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Abstract
This paper studies vision-language (V&L) pre-training for deep cross-modal representations. Recently, pre-trained
V&L models have shown great success in V&L tasks. However, most existing models apply multi-modal encoders
to encode the image and text, at the cost of high training complexity because of the input sequence length. In
addition, they suffer from noisy training corpora caused by V&L mismatching. In this work, we propose a lightweight
vision-language pre-training (LightVLP) for efficient and effective V&L pre-training. First, we design a new V&L
framework with two autoencoders. Each autoencoder involves an encoder, which only takes in unmasked tokens
(removes masked ones), as well as a lightweight decoder that reconstructs the masked tokens. Besides, we mask
and remove large portions of input tokens to accelerate the training. Moreover, we propose a gated interaction
mechanism to cope with noise in aligned image-text pairs. As for a matched image-text pair, the model tends to
apply cross-modal representations for reconstructions. By contrast, for an unmatched pair, the model conducts
reconstructions mainly using uni-modal representations. Benefiting from the above-mentioned designs, our base
model shows competitive results compared to ALBEF while saving 44% FLOPs. Further, we compare our large
model with ALBEF under the setting of similar FLOPs on six datasets and show the superiority of LightVLP. In
particular, our model achieves 2.2% R@1 gains on COCO Text Retrieval and 1.1% on refCOCO+.
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1. Introduction

Self-supervised learning is becoming a dominat-
ing paradigm in computer vision and natural lan-
guage processing. It leverages large-scale unla-
beled corpora and learns knowledge through self-
supervised tasks. Recently, vision-language (V&L)
pre-training has attracted more attention with the
availability of more image-text parallel datasets,
e.g., Lin et al. (2014), Sharma et al. (2018), and
Krishna et al. (2017). It learns cross-modal inter-
actions between image and natural language us-
ing well-designed tasks such as masked language
modeling, masked image modeling and image-text
matching to improve downstream V&L tasks.

There exist four main challenges in V&L pre-
training: (1) The training process is computa-
tionally expensive. As we know, self-attention in
Transformer is quadratic time complexity to the se-
quence length while the input sequences of V&L
models are usually long by taking in both image
and text tokens. (2) The self-supervised tasks are
keys to obtaining good understanding ability. How
to design more challenging tasks needs further
studying. (3) The embeddings from two modalities
tend to reside in their own space, making it hard
for information fusion. (4) Most training corpora
(image-text pairs) are web noisy data, and thus it

∗ Ruobing Xie is the corresponding author.

is essential to cope with the unrelated image-text
pairs. Uni-modal representations should be more
highlighted with mismatched image-text examples.

Figure 1: An example of our mask-and-remove
technique. Part A shows the existing pre-training
architecture and Part B is our LightVLP. Removing
masked tokens will reduce the input length of VLP
and thus improve the efficiency.

The development of V&L pre-training (VLP) mod-
els can be roughly divided into three stages, i.e.,
single-stream encoders, dual encoders, and hy-
brid methods. (1) Models like Qi et al. (2020) and
Su et al. (2019) study on single-stream encoders
to solve the third challenge by taking in the con-
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catenated image and text tokens and computing
cross-modal interactions. Though effective, one
main limitation of these models lies in the high
training cost. (2) Radford et al. (2021) and Jia et al.
(2021) propose dual encoders to resolve the first
challenge for more efficient models. In addition,
they introduced contrastive learning, which is an ef-
fective task especially for retrieval tasks. However,
classical dual encoders fail to model deep interac-
tive signals between two modalities. (3) Tan and
Bansal (2019) and Li et al. (2021) propose hybrid
methods to utilize the advantages of cross-modal
encoders (for more comprehensive V&L interaction
modeling) and dual encoders (for efficiency). In ad-
dition, Li et al. (2021) presents a distillation method
to tackle the fourth challenge by computing soft
pseudo targets for each pre-training task. These
VLP models were supreme before the era of the
dominating usage of large pre-trained models.

Despite the success of the hybrid method, it
can be further improved regarding the above chal-
lenges. (1) As in Fig. 1 Part A, the model takes the
full-length sequence as input without removing the
masked ones. Hence, the computation complexity
is still high. (2) It needs further explorations to find
suitable masking rates for the masked image mod-
eling and masked language modeling tasks, bal-
ancing both effectiveness and efficiency. (3) Exist-
ing models are still struggling with intrinsic noises
brought by the unrelated/mismatched image-text
pairs in the training corpora. They still simply fuse
the image-text representations to predict masked
tokens without considerations of confidence, induc-
ing noise for V&L modeling.

