot GPT-3.5-turbo represents the ratio-
nales generated by GPT-3.5-turbo-0301
with few-shot prompting.

3https://huggingface.co/allenai/unifiedqa-t5-large
4https://huggingface.co/t5-large

https://platform.openai.com/docs/api-reference/chat/
https://platform.openai.com/docs/api-reference/chat/
https://huggingface.co/allenai/unifiedqa-t5-large
https://huggingface.co/t5-large
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• Few-shot GPT-3 represents rationales gener-
ated by GPT-3 (13B) with few-shot prompting.

• Self-talk GPT-3 represents the rationales gen-
erated by GPT-3 (13B) with self-talk prompt-
ing (Shwartz et al., 2020).

As a comparison, we also include the following
rationale models that were trained with the feed-
back from the training data of target benchmarks.

• Rainier is a rationale-generation model pro-
posed in Liu et al. (2022a). It is first trained
with the rationales generated by GPT-3 and
then tuned through reinforcement learning with
QA model feedback. It requires the training
data of target benchmarks. Both Rainier and
Leros are based on T5-large (770M).

• LerosRL is a variant model of Leros, which
is initialized with Leros and further applied the
reinforcement learning of Rainier.

Besides, Gold Rationale represents the human-
authored rationales for some benchmarks, which
provides upper bound performance. Specifically,
for CSQA, we use the explanations from ECQA (Ag-
garwal et al., 2021); for QASC, we use the com-
posed facts provided in the official data.

4.4. Other QA Models
To assess the transferability of generated ratio-
nales, we also evaluate Leros with other generic
QA models besides UnifiedQA-large and its
siblings. These QA models are listed as follows.

• RoBERTa-Large-CSKG (Ma et al., 2021) is a
representative zero-shot CQA model trained
on synthesized QA instances. Its usage is to
concatenate the question with each choice and
scoring the entire sequence for ranking. As the
model is not trained with rationales, to make
it work with Leros, we simply add the gener-
ated rationale before the input sequence. Be-
sides, DeBERTa-v3-Large-CAR (Wang et al.,
2023a) is a similar state-of-the-art zero-shot
CQA model that improves the data synthesiz-
ing. We apply it with Leros in the same way.

• Llama 2 (Touvron et al., 2023) is a famous fam-
ily of open large language models. We use
a vanilla version Llama-2-7B and an RLHF
fine-tuned version Llama-2-chat-7B in the ex-
periments. To make them serve as QA models
and work with Leros, we add a 5-shot prompt
before the input question. For comparison, we
also implement Self-Consistency with Chain-
of-Thought (Wang et al., 2023b) (CoT-SC) as a
baseline to elicit the model’s own knowledge.

5. Results and Analyses

5.1. Main Results
Overall Performance Table 2 shows the perfor-
mance of Leros and baselines on the develop-
ment sets. From the results, we find (1) the ra-
tionales generated by Leros increase the zero-
shot performance of UnifiedQA on the five bench-
marks by 6.3% on average, which indicates that our
methods can provide helpful knowledge for the QA
model and improve the performance on unseen
CQA tasks. (2) Among the benchmarks, QASC
(+13.5%), CommonsenesQA (+6.46%) and So-
cialIQA (+5.93%) have larger improvement, while
WinoGrande (+1.66%) only has slight improvement.
We think it is because the latter one less overlaps
the domain of source CKGs and has greater reason-
ing difficulty. The performance on test sets (Table 3)
is in line with the above observations.
Few/Zero-shot Baselines (1) All few-shot or
zero-shot methods in Table 2 bring improvement
to the performance on the basis of UQA, and GPT-
3.5-turbo provides the best performance as it is
optimized on human feedback and has possibly
the largest model size. (2) In comparison with GPT-
3-based prompting baselines, Leros brings better
average performance gains with much fewer param-
eters (770 million versus 13 billion), which shows
the effectiveness of our methods to exploit knowl-
edge from both CKGs and LLMs. (3) UQAsyn is fine-
tuned on the same synthesized QA instances for
training Leros but yields less improvement, which
indicates that enhancing QA models with explicit ra-
tionales is a strong way to improve zero-shot perfor-
mance. (4) On CommonsenseQA and SocialIQA,
Leros has the closest performance with few-shot
GPT-3.5-turbo, because the two benchmarks have
overlapped domain with the source CKGs of synthe-
sized data. It indicates that Leros can help small
models make better use of in-domain knowledge
and narrow the gap with much larger models.
Feedback Tuning In Table 2, even without the
training data of target benchmarks, Leros has al-
ready achieved better performance than Rainier.
Moreover, these methods can be complementary.
Initialized with Leros and further tuned with the
reinforcement learning process of Rainier, the
LerosRL variant provides even better performance.
We conjecture that Leros can learn both knowl-
edge from CKGs and the rationale generation abil-
ity of advanced LLMs via extensive synthesized
instances, although the synthesized instances are
worse than real benchmark-specific training data in
question quality and complexity. Therefore, Leros
provides a strong foundation for further tuning.
Changing QA Models We apply Leros to differ-
ent UnfiedQA variants and other generic QA model



