@inproceedings{previlon-etal-2024-leveraging,
title = "Leveraging Syntactic Dependencies in Disambiguation: The Case of {A}frican {A}merican {E}nglish",
author = "Previlon, Wilermine and
Rozet, Alice and
Gowda, Jotsna and
Dyer, Bill and
Tang, Kevin and
Moeller, Sarah",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.909",
pages = "10403--10415",
abstract = "African American English (AAE) has received recent attention in the field of natural language processing (NLP). Efforts to address bias against AAE in NLP systems tend to focus on lexical differences. When the unique structures of AAE are considered, the solution is often to remove or neutralize the differences. This work leverages knowledge about the unique linguistic structures to improve automatic disambiguation of habitual and non-habitual meanings of {``}be{''} in naturally produced AAE transcribed speech. Both meanings are employed in AAE but examples of Habitual be are rare in already limited AAE data. Generally, representing additional syntactic information improves semantic disambiguation of habituality. Using an ensemble of classical machine learning models with a representation of the unique POS and dependency patterns of Habitual be, we show that integrating syntactic information improves the identification of habitual uses of {``}be{''} by about 65 F1 points over a simple baseline model of n-grams, and as much as 74 points. The success of this approach demonstrates the potential impact when we embrace, rather than neutralize, the structural uniqueness of African American English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="previlon-etal-2024-leveraging">
<titleInfo>
<title>Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wilermine</namePart>
<namePart type="family">Previlon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Rozet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jotsna</namePart>
<namePart type="family">Gowda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bill</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Moeller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>African American English (AAE) has received recent attention in the field of natural language processing (NLP). Efforts to address bias against AAE in NLP systems tend to focus on lexical differences. When the unique structures of AAE are considered, the solution is often to remove or neutralize the differences. This work leverages knowledge about the unique linguistic structures to improve automatic disambiguation of habitual and non-habitual meanings of “be” in naturally produced AAE transcribed speech. Both meanings are employed in AAE but examples of Habitual be are rare in already limited AAE data. Generally, representing additional syntactic information improves semantic disambiguation of habituality. Using an ensemble of classical machine learning models with a representation of the unique POS and dependency patterns of Habitual be, we show that integrating syntactic information improves the identification of habitual uses of “be” by about 65 F1 points over a simple baseline model of n-grams, and as much as 74 points. The success of this approach demonstrates the potential impact when we embrace, rather than neutralize, the structural uniqueness of African American English.</abstract>
<identifier type="citekey">previlon-etal-2024-leveraging</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.909</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>10403</start>
<end>10415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English
%A Previlon, Wilermine
%A Rozet, Alice
%A Gowda, Jotsna
%A Dyer, Bill
%A Tang, Kevin
%A Moeller, Sarah
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F previlon-etal-2024-leveraging
%X African American English (AAE) has received recent attention in the field of natural language processing (NLP). Efforts to address bias against AAE in NLP systems tend to focus on lexical differences. When the unique structures of AAE are considered, the solution is often to remove or neutralize the differences. This work leverages knowledge about the unique linguistic structures to improve automatic disambiguation of habitual and non-habitual meanings of “be” in naturally produced AAE transcribed speech. Both meanings are employed in AAE but examples of Habitual be are rare in already limited AAE data. Generally, representing additional syntactic information improves semantic disambiguation of habituality. Using an ensemble of classical machine learning models with a representation of the unique POS and dependency patterns of Habitual be, we show that integrating syntactic information improves the identification of habitual uses of “be” by about 65 F1 points over a simple baseline model of n-grams, and as much as 74 points. The success of this approach demonstrates the potential impact when we embrace, rather than neutralize, the structural uniqueness of African American English.
%U https://aclanthology.org/2024.lrec-main.909
%P 10403-10415
Markdown (Informal)
[Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English](https://aclanthology.org/2024.lrec-main.909) (Previlon et al., LREC-COLING 2024)
ACL