To overcome the above-mentioned limitations,
we propose a simple but effective autoencoder
based V&L pre-training model, named LightVLP.
(1) LightVLP has two interactive autoencoders for
visual and textual modeling, each comprising a
lightweight encoder and a decoder as shown in
Fig.1 Part B. In the encoder, by masking and re-
moving a large ratio of image and text tokens, we
reduce the input sequence length and computa-
tional cost by a large margin. (2) We explore
different masking ratios in the proposed frame-
work to balance computational cost and model
performance. (3) We present a gated interaction
mechanism to deal with noise in image-text pairs,
in which a gate is designed to choose between
cross-modal representations and uni-modal rep-
resentations. Intuitively, for a matched image-text
pair, the model tends to choose cross-modal rep-
resentations for reconstructions in both autoen-
coders. On the contrary, for an unmatched image-
text pair, the model is more likely to predict based
on the uni-modal representations without cross-
modal assistance. We highlight the lightness of
our proposed LightVLP compared to recent pow-

erful large pre-trained model enhanced VLP. Com-
pared to models like BLIP-2 (Li et al., 2023) that in-
serts image representations into the input of LLMs,
LightVLP is more suitable for retrieval tasks, since
the modality embeddings could be pre-calculated
and fast retrieved in online retrieval. Compared
to models such as BEIT-3 (Wang et al., 2022)
and VLMO (Bao et al., 2022) that rely on cer-
tain customized decoupled modality-aware experts
for different tasks, LightVLP is more flexible and
lightweight, which could be flexibly adopted with
other (lighter or heavier) encoder architectures and
single-modality/aligned training data. In the era of
LLMs, LightVLP is also valuable for the usage with
scarce resources and flexible demands.

In implementation, we pre-train two types of mod-
els, LightVLPbase and LightVLPlarge. Compared to
ALBEF (Li et al., 2021) with similar parameters, the
LightVLPbase model saves 44% computational cost
by FLOPs while performing competitively (masking
50% image and 50% text tokens). Besides, we
train a LightVLPlarge model of similar FLOPs as
ALBEF and it shows significant improvements on
five V&L benchmarks. In addition, we experiment
on different masking settings 25%, 50% and 75%,
and give the most recommended masking rates.

Our contributions can be summarized as follows.

• We propose LightVLP, a new framework for
V&L pre-training. In LightVLP, we mask and
remove a large portion of the input sequence
to reduce computational complexity.

• We propose a gated interaction mechanism
to tackle noise in unmatched image-text pairs.
As for a matched image-text pair, the model
computes cross-modal embeddings for recon-
structions. Otherwise, the model should more
rely on uni-modal embeddings.

• We explore different settings of masking ra-
tios for different modalities by thorough experi-
ments to reach the balance between computa-
tional cost and performance, which will inspire
similarly structured VLP applications.

• We conduct experiments on six commonly
used benchmarks. The results display sig-
nificant improvements compared to the com-
petitive and similar-scale model ALBEF, e.g.,
2.2% improvements on COCO Text Retrieval
by R@1 and 1.1% on refCOCO+.

2. Related Work

In recent years, model pre-training has attracted
increasing interests in the field of natural language
processing (e.g., Devlin et al. (2018), Liu et al.
(2019b)), computer vision (e.g., Bao et al. (2021),
Touvron et al. (2021), Dosovitskiy et al. (2020)) as
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well as V&L understanding (e.g., Gan et al. (2020),
Tan and Bansal (2019), Li et al. (2020b) and Lu
et al. (2020)). Existing V&L models can be roughly
divided into three stages, single-stream encoders,
dual encoders and hybrid methods.
Single-stream Encoders concatenate the text to-
kens and the image features (either from object
detector or image pixels) and apply a Transformer-
based encoder to model their deep interactions. Su
et al. (2019) proposed VL-BERT and Li et al. (2019)
raised VisualBERT. These models took the text
and region-of-interest of images as input and then
applied a bi-encoder to encode the concatenated
image-text sequences. Qi et al. (2020) presented
ImageBERT, which employed an object detector to
get objects from images for pre-training. Unicoder-
vl (Li et al., 2020a) and UNITER (Chen et al., 2020)
were models that applied the language model ar-
chitecture for pre-training and could be used for
cross-modal generation tasks. Yu et al. (2021) pro-
posed to enhance knowledge into cross-modal pre-
training, named ERNIE-Vil. Tan and Bansal (2019)
also proposes LXMERT. Li et al. (2020c) gave OS-
CAR by an object and word alignment method. Kim
et al. (2021) proposed to delete object detection
in the V&L pre-training process. Though effective,
this kind of model may fail to distinguish between
intra-modality interactions and cross-modal inter-
actions. In addition, the model is inefficient and
unapplicable in real applications especially for the
Image Retrieval task.
Dual Encoders apply two separate encoders to
compute the image and text representations. Mod-
els equipped with dual encoders usually apply
shallow interactions or dot production to project
two modalities into one common semantic space,
which are more efficient, while they lack the ability
to model deep interactions between two modalities.
As a result, their performance is no better than the
above-mentioned single-stream models. Radford
et al. (2021) and Jia et al. (2021) proposed to im-
prove V&L pre-training by incorporating contrastive
learning. They introduced negative samples and
designed a contrastive task for better cross-modal
understanding. This method is more efficient, but
lacks deep cross-modal interactions.
Hybrid Methods are proposed to leverage the ad-
vantages of the two above-mentioned methods.
The hybrid methods apply separate encoders to
get individual representations and then employ
deep cross attention layers to conduct interactions.
Lu et al. (2019) first applied a two-stream structure
to extract features and then used cross Transformer
for information fusion. Tan and Bansal (2019) pro-
posed a framework with three encoders to get the
representations for objects, texts and their connec-
tions. Li et al. (2021) presented the ALBEF model,
which aligns the vision and language tokens before

