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Abstract
Detecting synthetically generated text in the wild has become increasingly difficult with advances in Natural
Language Generation techniques and the proliferation of freely available Large Language Models (LLMs). Social
media and news sites can be flooded with synthetically generated misinformation via tweets and posts while
authentic users can inadvertently spread this text via shares and retweets. Most modern natural language
processing techniques designed to detect synthetically generated text focus primarily on long-form content, such as
news articles, or incorporate stylometric characteristics and metadata during their analysis. Unfortunately, for short
form text like tweets, this information is often unavailable, usually detached from its original source, displayed out
of context, and is often too short or informal to yield significant information from stylometry. This paper proposes
a method of detecting synthetically generated tweets via a Transformer architecture and incorporating unique
style-based features. Additionally, we have created a new dataset consisting of human-generated and Large
Language Model generated tweets for 4 topics and another dataset consisting of tweets paraphrased by 3 different
paraphrase models.

Keywords:Natural Language Processing, Natural Language Generation, Synthetic Text Detection, Author-
ship Attribution, Large Language Model

1. Introduction

The impact of general misinformation and bot gen-
erated text has been witnessed on a large scale in
the last decade. In 2014, Twitter was flooded with
an army of bots tweeting about a small technology
company, Cynk (Ferrara et al., 2016). This flurry
of artificial posts created a large amount of chatter,
which automatic trading scripts attempted to capi-
talize upon. This led to the stock price inflating by
over 500%. When it was discovered the original
social media posts were synthetic, the stock price
responded by decreasing below its original value,
trading was halted, and unfortunate investors were
left to realize massive financial losses.
In 2016, both the U.S. presidential election and

Brexit referendums were believed to have been
partially influenced by twitter bots (Gorodnichenko
et al., 2021).
Although currently most discovered bot activ-

ity incorporates manually written sentences rather
than model-generated ones (Vargo et al., 2018),
with the proliferation and availability of robust
Large Language Models (LLMs), such as Chat-
GPT, it is highly likely that future bot activity will
include some combination of synthetic and human-
generated sentences.
In this paper, we propose a method of synthetic

text detection on tweets via an ensemble of rea-
sonable stylistic features incorporated with LLM-
extracted ones. We also briefly explore the task
of authorship attribution using LLM-generated con-
tent rather than traditional authors and the effects

of our techniques on short-text samples. Finally,
we analyze the potential threat to both detection
and attribution from paraphrasing attacks (Sadasi-
van et al., 2023).

2. Related Work

2.1. Language Generation

Language generation can easily be structured as
a product of conditional probabilities lending to its
sequential nature (Radford et al., 2019).

P (x) =

n∏
i=1

P (si|s1, s2, ...sn−1)

where x represents a sample of generated text
and si represents individual tokens at the ith lo-
cation. With the invention and popularity of self-
attention architectures, such as the transformer
(Vaswani et al., 2017), many language models
have been created which can estimate these prob-
abilities with sufficient prose and verbosity. While
the transformer uses an encoder-decoder struc-
ture to understand language, popular models such
as the Generative Pretrained Transformer (GPT)
series from OpenAI (Radford et al., 2018, 2019;
Brown et al., 2020; Wang and Komatsuzaki, 2021)
and BERT (Devlin et al., 2018) make use of either
the encoder or decoder for increase performance
in certain tasks.
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2.2. Detection
Detecting short-form text generated by an LLM is
a relatively unexplored and challenging task for
many applications. Previous work on general syn-
thetic text detection, such as GROVER, incorpo-
rate a transformer-based architecture as both a
generator and detector on paragraph and article-
length text sequences (Zellers et al., 2019). This
is helpful in the context of determining the valid-
ity of a news article attempting to spread propa-
ganda or long-form social media post containing
misinformation but relies heavily on the stylomet-
ric features of the given text. The shorter the se-
quence of text becomes, the less importance the
same stylometric features have on aiding in a clas-
sification (López-Escobedo et al., 2013).
Recently, the unique TweepFake dataset has

been created specifically for the purpose of syn-
thetic tweet detection and attribution to specific bot
and human authors (Fagni et al., 2021). While
high accuracy was achieved by BERT-based clas-
sifiers such as RoBERTa (Liu et al., 2019) the data
chosen was largely comprised of authentic human
accounts and bots impersonating those humans
making the dataset more effective when analyzing
detection in the context of a specific, well-known
user. Other variations of BERT, such as BERTAA
(Fabien et al., 2020), have also proven successful
at the tangential task of authorship attribution on
similar datasets.
In similar work, tweets across a twitter users

