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Abstract
Thanks to the development of pre-trained sequence-to-sequence (seq2seq) models (e.g., BART), recent studies
on AMR parsing often regard this task as a seq2seq translation problem by linearizing AMR graphs into AMR
token sequences in pre-processing and recovering AMR graphs from sequences in post-processing. Seq2seq
AMR parsing is a relatively simple paradigm but it unavoidably loses structural information among AMR tokens. To
compensate for the loss of structural information, in this paper we explicitly leverage AMR structure in the decoding
phase. Given an AMR graph, we first project the structure in the graph into an AMR token graph, i.e., structure
among AMR tokens in the linearized sequence. The structures for an AMR token could be divided into two parts:
structure in prediction history and structure in future. Then we propose to model structure in prediction history via a
graph attention network (GAT) and learn structure in future via a multi-task scheme, respectively. Experimental
results show that our approach significantly outperforms a strong baseline and achieves performance with 85.5 ±0.1
and 84.2 ±0.1 Smatch scores on AMR 2.0 and AMR 3.0, respectively.
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1. Introduction

Abstract meaning representation (AMR) is a se-
mantic formalism encoded in the form of a di-
rected acyclic graph, comprising concept nodes
and edges that denote the semantic relations be-
tween these nodes (Banarescu et al., 2013). Fig-
ure 1 presents an English sentence and its corre-
sponding AMR graph. AMR parsing is the task of
translating a sentence into an AMR semantic graph
automatically. AMR has been applied to a broad
range of natural language processing (NLP) tasks
such as abstractive summarization (Liu et al., 2015;
Hardy and Vlachos, 2018), question answering (Mi-
tra and Baral, 2016), machine translation (Song
et al., 2019), and sentiment analysis (Jiang et al.,
2022).

With the rapid development of sequence-to-
sequence (seq2seq) learning paradigm, recent
studies in this literature tend to view AMR parsing
as a seq2seq translation problem (Konstas et al.,
2017; Xu et al., 2020; Bevilacqua et al., 2021). To
apply seq2seq learning to AMR parsing, we need to
linearize AMR graphs into AMR token sequences
in pre-processing (Figure 1(c)) and then recover
AMR graphs from sequences in post-processing.
However, treating an AMR graph as a sequence in-
evitably loses structural information that is encoded
in the graph. Taking the AMR graph in Figure 1 as
an example, the seq2seq decoder does not explic-
itly make use of the structural relationship between
AMR tokens during the decoding phase, e.g., the
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Figure 1: An example of an AMR graph and its
depth-first search (DFS)-based linearization se-
quence (Bevilacqua et al., 2021). For the presenta-
tion convenience, all the parentheses are indexed
in (c).

parent-child relation between “formal” and “open-
01” and the sibling relation between “formal” and
“center”, which in principle should be beneficial to
AMR parsing.

This paper aims to tackle the aforementioned
challenge by incorporating AMR structure into the
decoding phase of seq2seq AMR parsing. To in-
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troduce structure among AMR tokens in a target-
side sequence, we initially construct an AMR token
graph by transferring the structure from the corre-
sponding AMR graph using heuristic rules. For an
AMR token yt, we can divide the structure in the
AMR token graph into two parts: structure in predic-
tion history y<t and structure in future y>t. Specifi-
cally, we properly capture yt’s structural information
in y<t with a graph attention network. Meanwhile,
we learn yt’s future structure in y>t with a multi-task
scheme. Extensive experiments on two English
benchmarks show that our approach achieves com-
parable performance to the state-of-the-art, with
an improvement of 1.4% Smatch score on AMR
2.0 and an improvement of 1.0% Smatch score on
AMR 3.0 respectively over a strong baseline. Over-
all, this paper makes the following contributions.

• We use heuristic rules to transfer structure from
AMR graph to AMR token graph, i.e., structure
among AMR tokens in the linearized sequence.
Then we propose to leverage structure in the
AMR token graph: modeling structure in pre-
diction history via a GAT and learning structure
in future via a multi-task scheme.

• Experimental results on two benchmarks show
that our proposed approach significantly im-
proves the performance of AMR parsing, and
achieves comparable performance to the state-
of-the-art.