interactive computation. Singh et al. (2022) gave a
foundational V&L model that can learn good vision,
language and cross representations at the same
time. Bao et al. (2022) showed a method based
on mixture-of-experts to jointly learn dual encoders
and a cross encoder, which can be used separately
in downstream tasks. BEIT-3 (Wang et al., 2022)
further enhances the MoE part for multiple tasks
jointly. BLIP-2 (Li et al., 2023) adopts fixed pre-
trained modality models for efficient training with
Q-former.

BEiT (Bao et al., 2021) and MAE (He et al., 2022)
were proposed in computer vision based on an
encoder-decoder framework and the masked im-
age modeling task. These two works brought a
new perspective on vision pre-training. However,
it still needs further explorations to conduct V&L
pre-training using the autoencoder framework. In
this paper, we propose LightVLP, a new framework
for V&L pre-training, improving both performance
and training efficiency at the same time.

3. Our Approach

In this section, we present the proposed LightVLP
model. As shown in Fig.2, LightVLP is composed
of two symmetrical autoencoders, one for image
processing and the other for text representations.
The encoders of LightVLP take the masked im-
age patches and text tokens as input and conduct
uni-modal representations as well as cross-modal
interactions. In the decoder, we reconstruct the
masked image pixels and text tokens. LightVLP
comprises five major components: masking and
removing in the input layer, contrastive learning
in the encoders, gated interaction mechanism in
the encoders, image and text reconstructions in
the decoders as well as several other cross-modal
training tasks.

3.1. Input Masking and Removing

The input is an image Ix ∈ RH×W 0×C and the
corresponding text W = {w1, w2, ..., wN}, where
the image resolution is (H,W 0) and C is the num-
ber of channels. We follow MAE (He et al., 2022)
to divide the input image into several patches of
resolution (P, P ). The image patches are X =

{x1, x2, ..., xM}, where xi ∈ RP 2×C . Then we ran-
domly mask and remove some patches with an
image masking rate pxmsk. We take the unmasked
patches as the image input of LightVLP, i.e., X̃ =
{x1, x2, ..., xM̃}, where M̃ = M × (1− pxmsk). As
for the text, we first segment the input text us-
ing BERT (Devlin et al., 2018) tokenizer. Then,
we randomly mask some tokens with a masking
rate, i.e., pwmsk, and feed the remaining ones
to LightVLP, i.e., W̃ = {w1, w2, ..., wÑ}, where
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Figure 2: The architecture of LightVLP, which comprises two symmetrical and interactive autoencoders,
one for image and the other for text. In this case, 50% image and text tokens are masked and removed
in the input. Besides, the two encoders exchange information via contrastive learning and cross Trans-
formers. In the gated interaction mechanism, the gates choose between single-modal and cross-modal
representations to reduce noise from unmatched image-text pairs. The decoders aim to reconstruct the
masked tokens. E[MASK] indicates the [MASK] embedding.

Ñ = N × (1 − pwmsk). Randomly masking and
removing a large portion of input tokens has the fol-
lowing two advantages: On the one hand, the input
sequences of Transformers are shortened, which
can reduce the computational cost significantly. On
the other hand, the tasks become more challenging
for grasping better understanding abilities, which
has been verified in uni-modal pre-training, for ex-
ample, Wettig et al. (2022) and He et al. (2022).