timeline were collected and analyzed for poten-
tial synthetically generated samples (Kumarage
et al., 2023). The authors analyzed timelines con-
sisting of wholly synthetic or authentic tweets, it
also placed an emphasis on determining a point
in a timeline where tweets became synthetic, in
the event of an account hijacking. Intuitively, it
showed that the shorter the timeline is, the harder
it was to accurately classify the synthetic text. This
is likely due to less overall text leading to a lower
amount of semantic information for the model to
learn. The authors did however note, that for lower
values of timeline transition point there was an in-
crease in benefit from infusing external stylometric
features compared to using word embedding and
bag of word representations.
Incorporating metadata into detection methods

can greatly improve a classifier’s results (Hovy,
2016), however this data is not always available.
A synthetically generated tweet can often be in-
correctly attributed to a legitimate author, spread
by legitimate users through retweets and shares,
or displayed independently of twitter altogether via
articles, news reports, and memes. These factors
make it difficult to rely on external features derived
from metadata in a realistic scenario.
Work such as (Sadasivan et al., 2023) further

examines the difficulties of detecting Artificial Intel-
ligence (AI) generated text and describes the prob-
lem in terms of a given classifiers Area Under Re-
ceiver Operator Characteristic (AUROC):

AUROC(D) ≤ 1

2
+ TV (M,H)− TV (M,H)2

2

where D represents a synthetic text detector,
TV references the total variation distance be-
tween two distributions, and M , H represent the
distributions of machine-generated and human-
generated samples, respectively. As the TV
distance shrinks, i.e., two distributions become
more similar, any classifier D will tend towards
a random classifier. Shorter text, which has
less unique characteristics between synthetic and
human-generated text, inherently reduces TV dis-
tance and thus detector accuracy.
This difficulty even extends to watermarked text,

such as the work presented in (Kirchenbauer et al.,
2023). Watermarking techniques attempt to apply
a machine detectable watermarked pattern to text
generated by an LLM while hiding the pattern from
the average human reader. Popular techniques in-
volve dividing the vocabulary |V | of an LLM evenly
into a red and green list of tokens. In a hard water-
marking scheme, only the green tokens will be con-
sidered during token generation. This has the ef-
fect of providing an easily detectable pattern, with
the trade-off of sentence verbosity. The more pop-
ular soft watermarking scheme samples from the
green tokens inverse to the entropy from a given
prompt. The phrase “The quick brown fox”, for ex-
ample, has an incredibly low entropy with an al-
most deterministic completion of “jumps over the
lazy dog”. Therefore, even if one of the comple-
tion tokens is on the red list it will likely be chosen.
Whereas a prompt with relatively high entropy is
almost certain to generate a token from the green
list.
In this case, detection simply involves compar-

ing the number of tokens seen in a sample with
the red list tokens. Because the lists are evenly
divided, a human generated sample will utilize ap-
proximately 50% from the red list, where the water-
marked model will utilize almost none. A simple p-
score threshold provides a highly accurate detec-
tor of the applied watermark. Unfortunately, these
types of schemes are susceptible to spoofing at-
tacks. A malicious actor, with sufficient access to
known watermarked text, can recreate the green
list tokens with a high degree of accuracy (Sadasi-
van et al., 2023).

2.3. Attribution
Unlike detection, authorship attribution can be de-
fined as a multinomial classification problem at-
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tributing a given text to its corresponding author,
generally from a list of many potential authors.
The task of authorship attribution is a very old
one, with a history which long predates comput-
ing (Stamatatos, 2009). However, many mod-
ern approaches to authorship attribution utilize
transformer-based (Vaswani et al., 2017) mod-
els. These include BERTAA (Fabien et al., 2020),
which builds upon BERT (Devlin et al., 2018) for
the specific task of authorship attribution.
In this paper, we treated the generation models

as ”authors” for the author attribution task.