2. Related Work

AMR parsing, a task that translates sentences
into directed and acyclic graphs (Banarescu et al.,
2013), has seen diverse modeling approaches for
the structure in AMR graphs. Previous research in
AMR parsing can be broadly categorized into tree-
based approaches (Wang et al., 2015; Groschwitz
et al., 2018), graph-based approaches (Flanigan
et al., 2014; Werling et al., 2015; Cai and Lam,
2019), transition-based approaches (Zhou et al.,
2016; Damonte et al., 2017; Ballesteros and Al-
Onaizan, 2017; Guo and Lu, 2018; Astudillo et al.,
2020; Zhou et al., 2021a,b), sequence-to-sequence
(seq2seq) approaches (Peng et al., 2017; van No-
ord and Bos, 2017; Konstas et al., 2017; Ge et al.,
2019; Xu et al., 2020; Bevilacqua et al., 2021; Xu
et al., 2021), and sequence-to-graph (seq2graph)
approaches (Lyu and Titov, 2018; Zhang et al.,
2019a,b; Cai and Lam, 2020).

Among the previous studies, tree-based,
graph-based, transition-based and seq2graph
approaches can naturally take advantage of
structural information in the decoding phase.
By contrast, linearizing an AMR graph into a
sequence unavoidably loses structural information,
but seq2seq learning for AMR parsing is prevalent

and achieves state-of-the-art performance due
to the availability of pre-trained seq2seq models,
such as BART (Lewis et al., 2020). Our work
also belongs to the paradigm of seq2seq learning,
with a target of explicitly incorporating structural
information in decoding to compensate for the loss
of structural information in AMR linearization. In
the direction of seq2seq AMR processing, there
are previous works that incorporate syntactic
and semantic information in encoding (Ge et al.,
2019; Zhu et al., 2019). However, there are
limited works that aim to incorporate structural
information in decoding. Bai et al. (2022) propose
graph self-supervised pre-training to improve the
structure awareness, then the pre-trained model is
fine-tuned for AMR parsing. The most related work
to ours is Yu and Gildea (2022), which incorporates
ancestor information in prediction history in the
decoding phase. By contrast, we aim to leverage
the whole graph structure, including structure
in both prediction history and future. Vasylenko
et al. (2023) also propose a different approach
to incorporate graph information, which shows
that partial information of the target sequence can
be learned via self-knowledge distillation. Gao
et al. (2023) explore the structure loss problem
in seq2seq AMR parsing and propose a reverse
graph linearization learning framework which
uses an extra encoder to encode the right-to-left
linearized AMR graph.

3. Approach

For easy narration, we refer to items in AMR graph
as AMR nodes and semantic edges while we refer
to items in the linearization as AMR tokens. Given
an AMR graph, we first project its structure in the
graph onto an AMR token graph, representing the
relationships among AMR tokens in the correspond-
ing linearized sequence (Section 3.1). During the
decoding phase, where AMR tokens are predicted
sequentially in an autoregressive manner, the struc-
ture associated with an AMR token yt at the t-th
time step can be divided into two parts: the struc-
ture in the prediction history y<t and the structure
in the future y>t. To capture the structure in the his-
tory, we introduce a graph attention network (GAT)
(Section 3.2), while the structure in the future is
learned through a multi-task scheme (Section 3.3).

3.1. Building AMR Token Graph from
AMR Graph

As shown in Figure 1, an AMR graph is made up
of AMR nodes which are connected by semantic
edges. In the linearization (Bevilacqua et al., 2021),
an AMR node (e.g., open-01) is usually linearized
into four AMR tokens (e.g., (1, <p:0>, open-01, and
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Figure 2: (a) The AMR token graph projected from the AMR graph shown in Figure 1 (b). (b) underline:
Adjacent tokens in prediction history (δ = 1) when the input is date-entity. (c) dashed-underline: Adjacent
tokens in future (η = 1) when the input is date-entity.

)1) while a semantic edge (e.g., :ARG1) maps a
single token (e.g., :ARG1 itself).1 We denote AMR
tokens derived from either an AMR node or a se-
mantic edge as T (·). The following heuristic rules
are employed to construct the AMR token graph
from the AMR graph:

• For an AMR node a, AMR tokens T (a) are fully
connected, as shown by the dashed boxes in
Figure 2.