3.2. Lightweight Encoders

In Fig.2, the two encoders are of the same struc-
ture, each involving the uni-modal encoding, con-
trastive learning and gated interaction mechanism.
Uni-modal Encoding. In uni-modal encoding, we
apply two separate uni-modal Transformers of le
layers and hidden size He to get the deep repre-
sentations for the image and text, respectively,

Hl+1 = fLN

(
fLN

(
Hl + f l

SA(H
l)
)
+

f l
FF
(
fLN(H

l + f l
SA(H

l))
))

,
(1)

where fLN indicates the layer normalization opera-
tion. fFF is the feed forward layer involving two fully-
connected sub-layers. fSA is the self-attention layer
which uses multi-head attention to grasp token-
level relationships. After the uni-modal encoding,
we can get uni-modal representations for the re-
maining image patches and text tokens,

Hx
le = Hx

le
0 ,Hx

le
1 , ...,Hx

le
M̃
;

Hw
le = Hw

le
0 ,Hw

le
1 , ...,Hw

le
Ñ
,

(2)

where le indicates the last hidden layer. Hx
le and

Hw
le are the representations for the input image

and text, respectively. H∗0 are hidden states corre-
sponding to the [CLS] positions.
Contrastive Learning. We use the uni-modal rep-
resentations to conduct contrastive learning. In
LightVLP, contrastive learning serves as an effi-
cient way to learn shallow cross-modal interactions,
by involving large amounts of negative samples for
computation.

Specifically, we apply linear transformations,
fx(·) and fw(·) to reduce the dimension of the



10503

previous uni-modal representations to 256-d em-
beddings. Then we normalize the represen-
tations for dot similarity calculation as I =
fNORM(fx(Hx

le
0 )),T = fNORM(fw(Hw0

le)). We fol-
low the momentum method by MoCo (He et al.,
2020). In order to introduce more negative sam-
ples, we introduce two queues to keep the previous
Mc image and text representations from the mo-
mentum uni-modal encoders respectively. For the
current input image and text, we compute their sim-
ilarity with text and image representations in the
corresponding queues by dot production and then
normalize the similarity scores as follows,

pi2tk (I) =
exp(I ·Tk

′/κ)∑Mc

j=1 exp(I ·Tj
′/κ)

;

pt2ik (T) =
exp(T · Ik′/κ)∑Mc

j=1 exp(T · Ij ′/κ)
,

(3)

where κ indicates the temperature scalar. I′∗ and
T′

∗ indicate the image and text representations
from the queues.
Gated Interaction Mechanism (GIM).

Existing hybrid models usually fuse image-text
representations using cross attention mechanism.
Then, they directly take the fused representations
for masked language modeling or masked image
modeling tasks. However, most image-text pairs
are web noisy data, which means there are unre-
lated image-text pairs in the corpora. It is obvious
that fused representations of unrelated image-text
pairs are worse compared to uni-modal represen-
tations for reconstruction tasks. To this end, we
propose the gated interaction mechanism to tackle
noise in image-text pairs. As for a matched image-
text pair, the model prefers cross-modal represen-
tations as the output of the encoders, which will
be passed to decoders for reconstruction tasks.
By contrast, for an unmatched image-text pair, the
encoder is more likely to output uni-modal repre-
sentations.

The gated interaction mechanism is depicted in
Fig.2. First, in order to fuse information from the
cross-modal input, we apply lc cross Transformers
to grasp cross-modal interactions. The input is the
uni-modal representations. We obtain the cross
representations as the following equations.

Sl+1
x = fLN

(
fLN

(
Sl
x + f l

CROSS(S
l
x|Sl

w)
)
+

f l
FF
(
fLN(S

l
x + f l

CROSS(S
l
x|Sl

w))
))

,

fCROSS(S
l
x|Sl

w) = softmax(Qx ·Kw/
√
dk)Vw,

(4)

where fLN is layer normalization. The feed-forward
sub-layer fFF involves two dense connected sub-
layers. fCROSS is the cross-modal attention mecha-
nism. Q, K, and V are the query, key, and value

calculated by linear mapping layers. dk is the hid-
den dimension. We ignore the equation of multiple
heads for simplicity.

Next, we calculate the image-text matching prob-
ability by applying a linear network fGATE and sig-
moid function σ(·) as,

p = σ
(
fGATE(Sx

lc
0 )

)
, (5)

where p can be regarded as a soft gate to choose
between cross-modal representations and uni-
modal representations. A higher p indicates that
the image and text match well, and thus the cross-
modal representations should be more considered
in the following tasks. We use the gate to merge
uni-modal and cross-modal representations,

O = (1− p) ·Hle + p · Slc , (6)

where O is the output of encoders which serves
as part of input for the decoders. If the image-text
inputs are matched, the cross representations are
more likely passed to decoders for reconstruction.
While the image-text pair is unmatched, most uni-
modal representations are passed to decoders.