2.4. Paraphrasing
Paraphrasing can be defined as modifying a natu-
ral language input to contain different words while
maintaining its semantic meaning to a human
reader (Sadasivan et al., 2023). The process of
paraphrasing generally has a shortening effect on
the text, and in the case of authorship attribution,
greatly increases distributional similarity between
the classes.
In order to measure closeness and account for

paraphrasing, there are various measures of dis-
tributional similarity we can use. Total Variation
(TV) distance is a measure of the largest possible
difference in probability between any event occur-
ring in 2 distributions. Similarly, Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) mea-
sures the average difference between events in
distributions by using one probability distribution
to approximate another. However, some prob-
lems with the KL-divergence is its failure to satisfy
the triangle inequality in some cases, making its
use a a metric somewhat limited. Additionally KL-
Divergence is asymmetric, meaning thatKL(P,Q)
is not necessarily equivalent to KL(Q,P ). To
solve this, we can use the square root of the
Jensen-Shannon Divergence (Endres and Schin-
delin, 2003), also known as the Jensen-Shannon
Distance (JSD). Similar to KL-Divergence, the
Jensen-Shannon Divergence measures the av-
erage distance between probability distributions,
however it is symmetrical and satisfies the trian-
gle inequality. The Jensen-Shannon Divergence
is formulated as:

JSD(P,Q) = D(P ||P +Q

2
) +D(Q||P +Q

2
)

This is a desirable metric because it vanishes
when P = Q and is symmetric, however this does
not satisfy the triangle inequality, but its square
root does. This f-divergence is closely related
to the Kullback-Leibler divergence (Kullback and
Leibler, 1951):

DKL(P ||Q)− σP (x)log(
P (x)

Q(x)
)

3. Datasets

To test our detectionmethod on short-form text, we
created a new dataset consisting of synthetically
generated tweets from 3 popular LLMs: GPT2
(Radford et al., 2019), GPT3 (Brown et al., 2020),
and GPT-J 6B (Wang and Komatsuzaki, 2021).
Using the Twitter API, we extracted approximately
300k tweets across 4 categories including politics,
science, climate, and covid. These tweets were
selected from primarily verified Twitter accounts
between 2016 and 2021. The categories were
selected according to various hashtags and key-
words as shown in Table 3.
We then used the corresponding APIs, provided

by OpenAI, to fine-tune the 3 LLMs using randomly
selected samples of 5, 000, 10, 000, and 15, 000
human-generated tweets from each of the 4 cat-
egories. These fine-tuned models were then used
to generate 20, 000 synthetic tweets for each of
our 4 categories. GPT2 and GPT3 could gener-
ate convincing tweets with no input prompt, while
GPT-J 6B required the first 10 words of the GPT3-
generated text as a prompt for completion. Both
the human-generated and synthetically generated
tweets contain English words and sentences as
well as emojis, twitter links, and unique punctua-
tion such as the twitter hashtag. 1

We also evaluate our method on the Tweep-
Fake dataset (Fagni et al., 2021) which contains
deepfake tweets which are generated based on
Markov Chains, recurrent neural networks (RNN),
long short-term memory networks (LSTM), GPT2
and other technologies.
For our paraphrased-related tasks, we created

an additional dataset by paraphrasing the inputs of
our initial tweet dataset while maintaining the origi-
nal labels. Themodel used to paraphrase was sim-
ilar to the model in Sadasivan et al. (2023), how-
ever the Pegasus-Paraphraser pretrained model
was chosen rather than the Pegasus-Summarizer
model, due to it not reducing the size of the origi-
nal input as drastically. We also attempted to para-
phrase data using the ChatGPT and T5 models to
assess the effects of the paraphraser on detection
and attribution.

4. Method

The block diagram of the proposed system is il-
lustrated in Figure 1. The input tweet Torg will
first be normalized and have noise removed, such
as URLs and mentions, to get a cleaned tweet
Tclean. At the same time, we will perform prelim-
inary statistic calculations based on the original in-
put tweet, such as word count per sentence, av-
erage word length and lexical richness. In addi-

1The dataset is available here

https://lorenz.ecn.purdue.edu/~lrec_coling_text_dataset/synthetic_tweet_datasets.zip
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Category Search Words Size
Politics #Trump, #DonaldTrump 30k
Science #Science #Engineering #Physics #Biology #Chemistry 36k
Climate #Climate #GlobalWarming #ClimateChange 54k
Covid #Coronavirus #Covid #Covid-19 160k

Table 1: Tweet categories, including keywords, and scraped samples

Figure 1: Block diagram of proposed detection method.