• If AMR nodes a1 and a2 have a parent-child or
sibling relationship, an edge exists for a pair
of AMR tokens (ti, tj), where ti ∈ T (a1) and
tj ∈ T (a2).

1For AMR nodes representing constants (e.g., 2009),
they map into a single AMR token in linearization.

• Given an AMR token a and a semantic edge e
that starts from or ends at a, an edge exists for
a pair of AMR tokens (ti, tj), where ti ∈ T (a)
and tj ∈ T (e).

Figure 2 illustrates the AMR token graph de-
rived from the AMR graph in Figure 1 (b). In ad-
dition to the structures in the AMR graph, edges
between AMR tokens of sibling AMR nodes are
included. Furthermore, edges in the AMR token
graph are undirected. Importantly, when construct-
ing the AMR token graph from the AMR graph, reen-
trancy nodes do not require special attention.
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Figure 3: Illustration of our approach. (a) Modeling history structure with a GAT; (b) GAT architecture; (c)
Learning future structural relationship via multi-tasking scheme.

3.2. Modeling Graph Structure in
Prediction History via GAT

As in decoding phase, the AMR tokens are pre-
dicted one-by-one in an autoregressive way, the
prediction history can be transformed into a sub-
graph, which preserves structural information be-
tween AMR tokens. For example in Figure 2 (b),
the sequence itself fails to tell that for the t-th time
step input date-entity, AMR tokens (1, <p:0>, and
open-01 are from its parent AMR node while AMR
tokens (1,1, <p:1>, center, and )1,1 are from its sib-
ling AMR node. Therefore, being aware of such
structured information can enhance the representa-
tion learning for the input token, and thus can help
the model to make better predictions of the next
token.

Inspired by Ahmad et al. (2021) which uses graph
attention network (GAT) (Veličković et al., 2018) to
encode syntax, here we adapt it to properly model
structural information between AMR tokens. Fig-
ure 3 (a) shows the AMR parsing decoder which is
additionally equipped with a GAT in self-attention
module. The GAT in Figure 3 (b) consists of NG

identical GAT encoding layers.

Self-attention with GAT output. In vanilla
decoder-side self-attention, it uses multi-head atten-
tion to transform the input A ∈ Rn×d (i.e., the out-
put from the previous decoder layer) to B ∈ Rn×d,
where n is the input length and d is the embedding
and model size. B is computed as:

B = MultiHead (A,A,A,MS , HS) , (1)

where MS ∈ {0,−∞}n×n is an upper triangular ma-
trix so the decoder cannot peak to future tokens,
HS is the number of heads in self-attention. Specif-
ically,
MultiHead (Q,K, V,M,H) = [head1, · · · , headH ]WO,

(2)

headi = Att
(
QWQ

i ,KWK
i , V WV

i ,M
)
, (3)

Att (Q,K, V,M) = Softmax
(
QKT

√
dk

+M

)
V, (4)

where WO ∈ Rd×d, WQ
i ,WK

i ,WV
i ∈ Rd×dk are pa-

rameter matrices, H is the number of heads and
dk = d/H.

To enable the self-attention be aware of the struc-
tural information for input tokens, we simply add
the representation from GAT output to the hidden
states of query-key pairs in attention. Given GAT
output G ∈ Rn×d, we replace Eq. 3 with the follow-
ing updated head:

headi = Att
(
QWQ

i + GWQ
G ,KWK

i + GWK
G , V WV

i ,M
)
,

(5)
where WQ

G ,WK
G ∈ Rd×dm are additional parameter

matrices. Note that in each decoder layer, we use
not all but partial heads to integrate GAT output
(See Section 5.1 for discussion).