3.3. Lightweight Decoders

The decoders are ld successive layers of Trans-
formers with hidden Hd. Compared to encoders,
the decoders are lightweight for the purpose of
efficiency. Specifically, their input is the output
of encoders O after recovering the masked posi-
tions with [MASK] embedding E[MASK]. We adopt
Transformers to interact with the masked positions
and remaining tokens. After that, we make predic-
tions for the masked positions. The decoders are
designed to resolve two similar tasks for two modal-
ities: the masked image reconstruction task and
the masked token reconstruction task. As for the
masked image reconstruction task, we aim to re-
construct the pixels of the original image. As for the
masked token reconstruction task, we reconstruct
texts by predicting token IDs.

3.4. Training Objectives

We design four tasks to pre-train LightVLP, includ-
ing Masked Image Reconstruction (MIR), Masked
Token Reconstruction (MTR), Image Text Con-
trastive (ITC) learning and Image Text Matching
(ITM). The final loss is the sum of the four task
losses as L = LMIR + LMTR + LITC + LITM (we em-
pirically set the loss weights equally).
Masked Image Reconstruction. MIR is designed
to reconstruct the masked patches by predicting
the pixels. The output of the image decoder in-
volves the predicted pixels for each patch. We
apply mean square error as the loss function to
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measure the distance of the reconstructed pixels
and the ground-truth values,

LMIR(Θ) =
1

|Mx|
∑

m∈Mx

fMSE(xm, x̂m), (7)

where Mx is the set of masked image tokens. fMSE
is the function to compute the mean square error.
x̂m indicates the predicted pixels while xm repre-
sents the ground-truth values.
Masked Token Reconstruction. MTR is similar
to the masked language modeling task in BERT.
The key difference lies in two perspectives. First,
the masked tokens are removed for the input and
the decoder reserves the masked positions for pre-
dictions. Second, the masking rate is larger com-
pared to BERT to make the task tougher as well
as reduce the computational complexity. The loss
function is computed as the following equation,

LMTR(Θ) =
1

|Mw|
∑

m∈Mw

fCE(ym, ŷm), (8)

where Mw is the set of masked tokens. ŷm indi-
cates the predictions while ym represents the one-
hot ground-truth. fCE represents cross entropy.
Image Text Contrastive Learning. We learn V&L
representations through V&L contrastive learning.
Specifically, the model is designed to differentiate
the positive image-text samples from the negative
ones. Suppose that yi2t(I) and yt2i(T) are the
ground-truth one-hot labels indicating the image-
text relationships. The image-text contrastive loss
can be calculated by the cross entropy function
fCE using the predictions (pi2t(I), pt2i(T)) and the
ground-truth in the way as,

LITC(Θ) =
1

2
fCE

(
yi2t(I),pi2t(I)

)
+

1

2
fCE

(
yt2i(T),pt2i(T)

)
.

(9)

Image Text Matching. ITM is to predict whether
the image-text pairs are matched or unmatched.
Compared to ITC, ITM is performed after the gated
interaction mechanism. We directly take in the
image-text matching probability from Eq.(5) and
compute the loss function as,

LITM = fCE
(
yitm, [1− p, p]

)
, (10)

where yitm is a 2-dimensional vector indicating the
ground-truth labels.

In ITM, we also introduce hard negatives by in-
batch hard negative sampling. Specifically, we first
calculate the in-batch normalized matching proba-
bilities using Eq.(3). Next, we take these matching
probabilities to sample more challenging image-
text negatives. In implementation, we sample two
hard negative pairs for each input image-text pair,
of which loss can be computed by Eq.(10).

4. Experiments

4.1. Experimental Settings

Pre-training Corpus. We followed ALBEF (Li
et al., 2021) and collected the publicly available
pre-training datasets from the Internet, including
SBU (Ordonez et al., 2011), MS COCO (Lin et al.,
2014), Visual Genome (Krishna et al., 2017) and
Conceptual Captions (Sharma et al., 2018). The
final training dataset contains about 4 million im-
ages and 5 million image-text pairs. Involving more
training data could induce more significant improve-
ments, which is verified by Li et al. (2022) and Li
et al. (2021). For fairness, we only perform model
comparisons under similar amounts of training cor-
pora (about 4 million images).
Parameter Settings. We pre-trained two
models, LightVLPbase and LightVLPlarge model.
LightVLPlarge has 805M trainable parameters but
its FLOPs is similar to ALBEF (see Table 1).
LightVLPbase has similar parameters as ALBEF,
i.e., 433M (LightVLPbase) and 420M (ALBEF). As
for LightVLPlarge, the hidden layer and dimension
of uni-modal Transformers were 12 and 1024, while
the hidden layer and dimension of decoders were
set to 4 and 512, respectively. Training batch size
was set to 448 under the 50% image and 50% text
masking setting. For LightVLPbase model, we set
the hidden layer and dimension of uni-modal Trans-
formers to 12 and 768, while setting the values of
decoders to 4 and 256, respectively. The cross
Transformers had 4 layers, of which dimensions
were set the same as the uni-modal Transform-
ers. The training batch size was set to 512. As
for contrastive learning, queue size Mc was set to
655,36 and κ was set to 0.05. We took images of
256×256 as input during pre-training and kept this
setting in the fine-tuning. We set patch resolution
to 16×16. Before masking, the maximum length of
the original patch was 256 and the max text tokens
were 32. If masking rates were set to 50% and
50%, the input sequence length of encoders is 144
in total (256×50%+32×50%). We used 8 NVIDIA
A100 to train each model. We applied Adafactor
optimizer with a learning rate of 1e-4 and weight
decay of 0.02.