tion to this, we also perform lexicographic process-
ing and syntax analysis on the input tweets. The
most popular machine learning techniques, such
as Bag-of-Words (BoW), N-gram, and TF-IDF help
convert text into dictionary-based statistical fea-
tures. Since we want to extract intrinsic stylistic
features of the synthetic tweets, which should be
content independent, we choose to use character-
level N-gram and part-of-speech (PoS) tag N-gram
as part of our self-defined stylistic features. Here
we introduce the PoS tag N-gram as a rule-based
matching feature. It helps us to extract and clas-
sify different writing patterns in phrases. Besides
this, we are also curious about the emojis shown in
tweets. According to Emojipedia’s statistics (Broni,
2022), by 2022, over 22.4% of all tweets now con-
tain at least one emoji, while over half of the com-
ments on Instagram include emojis. Using emojis
is an easy and concise way to express emotion
and convey meaning. So, it should also be a fea-
ture to detect synthetic tweets. Thus, the extracted
stylistic features fstyle can be categorized into 3
types: twitter specific feature, lexical feature, and
syntactic feature. Table 2 gives detailed informa-
tion of the self-defined stylistic feature. Emoji rich-
ness refers to the ratio of unique emojis over the
total number of emojis used in the text. Vocabu-
lary richness refers to 3 well-defined scores: type-
token ratio (TTR) (Chotlos, 1944), mean segmen-
tal type-token ratio (MSTTR) (Johnson, 1944), and
moving average type-token ratio (MATTR) (Cov-
ington and McFall, 2010). Additionally, we use 3
well-defined scores for readability: Flesch reading
ease (FRE) formula (Flesch, 1979), Gunning fog

index (GFI) (Gunning), and Dale-Chall readability
(DCR) score (Dale and Chall, 1948).
Then a contextualized feature fem will be

extracted from the cleaned tweet Tclean by a
transformer-based encoder. Here we choose to
use RoBERTa for two reasons, 1) it is a power-
ful and effective language model which achieves a
good performance in variety of NLP sub-tasks, and
2) it use Byte-Pair Encoding (BPE) (Gage, 1994)
for text encoding which enables the encoding of
any rare words in the vocabulary with appropri-
ate sub-word tokens without introducing any “un-
known” tokens. This is important for the twitter
posts since they may contain some non-dictionary
phrases or abbreviation.
The stylistic feature fstyle and contextualized

feature fem will be concatenated together to form
a new feature vector and fed into a Multi-layer Per-
ceptron (MLP) for human-generated and synthetic
tweets detection.
During the training time, we will first build and

memorize character-level and PoS tag N-grams
dictionaries based on the training dataset. And
use them to calculate the corresponding feature
vectors in training and testing phrases.

5. Experiments

5.1. Synthetic Analysis

We first conduct an experiment to determine how
to preprocess the emojis in the text using 3 ap-
proaches: remove emojis directly, encode emo-
jis directly and use emoji description instead.
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Feature Type Description Examples
Twitter specific
feature

Statistical features based
on Twitter-specific fea-
tures

Total emoji count, unique emoji count,
emoji repeated times, emoji frequency,
emoji richness, email count, hashtag
count, mention count, hashtag frequency,
mention frequency

Lexical feature Stylistic features based
on characters and words

Word length, word count, sentence count,
character count, word frequency, digits
counts, upper case word count, vocabu-
lary richness, character level N-gram, con-
tractions count, readability

Syntactic fea-
ture

Stylistic features based
on the organization of sen-
tences

Stop words count, stop word frequency,
Special punctuation frequency, proper
noun count, noun count, Part-of-Speech
(PoS) tag N-gram

Table 2: List of extracted self-defined style features.

We tested the three different pre-processing ap-
proaches with RoBERTa on our dataset and found
that encoding emojis directly or using emoji de-
scription instead can achieve 1.4% accuracy over
removing all emojis entirely. The accuracy for en-
coding emojis directly and using emoji description
instead were about the same, with 0.1% differ-
ence. Therefore, we directly encoded the emojis
for the experiments.
To demonstrate the advantage of our proposed