10309

Method Dataset
Rationale Source QA Model CSQA QASC PIQA SIQA WG Average Avg. Gain
Gold Rationale UQA 89.92 83.37 - - - - -

Few/Zero-shot

- UQA 61.43 43.09 63.66 53.84 53.35 55.07 +0.00
- UQAsyn 62.24 52.27 66.05 55.42 55.25 58.25 +3.17
Few-shot GPT-3.5-turbo UQA 70.02 66.52 71.82 61.00 58.64 65.60 +10.53
Self-talk GPT-3 (13B) UQA 63.31 49.89 65.23 51.89 52.96 56.66 +1.58
Few-shot GPT-3 (13B) UQA 66.34 53.24 65.25 58.29 55.56 59.74 +4.66
(Ours) Leros (770M) UQA 67.89 56.59 67.57 59.77 55.01 61.37 +6.29

Feedback Tuning Rainier (770M) UQA 67.24 54.97 65.67 57.01 56.91 60.36 +5.09
(Ours) LerosRL (770M) UQA 70.35 60.15 69.53 64.32 59.27 64.72 +9.65

Table 2: Few/Zero-shot and feedback-tuned results on the benchmarks (development sets).

QASC PIQA SIQA WG Avg.
UQA 45.65 65.50 57.21 54.67 55.76
UQA+Rainier 54.13 67.09 59.01 57.39 59.41
UQA+Leros 55.33 67.67 60.90 56.14 59.81

Table 3: Results on the benchmarks (test sets).

QA Model→ UQA
(small)

UQA
(base)

UQA
(large)

UQA
(3b)Rationale Model↓

- 39.07 45.51 55.07 66.51
Ranier 48.60 54.77 60.36 67.85
Leros 49.05 56.12 61.37 67.91

Table 4: Average performance of applying different
UnifiedQA variants with Leros.

implements. The average performance is shown in
Table 4 and Table 5. From Table 4, we find Leros
can consistently bring gains for different sizes of QA
models, which is in line with Liu et al. (2022a). From
Table 5, we find Leros improve the performance
of both previous zero-shot CQA models and the
latest open large language models (i.e. Llama2-
7B), even though these models are implemented
in a completely different way from UnifiedQA. The
results demonstrate that the rationales generated
by Leros contain transferable knowledge and are
useful for different models.

Method Average
RoBERTa-Large-CSKG (Ma et al., 2021) 64.0
Leros + RoBERTa-Large-CSKG 65.2
DeBERTa-v3-Large-CAR (Wang et al., 2023a) 70.2
Leros + DeBERTa-v3-Large-CAR 71.1
Llama2-7B (Few-shot) 53.4
Llama2-7B (CoT-SC) 55.8
Leros + Llama2-7B (Few-shot) 57.2
Llama2-chat-7B (Few-shot) 58.6
Llama2-chat-7B (CoT-SC) 61.9
Leros + Llama2-chat-7B (Few-shot) 63.0

Table 5: Average performance of applying QA mod-
els other than UnfiedQA in few/zero-shot setting.