4.2. Benchmarks and Main Results

We pre-train LightVLP under 50% and 50% mask-
ing setting and evaluate it on six benchmarks. In
this section, we describe the results one by one.
Visual Retrieval Task. We mainly evaluate the
Visual Retrieval task on COCO (Lin et al., 2014)
and Flickr30K (Plummer et al., 2015), which are
two commonly used cross-modal retrieval datasets.

The model performance is summarized in Ta-
ble 1. From Table 1, we have the following ob-
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Models GFLOPs
MS COCO Flickr30K

TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER(Chen et al., 2020) - 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VILLA(Gan et al., 2020) - - - - - - - 87.9 97.5 98.8 76.3 94.2 96.8
OSCAR(Li et al., 2020c) - 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
UNIMO(Li et al., 2020b) - - - - - - - 89.4 98.9 99.8 78.0 94.2 97.1
ALBEF(Li et al., 2021) 135.9 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4

LightVLPbase 75.6 73.5 91.7 96.1 56.5 81.4 88.8 94.1 99.5 99.8 81.1 96.1 97.8
LightVLPlarge 124.4 75.3 93.2 96.6 57.6 82.2 89.4 94.4 99.6 99.7 82.5 96.5 98.6

Table 1: Results on Image Retrieval and Text Retrieval tasks of MS COCO and Flickr30K datasets. We
report the R@1, R@5 and R@10 results. TR/IR represent the text retrieval/image retrieval tasks.

servations. (1) Compared to state-of-the-art AL-
BEF, LightVLPbase model behaves competitively
by saving about 44% computation evaluated by
FLOPs. (2) LightVLPlarge performs much better
than the LightVLPbase model. It achieves an im-
provement of 1.1% by R Mean (averaged value of
R@1, R@5 and R@10) on COCO. (3) On COCO,
LightVLPlarge is 1.1% more accurate than the pre-
vious ALBEF and is much better than other base-
lines. In particular, it improves R@1 of text retrieval
by 2.2%. (4) As for the Flickr30K dataset, the im-
provements are not so obvious. That is because
the results of these tasks are near the upper bound
of models, with R@10 valued near 100%.

In the following part, we use LightVLPlarge to
conduct further comparisons and analyses.
Visual Grounding Task. The task aims to com-
pute a region from the input image corresponding
to the input text. One commonly used dataset is
RefCOCO+ (Yu et al., 2016). We test LightVLP
on RefCOCO+ and tabularize the result in Table 2.
Our model shows an improvement of 1.16% on the
TestA set and an improvement of 1.08% on TestB.

Models Val TestA TestB

ARN(Liu et al., 2019a) 32.78 34.35 32.13
CCL(Zhang et al., 2020) 34.29 36.91 33.56
ALBEF(Li et al., 2021) 58.46 65.89 46.25

LightVLP 58.60 67.05 47.33

Table 2: Results on the RefCOCO+ dataset.

Visual Reasoning Task. Given a piece of text
and a pair of images, the model should predict
whether the text describes the two images or not.
We employ NLVR2 (Suhr et al., 2018) to evaluate
our model on this task and list the results in Table
3. The improvement is 1.0% on the test set, which
indicates our model could solve more challenging
tasks such as the Visual Reasoning task.
Visual Entailment Task. The task is to reason the
relationship between an image and a piece of text,
i.e., entailment, neutral and contradiction. We use
SNLI-VE (Xie et al., 2019) to test the ability of our
model on the Visual Entailment task. As Table 3
shows, LightVLP performs over 3.1% better than

OSCAR and UNITER models while achieving an
improvement of 1.1% compared with ALBEF.