method, we conducted experiments on the syn-
thetic tweets dataset we designed and the Tweep-
Fake dataset for comparison. In all experiments,
the training, validation, and testing datasets are
split in a 6:2:2 ratio. Since in our proposed method
we use RoBERTa to extract learned feature, we
take the RoBERTa model with a sequence classi-
fier as the baseline for comparison. All experimen-
tal results are compared to this baseline to show
the effectiveness. Our proposed method is imple-
mented in PyTorch and trained using the Adaptive
Moment Estimation (Adam) optimizer with a learn-
ing rate of 5e−4 and weight decay of 0.001. To
prevent over-fitting in the training phase, we use
two strategies: 1) an early stop execution will take
place if 5 successive epochs stop improving on
validation loss, and 2) label smoothing is imple-
mented in cross-entropy loss function (Szegedy
et al., 2016).
Table 3 shows the results for synthetic tweets

detection with different stylistic features on the
TweepFake dataset. In this experiment, we iso-
late the stylistic features into 3 different portions,
preliminary statistical features, character-level N-
gram and PoS N-gram to check the effectiveness
of these features. Here we use RoBERTa fine-
tuned on TweepFake dataset as a baseline. Ex-
perimental results show that stylistic feature can
help to improve the performance of synthetic tweet

detection.
Table 4 shows the results for synthetic tweets

detection on our generated Synthetic Tweets
Dataset. Here the stylistic features are the combi-
nation of preliminary statistical features, character-
level N-gram and PoS N-gram, i.e., the full stylistic
features described in Table 2. Figure 2 and Fig-
ure 3 present more detailed evaluations on differ-
ent topics and different generative models. This
indicates that the proposed method will generally
improve the performance regardless of the gener-
ative models and content.

Figure 2: Detection accuracy on different topics.

We also conduct a preliminary experiment for
generative model attribution using our method
and our generated synthetic tweets dataset. The
goal is to determine which generative model is
used to create the synthetic tweets. In Table 5,
we compared the accuracy score of our method
to the baseline. The results indicate that the
proposed method shows some improvement in
human-generated and GPT3 attribution identifica-
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Models Accuracy Precision Recall F1
RoBERTa (baseline) 0.88398 0.87488 0.90313 0.88878
RoBERTa + prelim 0.92205 0.92293 0.92564 0.92428

RoBERTa + prelim + char 0.92257 0.92383 0.92564 0.92473
RoBERTa + prelim + char + PoS 0.92461 0.93209 0.91842 0.92521

Table 3: The performance of the proposed method testing on the TweepFake dataset for synthetic tweets
detection.

Models Accuracy Precision Recall F1
RoBERTa (baseline) 0.93432 0.91678 0.95535 0.93567

RoBERTa + stylistic feature 0.95136 0.94155 0.96248 0.95190

Table 4: The performance of the proposed method testing on the Generated Synthetic Tweets Dataset
for synthetic tweets detection.

Figure 3: Detection accuracy on different genera-
tive models.

tion, but performs lightly worse in GPT2 andGPT-J
6B cases. Overall, the proposed method achieves
higher balance accuracy than the baseline.

5.2. Paraphrasing Attacks
In the context of paraphrasing attacks, the unmod-
ified dataset has a relatively high divergence dis-
tance between all 4 classes, with the closest being
between class 2 (GPT2) and class 3 (GPT3), as
shown in Table 6. After the dataset has been para-
phrased, the divergence is much lower, meaning
that the class distributions are more similar to one
another. Even class 0 (human) and class 3 (GPT
3), which had the farthest divergence distance in
the unmodified dataset, have far more similar dis-
tributions in the paraphrased set, as shown in Ta-
ble 7
After the creation of the paraphrased dataset,

we examine authorship attribution for both
datasets and analyze the results against their
distributional similarities to find that the two are
correlated. Similar to Fabien et al. (2020) we

use some traditional techniques, such as Logistic
Regression (LR) and a Term Frequency Inverse
Document Frequency (TFIDF) representation as
well as BERTAA for comparison.
Expectantly, the reduced distributional distance

between the unmodified and paraphrased text has
had a negative impact on the classifier’s ability
to detect and attribute the synthetic text. Table
8 shows the result for synthetic tweets detection
on the paraphrased dataset, where we treat both
the paraphrased and generated tweets as syn-
thetic. The results shown in the ”Paraphrased”
line are obtained by pre-training on the unmodified
tweets and testing on the paraphrased dataset. In
this way, the proposed method can still detect in-
herent features of the synthetic short text after a
paraphrasing attack. And the discrepancy in ac-
curacy is due to the increased difficulty of classi-
fying paraphrased samples for human generated
tweets, which drops from 96.86% to 88.94%. And
one substantial impact introduced by paraphrasing
attacks is the increase in difficulty for the model to
attribute synthetic tweets to their generation mod-
els. The generation model attribution accuracy on
this dataset drops from 96.52% to 55.75%.
However, rather than detecting a random sam-