CSQA QASC PIQA SIQA WG Avg.
None 61.43 43.09 63.66 53.84 53.35 55.07
Leros 67.89 56.59 67.57 59.77 55.01 61.37

-WM 66.42 54.75 67.03 58.96 53.83 60.20
-IM 56.76 39.96 61.75 53.89 53.20 53.11
-CS 65.27 55.37 66.16 58.47 54.78 60.01
-HP 66.42 56.26 66.92 58.96 54.75 60.66

Source K 58.89 47.30 63.55 54.20 51.85 55.16
CKG Path 65.11 51.30 66.16 57.16 54.93 58.93
LLM SynQ. 61.34 49.46 66.16 58.29 53.51 57.75

Table 6: Performance of different variants of Leros.
(-WM): Removing warming-up with commonsense.
(-IM): Removing imitating high-quality rationales.
(-CS): Removing consistency refining. (-HP) Re-
moving helpfulness refining. (Source K): Training
on the source knowledge ksource rather than kllm.
(CKG Path): Training on sampled knowledge paths
rather than kllm. (LLM SynQ): Training on LLM
generatd question instances.

Knowledge (Cake, UsedFor, feed to guests)

Rule-based
Question

What can cake be used for?
(A) record achievement
(B) feed to guests {correct}
(C) lose the weight

LLM-based
Question

Which of the following foods would be a
good option for serving guests?
(A) Pizza (B) Salad
(C) Cake {correct} (D) Tacos

Table 7: Synthesized question instances with a
rule-based method and a LLM-based method. The
LLM generates more fluent questions but it also
provides inappropriate distractors.

5.2. Ablation Study
To further analyze the effectiveness of different
parts of the proposed framework, we show the ab-
lation results of several Leros variants. All of them
are evaluated with UnifiedQA-Large.

Refining and Training As shown in Table 6, we
first remove different parts of the proposed frame-
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Task Question/Rationale Category

CSQA
If there is a place that is hot and arid, what could it be?
(A) bland (B) lifeless (C) sandy (D) neutral (E) freezing
Hot and arid can mean a place that is dry and inhospitable.

attribute

QASC
What can measure pounds?
(A) animals (B) lamphreys (C) a mouse (D) a ruler (E) humans (F) surveyor (G) a scale (H) a microscope
Measuring pounds is done using a scale.

use

PIQA
how do you blame someone?
(A) say they did it. (B) say you did it for them.
Blaming someone involves saying they did something wrong.

subevent

SIQA
Ash always performed better at his workplace after a warm cup of coffee. What will Ash want to do next?
(A) start a new task (B) take some nyquil (C) go home
After having a warm cup of coffee, people usually feel refreshed and want to continue their work.

behavior

WG
Angela did a bunch of crunches and sit-ups but Cynthia didn’t, consequentially _ had six- pack abs.
(A) Angela (B) Cynthia
Doing crunches and sit-ups is a common exercise to get six-pack abs.

taxonomy

Table 8: Examples of helpful rationales generated by Leros.

work and evaluate the resulting models. Generally,
these models all yield worse performance than the
fully trained Leros. Without imitating high-quality
rationales, the performance is greatly damaged,
which shows the importance of training on rationale-
augmented data. Removing the refining process
marginally decreases the performance gains, which
shows that models can learn with noisy instances
but high-quality instances are more useful.