Modeling history structure via GAT. Given a
target-side sequence y = {y1, · · · , yn} with n AMR
tokens, the input sequence is then encoded into
an input matrix G(0) = [g

(0)
1 , · · ·, g(0)n ], where g

(0)
i

is word embedding of yi. The i-th GAT encoding
layer takes G(i−1) ∈ Rn×d as input and computes
G(i) ∈ Rn×d as output. GAT adapts the multi-head
attention mechanism and models structural infor-
mation by attending their structurally adjacent to-
kens in prediction history. The computation of out-
put G(i) is:

G(i) = MultiHead
(
G(i−1),G(i−1),G(i−1),MG, HG

)
,

(6)
where HG is the number of heads in GAT attention.
The mask matrix MG ∈ {0,−∞}n×n is set as:

MG[i, j] =

{
0, Dij ≤ δ and i ≤ j;

−∞, otherwise.
(7)
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where Dij is the shortest path distance between
token i and j in the AMR token graph. Following
(Ahmad et al., 2021), we set δ to 1 by allowing
attention between adjacent tokens only. Meanwhile,
we set MG[i, j] = −∞ when i > j to ensure that
position j cannot depend on the positions greater
than j.

We use the output of the final GAT layer as the
output, i.e., G(NG). Note that GAT encoder layer
only consists of multi-head attention and there is
no feed-forward operation and residual connection.
Moreover, GAT does not use positional encoding.

3.3. Learning Graph Structure in Future
via Multi-task Scheme

In decoding, the decoder only predicts an AMR
token at each decoding time step, which makes
the prediction independent from relevant AMR to-
kens in future. Motivated by related studies in ma-
chine translation that future-aware decoding is help-
ful (Weng et al., 2017; Lyu et al., 2023), we propose
to learn graph structure in future via a multi-task
scheme. For target-side AMR token yi, we use
Fi to denote the future structural token set having
structural relationship with yi, i.e.,

Fi = {yj | j > i and Dij ≤ η} , (8)

where η is set to 1 by including adjacent tokens only.
As shown in Figure 2 (c), for example, the future
structural token set for date-entity is {:year, 2009,
formal, (, )}.2 Therefore, simultaneously learning
future structure when predicting an AMR token can
enhance the capability of foreseeing the future, and
thus can help the model to make better predictions.

Following Weng et al. (2017), we learn to predict
the future structural token set Ft under a multi-task
scheme when predicting yt at the (t− 1)-th time
step. As shown in Figure 3 (c), we assume that
the output of the last decoder layer at the (t− 1)-th
time step is ot−1. Then we predict the next token
yt as:

P (yt|y<t, x; Θ) = Softmax
(
ot−1W

T
)
, (9)

where x is the source-side input, Θ is model param-
eters, W ∈ R|V |×d is target-side word embedding,
and |V | is the size of its vocabulary V .

Similarly, we predict yt’s future structural token
set Ft as:

P (Ft|y<t, x; Θ) = Softmax
(

f (ot−1)W
T
)
,

f (ot−1) = ot−1W
S ,

(10)

where WS ∈ Rd×d is a parameter matrix.
Overall, given the source-side and target-side

input pair (x, y), and future structural token sets

2We remove repeated tokens in the token set.

F = (F1, · · · , Fn), where Fi = {fi,j}||Fi|
j=1, the

model is jointly trained by maximum likelihood es-
timate, i.e., minimizing the negative log likelihood
loss of current token and its future structural token
set:3

Ljoint (y,F|x; Θ) = Lc (y|x; Θ) + λLf (F|x; Θ) , (11)

Lc (y|x; Θ) = −
n∑

i=1

logP (yt|y<t, x; Θ) , (12)

Lf (F|x; Θ) = −
n∑

i=1

1

|Fi|
logP (Fi|y<t, x; Θ)

= −
n∑

i=1

|Fi|∑
j=1

1

|Fi|
logP (fi,j |y<t, x; Θ) ,

(13)
where λ is a hyper-parameter used in controlling
the weight of predicting future structural token sets.

4. Experimentation

4.1. Experimental Settings
Datasets. We use AMR 2.0 (LDC2017T10) and
AMR 3.0 (LDC2020T02) datasets. AMR 2.0 in-
cludes 36,521, 1,371 and 1,368 AMRs in the
training, development and test datasets, respec-
tively while AMR 3.0 includes 55,635, 1,722, and
1,898 AMRs. Specifically, AMR 2.0 is a subset
of AMR 3.0. In pre-processing stage, we use the
same depth-first search linearization as Bevilacqua
et al. (2021) to linearize AMR graphs while in post-
processing step, we also use Penman toolkit (Good-
man, 2020) to recover AMR graphs from generated
sequences. We follow Bevilacqua et al. (2021)
to expand the tokenization vocabulary of the pre-
trained model (i.e., BART). Finally, we follow the
heuristic rules defined in Section 3.1 to build AMR
token graphs.