Models NLVR2 SNLI-VE
dev test dev test

VisualBERT(Li et al., 2019) 67.40 67.00 - -
LXMERT(Tan and Bansal, 2019) 74.90 74.50 - -
12-in-1(Lu et al., 2020) - 78.87 - 76.95
UNITER(Chen et al., 2020) 77.18 77.85 78.59 78.28
VL-BART(Cho et al., 2021) - 73.60 - -
ViLT(Kim et al., 2021) 75.24 76.21 - -
OSCAR(Li et al., 2020c) 78.07 78.36 - -
VILLA(Gan et al., 2020) 78.39 79.30 79.47 79.03
ALBEF(Li et al., 2021) 80.24 80.50 80.14 80.30

LightVLP 81.27 81.53 81.66 81.40

Table 3: Results on NLVR2 and SNLI-VE datasets.

Visual Question Answering (VQA). VQA (Goyal
et al., 2017) takes an image and a question as in-
puts and outputs the answer for the question from
limited candidates. We treat this task as a classifi-
cation task instead of a generation task. From Ta-
ble 4, our model is nearly 1.6% better than strong
baselines, showing the superiority of our frame-
work and proposed mechanisms.

Models test-dev test-std

VisualBERT (Li et al., 2019) 70.80 71.00
LXMERT (Tan and Bansal, 2019) 72.42 72.54
12-in-1 (Lu et al., 2020) 73.15 -
UNITER (Chen et al., 2020) 72.70 72.91
VL-BART (Cho et al., 2021) - 71.30
ViLT (Kim et al., 2021) 70.94 -
OSCAR (Li et al., 2020c) 73.16 73.44
VILLA (Gan et al., 2020) 73.59 73.67
ALBEF (Li et al., 2021) 74.54 74.70
LightVLP 76.19 76.30

Table 4: Results on the VQA dataset.

4.3. Masking Rate Analysis

We further train the model under different image
and text token masking rates to compare the corre-
sponding model performance and computational
cost in terms of FLOPs. The experiments are con-
ducted on Text Retrieval and Image Retrieval tasks
using the MS COCO dataset. From Table 5, we
have the following observations: (1) When we set



10506

Masking ratio TR IR
image text GFLOPs R@1 R@5 R@10 R Mean R@1 R@5 R@10 R Mean

Overall
R Mean

25% 25% 168.0 74.90 92.54 96.52 87.99 57.49 82.49 89.38 76.45 82.22
25% 50% 165.6 74.80 92.74 96.48 88.01 57.02 82.11 89.38 76.17 82.09
25% 75% 163.2 74.10 92.78 96.24 87.71 55.95 81.30 88.66 75.30 81.51
50% 25% 126.9 74.66 92.32 96.30 87.76 57.25 81.92 89.06 76.07 81.92
50% 50% 124.4 75.30 93.18 96.64 88.37 57.63 82.24 89.38 76.42 82.39
50% 75% 122.0 74.46 92.02 96.14 87.54 56.12 81.31 88.97 75.47 81.50
75% 25% 85.7 74.20 92.72 96.30 87.74 56.63 81.61 89.13 75.79 81.77
75% 50% 83.3 73.98 92.16 95.84 87.32 56.04 81.32 88.53 75.29 81.31
75% 75% 80.9 72.74 92.10 95.92 86.92 54.64 80.50 88.21 74.45 80.69

Table 5: Model performance and computational cost under different masking ratios. R Mean indicates the
averaged value of R@1, R@5, R@10. Masking ratio (50%, 50%) achieves the overall best performance.

masking rates of image patch and text token to
25% and 25% respectively, the model behaves
well with an overall R Mean 82.22%. The corre-
sponding GFOLPs becomes as large as 168.0; (2)
The 50% and 50% setting achieves the best result
with an overall R Mean of 82.39%, and similar con-
clusions are also found in other tasks. Therefore,
considering the balance of computational cost and
model performance, it is a mostly recommended
setting; (3) When the masking rates are set to 75%
and 75%, GFLOPs reaches the lowest. But it tends
to cause loss of effect; (4) Masking more images
reduces the GFLOPs more significantly. That is
because the maximum length of the original patch
is 256 while the max text token length is 32.

From our perspective, increasing the masking
rates will have the following influences. On the one
hand, it increases the difficulty of reconstruction
tasks. Making the tasks more challenging can ben-
efit the model. On the other hand, it will reduce
the input tokens by removing the masked ones,
which harms the model performance under the
same amount of training data. These two factors
may cause performance fluctuations under differ-
ent masking rates.

4.4. Ablation Study

Gated interaction mechanism. To evaluate the
relative improvement of the proposed gated inter-
action mechanism. We make an ablation study by
disabling the gate in this mechanism of LightVLP.
In other words, we directly take the cross repre-
sentations as the output of the encoder by forcing
p = 1 as shown in Fig. 2. We use the same model
settings to pre-train the model and compare its per-
formance with LightVLP on Image Retrieval and
Text Retrieval tasks using the MSCOCO dataset.

