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Abstract
Event Coreference Resolution (ECR) as a pairwise mention classification task is expensive both for automated
systems and manual annotations. The task’s quadratic difficulty is exacerbated when using Large Language Models
(LLMs), making prompt engineering for ECR prohibitively costly. In this work, we propose a graphical representation
of events, X-AMR, anchored around individual mentions using a cross-document version of Abstract Meaning
Representation. We then linearize the ECR with a novel multi-hop coreference algorithm over the event graphs.
The event graphs simplify ECR, making it a) LLM cost-effective, b) compositional and interpretable, and c) easily
annotated. For a fair assessment, we first enrich an existing ECR benchmark dataset with these event graphs
using an annotator-friendly tool we introduce. Then, we employ GPT-4, the newest LLM by OpenAI, for these
annotations. Finally, using the ECR algorithm, we assess GPT-4 against humans and analyze its limitations. Through
this research, we aim to advance the state-of-the-art for efficient ECR and shed light on the potential shortcomings of
current LLMs at this task. Code and annotations: https://github.com/ahmeshaf/gpt_coref

Keywords: semantics, discourse, events, coreference, model-in-the-loop annotation

1. Introduction

Event Coreference Resolution (ECR) involves ide-
ntifying events that refer to the same real-world
occurrence both within and across documents. Tra-
ditionally, ECR is performed on pairs of event men-
tions in a corpus through the use of rules, features,
or neural methods to generate similarity scores
(Kenyon-Dean et al., 2018), with neural methods
such as Transformer-based encoders (Devlin et al.,
2019; Liu et al., 2019; Beltagy et al., 2020) achiev-
ing state-of-the-art performance on various ECR
benchmarks (Caciularu et al., 2021; Held et al.,
2021). However, the quadratic nature of pairwise
approaches makes it challenging to scale up to
large corpora of thousands of documents.

Figure 1 presents three event mentions (m1, m2,
and m3) with their respective event triggers high-
lighted. m1 and m2 are examples of coreferent
events, while m3 is a related yet non-coreferent
event. While m1 and m3 contain sufficient infor-
mation required to make a negative coreferencing
decision between them, additional extrasentential
context is needed to determine the coreferential re-
lationship between m2 and the other two mentions.

The challenge of ECR stems from the inherent
issue of establishing singular terms for event men-
tions (a, b) that can be compared for identity (is a
= b?; Davidson (1969)). Consequently, pairwise
methods resort to approximations of the corefer-
ence relationship between each mention pair by
leveraging either the sentence or the entire docu-
ment for contextual information. The methods that
need to rely on the entire document for each pair-
wise decision (as in the case of m2) are intractable
on large corpora. We propose that by extracting

Target Mention (m1)

HP today announced that it has signed a definitive agreement

to acquire EVT EYP Mission Critical Facilities Inc.

Target Mention (m2)

Financial details of the acquisition EVT were not disclosed.

Target Mention (m3)

Earlier this month Hewlett-Packard unveiled a bid of nearly

$14 billion bid to purchase EVT Electronic Data Systems.

Figure 1: m1 and m2 are examples of coreferent
mentions. m3 although related to m1 and m2, is a
different acquisition event.

the key semantics of mentions and by introducing
a graphical structure between each mention, we
can compress the information. This way we not
only are able to create identifiers for the mentions
that can be compared for sameness, but also make
ECR completely linear in complexity.

acquire.01

EYPHP

m1
m2

roleset-id

ARG-0 ARG-1 EDSHP

roleset-id

ARG-0 ARG-1

purchase.01

m3
VerbNet

USALOC

2007TIME

USALOC

2008TIME

KB

root root

Figure 2: Compressed event semantics graphs of
m1, m2, and m3. The graph for m2 is generated us-
ing the entire document in which it appeared. Verb-
Net classes are used for synonymous predicates.
KB is used for argument coreference resolution.

https://github.com/ahmeshaf/gpt_coref
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Figure 2 illustrates the graph structure based on
our new Cross-document Abstract Meaning Repre-
sentations (X-AMR), inspired by Abstract Meaning
Representation (AMR; Banarescu et al. (2013)).
X-AMR captures event triggers and arguments
linked using VerbNet Lexicon (Schuler, 2005) and
a Knowledge Base (KB), resulting in corpus-level
event graphs that we use to symbolically perform
ECR without the need for pairwise scoring. Our
specific contributions in this paper include:

• X-AMR annotations using the annotation tool
provided by Ahmed et al. (2024) on the ECB+
corpus (Cybulska and Vossen, 2014).