Alternative Synthesizing Strategies As CKGs
and LLMs are independent sources, we also exam-
ine several alternative strategies for synthesizing
questions and rationales. Specifically, we try to
use the source knowledge of questions (Source K)
or sample multi-hop connection paths from CKGs
based on concepts mentioned in the question (CKG
Path) to create question-specific rationales. We
also try to use LLMs instead of rules to generate
questions based on a knowledge triple (LLM SynQ).
These variant methods all yield worse performance.
Interestingly, the results show the LLM is worse
than rule-based methods at synthesizing questions
for given knowledge. It is partly because the LLM
is not good at generating distractors, as shown
in Table 7. Also, the CKG Path variant provides
strong performance, which shows the importance
of relevant knowledge. Note that we do not include
the results of directly generating questions without
providing knowledge from CKGs, because the LLM-
generated questions are highly repetitive, even if
we add previously generated instances for prompt-
ing. We leave better strategies for synthesizing QA
instances with LLMs as future work.

Training Data Size To investigate the impact of
data size, we further train models using 10%, 30%,
50%, 70% and 90% of training data respectively.
As a comparison, we try to remove refining prompt-
ing (i.e. add refined high-quality instances into the
prompts) in synthesizing rationales and train corre-
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Figure 4: The performance curve of altering the
size of training data.

sponding variant models. The performance curve
is shown in Figure 4. We find that as the data size
increases, the performance improvement tends to
converge. Meanwhile, applying refining prompting
can improve the data efficiency, achieving better
performance with the same synthesizing budget.

5.3. Manual Analyses

For further analyses, we randomly select 100 in-
stances from the evaluated benchmarks and man-
ually annotate whether the rationale generated by
Leros is relevant, factual, and helpful for the ques-
tion. Generally, 86% of the rationales are annotated
as relevant, 69% are factual and 55% are helpful.
For instances where the rationale rectifies the an-
swer, 89% of the rationales are helpful. We show
some of the helpful examples of rationales in Ta-
ble 8 and mark the knowledge category that they ex-
press. These instances show that although Leros
is trained with synthesized question instances, it
can generalize on unseen commonsense question
answering tasks, providing helpful and readable
evidence. On the other hand, we also find 70%
of generated rationales are single facts between
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two concepts, indicating the multi-hop reasoning
ability requires further improvement as the model
only learns from synthesized questions with low
complexity.

6. Conclusion

In this paper, we propose a novel framework for ex-
plicit reasoning on commonsense question answer-
ing, which takes the best of commonsense knowl-
edge graphs and large language models to syn-
thesize rationale-augmented QA data. Based on
solely synthesized data, we train a rationale genera-
tion model that can provide textual rationales for un-
seen questions. Empirical results show the model
improves the performance of QA models on five un-
seen CQA benchmarks, surpassing previous meth-
ods that require training data of target benchmark
and 10x larger language models. It can directly
work with different generic QA models or serve as
a good start for further tuning. This work shows a
novel and effective way to transfer commonsense
knowledge from both symbolic sources (CKGs) and
neural sources (LLMs) to smaller special-purpose
models. It also reveals enlightening phenomena
for LLM-based synthesized resources.

7. Limitations and Ethics
Considerations

This work has limitations in some aspects. First, the
scope of synthesized questions is still affected by
the coverage of source CKGs. Recent CKGs built
from large language models can be an alternative
source for synthesizing CQA instances for broader
domains, yet we have not explored its feasibility.
Second, due to the simple structure of synthesized
questions, the model cannot learn much about
complex reasoning structures and hence brings
less improvement on hard CQA tasks (e.g. Wino-
Grande), which remains a problem to be solved in
future work. Third, our framework contains English-
specific prompting designs. We only evaluate its
effectiveness on English benchmarks. It requires
additional adaptation for applying the framework to
other languages.

In addition, we mainly focus on the helpfulness of
generated rationales for assisting QA models in this
work. The Leros model can also generate human-
readable rationales, yet it is not adequate to serve
as a reliable source to provide trustworthy knowl-
edge. We have not fully examined the synthesized
QA instances used for training the model. The
synthesized data are based on publicly available
knowledge graphs and pretrained large language
models, which could contain unconfirmed bias or
toxic information and indirectly affect the trained
Leros model.
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