Model Settings and Training. Following Bevilac-
qua et al. (2021), we use BART-large (Lewis et al.,
2020) as the pre-trained model, which has 12 lay-
ers and 16 heads for the encoder and the decoder.
We randomly initialize all other parameters, includ-
ing word embeddings of those new added tokens
in vocabulary, parameters in the GAT and WQ

G , WK
G

in Eq. 5 and WS in Eq. 10. When modeling history
structure, we set the number GAT encoder layer as
4 and the number of heads in multi-head attention in
GAT as 12. When learning future structure, we set
λ in Eq. 11 to 0.1. We use RAdam optimizer (Liu
et al., 2020) to train all models with β1 of 0.9 and β2

of 0.999. We set the token batch size to 512 and
dropout to 0.25, and upgrade our parameters every

3In practice, we ignore Fi and do not compute
P (Fi|y<t, x; Θ) if Fi is an empty set.
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Model Smatch Unlab. NoWSD Con. NER Neg. Wiki. Reent. SRL
Results on AMR 2.0

Bevilacqua et al. (2021) 83.8 86.1 84.4 90.2 90.6 74.4 84.3 70.8 79.6
Zhou et al. (2021b) 84.3 87.9 84.7 90.6 92.1 72.5 80.8 74.3 83.4
Yu and Gildea (2022) 84.8 88.1 85.3 90.5 91.8 74.0 84.1 75.1 83.4
Vasylenko et al. (2023) 85.7 88.6 86.2 91.0 83.9 91.1 74.2 76.8 81.8
Baseline (B) 84.1 ±0.1 86.8 84.5 90.0 91.0 74.8 81.1 72.9 83.1
B + History 85.2 ±0.1 87.7 85.4 91.1 91.9 77.5 82.2 74.3 83.7
B + Future 84.8 ±0.0 87.4 85.2 91.0 91.6 75.6 82.7 74.1 83.0
B + History + Future 85.5 ±0.1 88.2 85.6 90.7 91.5 77.2 83.0 74.8 83.8

Results on AMR 3.0
Bevilacqua et al. (2021) 83.0 85.4 83.5 89.8 87.2 73.0 82.7 70.4 78.9
Zhou et al. (2021b) 82.0 - - - - - - - -
Yu and Gildea (2022) 83.5 86.6 84.0 89.5 88.9 72.6 81.5 74.2 82.2
Vasylenko et al. (2023) 84.5 87.5 84.9 90.5 80.7 88.5 73.1 73.7 80.7
Baseline (B) 83.2 ±0.1 86.1 83.5 89.0 87.9 71.4 79.9 73.2 82.0
B + History 83.8 ±0.1 87.2 84.4 90.0 88.9 73.1 81.5 74.8 83.2
B + Future 83.6 ±0.1 86.8 83.9 89.0 88.1 70.9 80.5 74.3 82.2
B + History + Future 84.2 ±0.1 87.3 84.3 90.3 89.0 73.3 81.2 74.9 83.0

Table 1: Experimental results on AMR 2.0 and 3.0. All above models are fine-tuned on top of BART-large,
and do not use extra silver data and graph re-categorization. Our results are average of 3 runs with
different random seeds. Scores with bold/underline indicate the top/second best performance. To save
space, we only show standard deviations of Smatch and omit others.

20 steps. The learning rate and weight decay are
3e-5 and 4e-3, respectively. We train the models
on one 3090Ti GPU for 40 epochs and choose the
model with the best performance on the develop-
ment dataset. The training takes about 15 hours on
AMR 2.0 and 20 hours on AMR 3.0. In inference,
we set the beam size to 5. Meanwhile, it is possible
that the predicted history has an invalid structure.
When invalid structure occurs, we default view all
previous tokens as structured tokens.4

Evaluation. For evaluation, we report perfor-
mance in Smatch (Cai and Knight, 2013) and other
fine-grained metrics proposed in Damonte et al.
(2017). We report results of single models that are
tuned on the development set.