• A novel ECR algorithm over the X-AMR graphs
that avoids the computational cost of traditional
pairwise approaches.

• An evaluation of the algorithm using gold-
standard annotations for the ECB+ corpus.

• And finally, an evaluation of the approach with
automatically generated X-AMR graphs using
GPT-4 in zero-shot and few-shot settings with
prompts based on a condensed version of the
annotation guidelines of X-AMR.

Together, our annotations and findings suggest a
promising path toward extending robust ECR to
real-world applications where exhaustive pairwise
approaches are not feasible.

2. Annotation Guidelines for X-AMR
We aim to annotate key event semantics with
four arguments, ARG-0, ARG-1, ARG-Loc, and
ARG-Time, capturing agent, patient (and theme),
location, and temporal information. The selection
of these arguments is to circumscribe an event by
its minimal participants (Lombard, 2019; Guarino
et al., 2022). We use the guidelines presented
in the next section to hand annotate the roleset
and argument information for the ECB+ train, de-
velopment, and test sets using the standardized
split of Cybulska and Vossen (2014). Following
the annotation guidelines, we provide the enriched
annotations of the ECB+ corpus by two Linguis-
tic students. We use the prodi.gy-based X-AMR
annotation tool provided by Ahmed et al. (2024)1.

2.1. PropBank & AMR
Semantic role labeling (SRL) centers on the task of
assigning the same semantic role to an argument
across various syntactic constructions. For exam-
ple, the window can be the (prototypical) Patient,
or thing broken, whether expressed as syntactic
object (The storm broke the window) or syntactic
subject (The window broke in the storm).

1Readers are encouraged to check the original paper
for details about the annotation tool

agree.01 - agree

ARG-0: Agreer

ARG-1: Proposition

ARG-2: Other entity

agreeing

agree.01

ARG-0: HP

ARG-1: acquire.01

ARG-0: HP

ARG-1: EYP

Figure 3: The PropBank roleset definitions of
agree.01 and the expected annotations in X-AMR.

The Proposition Bank (PropBank; Palmer et al.
(2005); Pradhan et al. (2022)) has over 11,000
Frame Files providing valency information (ar-
guments and their descriptions) for fine-grained
senses of English verbs, eventive nouns, and ad-
jectives. Figure 3 gives an example Frame File for
agree as well as an instantiated frame for HP has
an agreement to acquire EYP.

The resulting nested predicate-argument struc-
tures from PropBank style-SRL also form the back-
bones of AMRs, which in addition includes Named
Entity (NE) tags and Wikipedia links (for ‘HP’ and
‘EYP’ in our example). AMRs also include explicit
variables for each entity and event, consistent with
Neo-Davidsonian event semantics, as well as inter-
and intra-sentential coreference links to form di-
rected, (largely) acyclic graphs that represent the
meaning of an utterance or set of utterances.

Our enhanced X-AMR representation follows
AMR closely with respect to NE and coreference,
but stops short of AMR’s additional structuring of
noun phrase modifiers (especially with respect to
dates, quantities and organizational relations), the
discourse connectives and the partial treatment of
negation and modality. However, we go further than
AMR by allowing for cross-document coreference
as well as multi-sentence coreference. X-AMR thus
provides us with a flexible and expressive event
representation with much broader coverage than
standard event annotation datasets such as ACE2

or Maven (Wang et al., 2020).