ple based on its author or synthetic label, which
may or may not be paraphrased, we can instead
infer detection using a classifier to detect samples
which are machine-paraphrased. Operating under
the assumption that a non-malicious twitter user
would not machine-paraphrase their tweets, we
can show success in detecting which tweets are
malicious by detecting paraphrased text.
To achieve this goal, we rephrased our task

by treating various paraphrasers as different au-
thors to conduct detection and attribution task.
We first conduct an experiment on the generated
paraphrased dataset to detect if a given sample
is paraphrased or not, regardless of which para-
phrase model was responsible for the paraphras-
ing. The proposed method performs astonishingly
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Models RoBERTa (baseline) RoBERTa + stylistic feature
Human 0.9599 0.9668
GPT2 0.8865 0.8835
GPT3 0.9042 0.9123

GPT-J 6B 0.9739 0.9718
Avg. 0.9336 0.9419

Table 5: The balanced accuracy of the proposed method on generated Synthetic Tweets Dataset for
generative attribution identification.

JSD Class 0 Class 1 Class 2 Class 3
Class 0 0 - - -
Class 1 0.0568 0 - -
Class 2 0.0666 0.0221 0 -
Class 3 0.0751 0.0325 0.0198 0

Table 6: Jensen-Shannon Distance on the unmod-
ified text categories

JSD Class 0 Class 1 Class 2 Class 3
Class 0 0 - - -
Class 1 0.0167 0 - -
Class 2 0.0271 0.0157 0 -
Class 3 0.0384 0.0271 0.0165 0

Table 7: Jensen-Shannon Distance on the para-
phrased text categories

well in the binary classification case. Comparing
the human-generated tweets to each of the para-
phrased texts individually yielded a near-perfect
accuracy, as shown in Table 9. Additionally, af-
ter rephrasing the task to that of authorship attri-
bution where each of the 3 paraphrasers and non-
paraphrasing samples are treated as authors, our
model achieves an accuracy of 91.71%.

Figure 4: The confusion matrix of the paraphraser
attribution task.

LR LR+TFIDF BERTAA Proposed
Unmodified 0.337 0.798 0.944 0.977
Paraphrased 0.356 0.589 0.807 0.941

Table 8: Balanced accuracy for detecting synthetic
tweets on unmodified tweets and paraphrased
tweets. Here the unmodified tweets are generated
based on human, GPT2, GPT3, GPT-J 6B gener-
ation models.

None PEGASUS ChatGPT T5 Avg.
0.9767 0.9990 0.9668 0.9874 0.9824

Table 9: Balanced accuracy for detecting para-
phrasing on the paraphrased dataset. The pro-
posed model is trained on the entire dataset and
detecting accuracy of each paraphrase model is
calculated. Here none stands for tweets without
any paraphrasing.

6. Conclusion and Discussion

In this paper, we created a dataset of synthetic
tweets for 4 different topics utilizing 3 popular
LLMs (GPT2, GPT3, and GPT-J 6B). We also in-
troduced an method, which exploits the efficiency
of certain stylistic features combined with popular
LLMmodels. We validated this method by pretrain-
ing the model on a public dataset (TweepFake)
and our generated datasets. The pre-trained mod-
els perform well on both the synthetic text detec-
tion and generative model attribution tasks. We
also created another paraphrased dataset based
on a subset of the one mentioned above using 3
different paraphrasing models. The experiment
results indicate that the proposed model can de-
tect inherent features of the synthetic text but elim-
inate the gaps between different generative mod-
els under paraphrasing attacks. The proposed
method also works well on paraphrasing detection
and paraphrase model attribution task.
Future work in this area will explore improved

feature integration in a zero-shot setting, in order
to detect synthetic tweets generated by unknown
LLMs. Additionally, further experimentation will
be conducted regarding the generative model at-
tribution task, to evaluate how malicious activity
such as watermark spoofing and paraphrasing at-
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tacks effect classifier accuracy and to improve de-
fenses against these activities. As LLMs expand
and open-source tools continue to be built which
utilizing them, the tasks of detecting and attribut-
ing synthetically generated text will continue to be
important.
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