4.2. Experimental Results
Table 1 shows the performance on AMR 2.0 and
AMR 3.0, respectively. We re-implement Bevilac-
qua et al. (2021) as our baseline, and then leverage
AMR structure upon it. We also compare the perfor-
mance with three recent advanced models (Bevilac-
qua et al., 2021; Zhou et al., 2021b; Yu and Gildea,
2022; Vasylenko et al., 2023) that are also fine-
tuned on BART-large. From the results on AMR
2.0 shown in the upper part of Table 1, we have the
following observations.

4Thanks to the strong baseline (trained on BART),
the final system has very limited invalid structures. For
example, only 0.88% sentences (12 out of 1,368) in the
DEV set have invalid structure in the generation.

• By simply fine-tuning BART-large on AMR
dataset, our strong baseline achieves 0.3
Smatch gain over that of Bevilacqua et al.
(2021) (i.e., 84.1 ±0.1 vs. 83.8).

• Compared to the baseline, modeling history
structure improves the performance in Smatch
and all other fine-grained metrics. For exam-
ple, it achieves 1.1 Smatch gain (i.e., 85.2 ±0.1

vs. 84.1 ±0.1), indicating that explicitly model-
ing the structure in prediction history is benefi-
cial to AMR parsing. Moreover, our approach
of modeling history structure achieves better
performance than that of Yu and Gildea (2022),
which models structural relationship of current
AMR token to its ancestors.

• Similarly, learning future structure also im-
proves the performance in all metrics, with 0.7
Smatch gain over the baseline (i.e., 84.8 ±0.1

vs. 84.1±0.1). This indicates that it is helpful
to simultaneously predict current output token
and its future structural tokens.

• Leveraging both history and future structures
achieves the best performance. For instance,
it results in a 1.4 Smatch gain compared to
the baseline (i.e., 85.5±0.1 vs. 84.1±0.1). This
suggests that while historical and future struc-
tures exhibit some overlap, such as that the
structure relationship between (yi, yj) could
be captured by both modeling history struc-
ture for yj and learning future structure for yi,
these two types of structures are complemen-
tary to each other. It is noteworthy that the
Reentrancies metric benefits significantly from
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#Heads Smatch #Heads Smatch
0 (Baseline) 84.5 10 85.2

2 85.3 12 84.5
4 85.5 14 84.4
6 85.3 16 84.4
8 85.2 - -

Table 2: Performance comparison of B + History
model on AMR 2.0 development set when using
different number of heads to integrate GAT output.

structural information. Given that reentrancies
represent concept nodes with multiple parents
in the AMR graph, this is reasonable as mod-
eling/learning parent-child structure can effec-
tively reduce the distance between parent and
child nodes (see more details in Section 5.5).

From the results on AMR 3.0 as shown in the
lower part of Table 1, we can observe similar per-
formance trends as on AMR 2.0. Overall, our ap-
proach (B + History + Future) achieves 1.0 Smatch
gain over the baseline (i.e., 84.2 ±0.1 vs. 83.2±0.1).
Compared to related studies, it achieves compara-
ble performance to the state-of-the-art (Vasylenko
et al., 2023), which uses structural adapters in
Transformer to explicitly incorporate graph infor-
mation into the learned representations.

5. Analysis

Next we use AMR 2.0 as a representative to demon-
strate the effect of our approach. Note that we run
the analysis experiments with one seed.

5.1. Effect of Different Number of Heads
to Integrate GAT Output

There are 16 heads in total in the masked self-
attention of each decoder layer. We set the number
of heads integrating GAT output from 0 to 16 in
increments of 2.

As shown in Table 2, optimal performance on the
development set is achieved when utilizing 4 heads
to integrate GAT output. Using more heads than
4 starts to hurt performance. This is consistent
with the findings in Yu and Gildea (2022) where
their model achieves the best performance with
4 to 6 heads attending exclusively to ancestors.
Therefore, we set the number of heads in each
decoder layer integrating GAT output to 4.