From Table 6, the gate of our gated interaction
mechanism makes an improvement of 0.57% by R
Mean compared to LightVLP w/o gate. Especially,
it improves 1.46% by R@1 on text retrieval. Since
the training datasets of LightVLP are mostly col-
lected from the web, there exists much noise. By
introducing the gated interaction mechanism, the

gate enables the model to selectively union cross-
modal and single-modal representations according
to the image-text matching probability. As for a
matched image-text pair, the model tends to apply
cross-modal representations for reconstructions.
By contrast, for an unmatched pair, the model con-
ducts reconstructions mainly using uni-modal rep-
resentations. GIM significantly reduces the effect
of unmatched image-text pairs in training, which is
the key reason for the improvement.

TR IRModels R@1 R@5 R@10 R@1 R@5 R@10

LightVLP 75.30 93.18 96.64 57.63 82.24 89.38
w/o gate 73.84 92.94 96.50 56.85 81.83 89.04

Table 6: Ablation study on MSCOCO (TR/IR).

Training objectives. We further conduct several
ablation versions to prove the effectiveness of dif-
ferent pre-training tasks. Experimental results are
recorded in Table 7. We find that all pre-training
tasks contribute to the performance on SNLI-V,
NLVR2, and VQA, among which ITC and ITM show
more gains than MIR.

Models SNLI-VE NLVR2 VQA

LightVLP 81.40 81.53 76.19
LightVLP w/o gate 80.27 80.87 73.34
LightVLP w/o MIR 81.05 80.60 74.91
LightVLP w/o ITC 80.33 79.51 74.17
LightVLP w/o ITM 79.77 80.40 74.04

Table 7: Ablation study on SNLI-VE, NLVR2, VQA.

4.5. In-depth Analysis on GIM

To verify that GIM works as we designed, we study
the distribution of p in Eq. (5) in the pre-training
dataset. From Fig. 4 we discover that: over 20%
image-text pairs are considered unrelated (p < 0.2)
and more than 50% image-text pairs are partially
matched (p < 0.8), which indicates there exists
much noise in real-world pre-training corpora.

Further, we conduct a case study by sampling
some image-text pairs with high/low p scores listed



10507

Figure 3: Matched (b) and unmatched (a) cases with different p in GIM. GIM functions as expected.

Figure 4: Distribution of matching probability p.

in Fig. 3, including 5 matched (b) and 5 unmatched
(a) cases. As for matched image-text pairs (b),
LightVLP tends to give higher p to apply cross-
modal representations for reconstructions. By con-
trast, for unmatched pairs (a), LightVLP conducts
reconstructions mainly using uni-modal represen-
tations instructed by lower p. In this way, it can
reduce the side effects of noisy data in pre-training.

4.6. Discussions and Limitations

In this section, we analyze the limitations of our
LightVLP considering the main challenges in V&L
pre-training as described in the Introduction: First,
the pre-training complexity is still high. Although
reducing the input length by a large margin in the
encoders can improve the training efficiency signifi-
cantly (44% by FLOPs), it is still training expensive.
That is because the fundamental cause of high
computational costs lies in the Transformer itself.
Hence, improving the basic structures of Transform-
ers can benefit more. Second, the self-supervised
tasks need to be improved. In LightVLP, we intro-
duce four tasks to improve the V&L pre-training.

Two main tasks are masked image modeling and
masked token modeling. We increase the masking
rates to make these tasks tougher for better V&L
understanding ability. It has two disadvantages:
(1) Increasing the masking ratios will decrease
the input tokens of the encoders, which harms
the model performance. (2) Keeping the masking
ratios constant means keeping the task difficulty
unchanged, which is against the order of human
learning, i.e., from easy to hard. We will further
improve the model via curriculum learning. Third,
as for the noisy data, GIM is effective in dealing
with noise from the modeling aspect. However, the
noisy image-text pairs still exist in the training data
and harm the model performance. More purified
image-text pre-training corpora are needed.

5. Conclusions and Future Work

In this paper, we propose LightVLP, a new frame-
work for V&L pre-training, in which we mask and
remove large portions of input tokens as the en-
coders’ input, reducing computational complexity
significantly. We explore different settings of mask-
ing ratios and propose a gated interaction mecha-
nism to automatically choose between cross-modal
and uni-modal representations for reconstruction,
which helps reduce noise from unmatched image-
text pairs. Our models show competitive results on
six commonly used datasets.

In the future, we will evaluate more lightweight
methods to make full use of the powerful large
pre-trained models without much cost. We will also
explore the practical usage of lightweight VLP mod-
els in the era of LLMs considering both benefits
and costs, efficiently and economically fine-tuning
VLP models for different downstream tasks.
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