5.2. Effect of History Structure with GAT

In leveraging structure within prediction history, we
follow Ahmad et al. (2021) and set δ to 1 by allowing
attention between adjacent tokens only. To gain a

Model Type Smatch
Baseline (B) - 84.1 ±0.1

B + History Adjacent (δ = 1) 85.2 ±0.1
B + History Random 84.5
B + History All 84.6
B + History Ancestor 84.9
B + History Adjacent + Ancestor 85.3

Table 3: Performance comparison on AMR 2.0 test
set when modeling history structure or not.

deeper insight into how modeling historical struc-
ture contributes to AMR parsing, we carry out the
following four contrasting experiments:

• Attending random tokens in prediction history:
for token yt, we randomly select a few tokens
in prediction history and attend yt to them. For
a fair comparison, the number of randomly
selected tokens is the same as that of tokens
with δ = 1 in Eq. 7.

• Attending all tokens in prediction history: the
attention module attends to all history tokens
by setting δ to the maximum target-side length.

• Attending ancestor tokens in prediction history:
inspired by Yu and Gildea (2022), the attention
module attends to ancestor tokens in predic-
tion history. For more details of defining an-
cestor tokens, we refer the reader to Yu and
Gildea (2022).

• Attending both adjacent tokens and ancestor
tokens in prediction history: as both adjacent
tokens and ancestor tokens are important, we
test whether attending to both of them will
achieve better performance.

As shown in Table 3, compared to baseline, at-
tending to either random tokens or all history to-
kens in GAT improves parsing Smatch score from
84.1 ±0.1 to 84.5 or 84.6. This suggests that using
GAT to implicitly capture the structural relationship
between AMR tokens benefits AMR parsing. More-
over, differentiating adjacent tokens from others fur-
ther improves Smatch score to 85.2 ±0.1, indicating
that explicitly modeling history structure via adja-
cent tokens is effective. It also shows that attending
to adjacent tokens slightly outperforms ancestor to-
kens (i.e., 85.2 ±0.1 VS. 84.9). Finally, attending to
both adjacent and ancestor tokens achieves similar
performance as attending to adjacent tokens only.
We conjecture that it is due to the fact that there ex-
ists overlap between ancestor nodes and adjacent
tokens. In AMR graph, parent node and its edge
are considered as both ancestor nodes and adja-
cent tokens. Our statistics on the DEV set show
that 33% ancestor nodes (including both parent
node and its edge) are among adjacent tokens.
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Figure 4: Performance (in Smatch) of B + Future
model on AMR 2.0 development set with different
values of λ.

Model Type Smatch
Baseline (B) - 84.1 ±0.1

B + Future Adjacent (η = 1) 84.8 ±0.0
B + Future Random 84.4
B + Future All 84.6

Table 4: Performance comparison of B + Future
model on AMR 2.0 test set when learning structural
or random future AMR tokens.

5.3. Effect of Hyper-parameter λ
In Eq. 11 we use hyper-parameter λ to control the
contribution of the loss of predicting future struc-
tural token sets. We carry out a grid-based hyper-
parameter sweep for λ between 0 and 0.5 with step
0.05 on the development set.

Figure 4 shows the learning curve with different
values of λ. It reaches the best performance 85.3
in Smatch when λ is 0.1 while the performance
decreases along with the increase of λ after 0.1.
Therefore, we set λ to 0.1.

5.4. Effect of Future Structure via
Multi-task Scheme

To better understand that learning future structure
via multi-tasking scheme helps AMR parsing, simi-
larly we carry out two contrastive experiments:

• Learning random tokens in future: for token
yt, we randomly construct a future token set
F ′
i ⊂ {yi+1, · · · , yn}. For a fair comparison, the

size of F ′
i is the same as Fi.

• Learning all tokens in future: we set η in Eq.
10 to the maximum target-side length such that
F ′
i = {yi+1, · · · , yn}.

As shown in Table 4, predicting random future to-
kens has limited effect by slightly improving Smatch

Figure 5: Performance (in Smatch) on AMR 2.0 test
set with respect to the number of concept nodes of
gold AMR graphs.

Figure 6: Performance (in Smatch) on AMR 2.0
test set with respect to the reentrancy number of
gold AMR graphs.

score from 84.1 ±0.1 to 84.4 while predicting all
future tokens increases from 84.1 ±0.1 to 84.6.
By contrast, predicting future structural tokens
achieves better performance of 84.9 ±0.1. This
reveals that in learning future tokens, it is useful to
differentiate structural tokens from the others.

5.5. Effect on AMR Graphs with Different
Sizes of Concept Nodes and
Reentrancies

Our approach aims to address the loss of struc-
tural information incurred during the linearization
of an AMR graph into a sequence. Therefore, it
is expected that the benefits of our approach are
expected to be more obvious for those AMR graphs
with complicated structure. While it is challenging
to precisely measure the complexity of AMR graphs,
here we simply partition AMR graphs to different
groups from two aspects, i.e., by their numbers of
concept nodes and reentrancies. Then we evaluate
the performance of each group independently.
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Type #His. #Fut.
Concept token 7.46 7.53
Sem. label token 3.24 3.84
All 6.86 6.70

Table 5: Averaged number of adjacent tokens in
prediction history (δ = 1) and future (η = 1) on
AMR 2.0 development dataset.

As shown in Figure 5, leveraging both history
and future structures significantly outperforms the
baseline across all AMR sizes. Furthermore, the
performance gap between our approach and the
baseline widens as the number of concept nodes in
AMR graphs increases, revealing the importance
of incorporating target-side structures, particularly
for larger AMR graphs. Finally, it shows that the
parsing performance of larger AMR graphs is much
lower than that of smaller counterparts.

As shown in Figure 6, we can observe similar
performance trends with respect to the reentrancy
number. For example, the performance gap be-
tween our approach and the baseline becomes
largest for AMR graphs with more than 4 reentran-
cies, where our approach outperforms the baseline
by 1.84 Smatch points.

5.6. Number of Adjacent Tokens

Taking AMR 2.0 development dataset as a repre-
sentative, Table 5 shows that, on average, a con-
cept token has 7.46 and 7.53 adjacent tokens in its
prediction history and future, respectively, whereas
a semantic label token has 3.24 and 3.84 tokens.
In our experiment, we set the maximum number of
adjacent tokens in both prediction history and fu-
ture as the maximum target-side length. Therefore,
all adjacent tokens are taken into account.

6. Conclusion

In addressing the challenge of losing structural infor-
mation in seq2seq AMR parsing, this paper concen-
trates on enhancing the parsing process by incor-
porating structural information during the decoding
phase. To achieve this, we delve into two aspects:
the historical structure, which we model using a
graph network GAT, and the future structure, which
we predict through a multi-tasking scheme. Experi-
mental results on benchmarks AMR 2.0 and AMR
3.0 show that our approach achieves significant
improvement over a strong baseline. Following
the approaches of many related studies, we fine-
tune our model based on BART. In future research,
we plan to apply this methodology to the latest ad-
vanced pre-trained model, AMRBART (Bai et al.,
2022).
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Limitations

Modeling graph structure in prediction history re-
quires finding out adjacent tokens in prediction his-
tory. Therefore, it increases the decoding time in
inference. In training, for each target-side AMR
token, it is required to load the positions of its adja-
cent tokens in prediction history and the adjacent
tokens in future. Thus it will increase the memory
cost.
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Astudillo, Young-Suk Lee, Radu Florian, and
Salim Roukos. 2021b. Structure-aware fine-
tuning of sequence-to-sequence transformers for
transition-based AMR parsing. In Proceedings
of EMNLP, pages 6279–6290.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit,
Weiguang Qu, Ran Li, and Yanhui Gu. 2016.
AMR parsing with an incremental joint model.
In Proceedings of EMNLP, pages 680–689.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling
graph structure in Transformer for better AMR-
to-text generation. In Proceedings of EMNLP,
pages 5459–5468.


	Introduction
	Related Work
	Approach
	Building AMR Token Graph from AMR Graph
	Modeling Graph Structure in Prediction History via GAT
	Learning Graph Structure in Future via Multi-task Scheme

	Experimentation
	Experimental Settings
	Experimental Results

	Analysis
	Effect of Different Number of Heads to Integrate GAT Output
	Effect of History Structure with GAT
	Effect of Hyper-parameter 
	Effect of Future Structure via Multi-task Scheme
	Effect on AMR Graphs with Different Sizes of Concept Nodes and Reentrancies
	Number of Adjacent Tokens

	Conclusion
	Bibliographical References