2.2. Roleset Sense Annotation
The first step in the annotation process involves
identifying the roleset sense for the target event
trigger in the given text. Annotators, using an em-
bedded PropBank website and the assistance of
the tool’s model, select the most appropriate sense
by comparing senses across frame files.
Handling Triggers with No Suitable Roleset: If
there is no appropriate roleset that specifies the
event trigger, particularly in cases when the trigger
is a pronoun (it) or proper noun (e.g., Academy
Awards), the annotator must then search for a role-
set that defines the appropriate predicate.

2https://www.ldc.upenn.edu/collaborations/past-
projects/ace
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2.3. Document-level Arguments
Identification

Next, we identify the document and corpus-level
ARG-0 and ARG-1 of the selected roleset. Anno-
tators use the embedded PropBank website as a
reference for the roleset’s definition, ensuring that
the ARG-0 (usually the agent) and ARG-1 (typically
the patient) are consistent with the roleset’s con-
straints. For arguments that cannot be inferred, the
annotators leave those fields empty.
Within- and Cross-Document Entity Corefer-
ence Annotation: Annotators perform within- and
cross-document entity coreference using a drop-
down box of argument suggestions (suggested by
the model-in-the-loop), simplifying coreference link
establishment. In difficult cases like m2 (Fig 1),
where ARG-0 and ARG-1 are missing, the drop-
down box helps by suggesting “HP" and “EYP"
from the m1 sentence. Similarly, in m4 (Figure 4),
the drop-down box assists in resolving ARG-0 (it)
as “HP", using the information earlier within the
sentence. Annotators are also allowed to input mul-
tiple values separated by “/" as needed, (e.g., if two
people performed some action together, "Person
1/Person 2").
Nested ARG-1: In many cases, the ARG-1 may
itself be an event. In such cases, the annotator is
tasked with identifying the head predicate of the
ARG-1 role and providing its corresponding roleset
ID. We then search for the annotations for such an
ARG-1 and connect it to the target event. Fig 4 has
an example of a mention with an eventive ARG-1.
For this, the annotator needs to provide the roleset
for the predicate of the ARG-1 clause (agree.01)
as the ARG-1 in this annotation process.
ARG-Loc & ARG-Time Identification Annota-
tors may also utilize external resources, such as
Wikipedia3, or Google-News, for the accurate iden-
tification of temporal and spatial arguments. This
is required when the document does not explicitly
mention the location and time of the event.

3. Human Annotations
To perform the X-AMR annotations, we employ two
annotators, and we execute this process in a sys-
tematic two-step approach. In the initial phase,
these annotators are responsible for identifying the
roleset ID associated with each event trigger. We
aggregate all event mentions for which both anno-
tators have concurred on the same roleset ID. For
those instances where there is a lack of consensus

3Although we add this in the guidelines, the annotators
do not wikify. This is only for GPT to generate instructions
for itself. Our choice is to use Wikipedia over the more
commonly used KB-wikidata because of GPT-friendly
identifiers of the pages.

Target Mention (m4)

HP today announced that it has signed EVT a definitive agree-

ment to acquire EYP Mission Critical Facilities Inc.

roleset_id

sign.02

ARG-0

Hewlett-Packard

ARG-1

agree.01

Figure 4: Eventive ARG-1 in m4 for the roleset
sign.02. The ARG-1 clause is annotated as the
connecting event with roleset ID agree.01

between the annotators, we enlist the assistance
of an adjudicator to resolve the discrepancies. The
annotations that have been finalized, either through
agreement or adjudication, are then collectively ad-
vanced to the subsequent task of identifying the
arguments.

3.1. Annotation Analysis
We have currently annotated all the mentions in the
corpus with their Roleset IDs and 5,287 out of the
6,833 with X-AMR. In the three splits, only the Dev
set has been fully annotated. We calculate the inter-
annotator agreement (IAA) on the common Roleset
predictions. The IAA is highest for the Dev set at
0.91, as depicted in Table 1. Consequently, we uti-
lize the Dev set as our benchmark for experiments
in the following sections.

Train Dev Test
Documents 594 196 206
Mentions 3808 1245 1780

Roleset ID
Agreement

0.84 0.91 0.80

w/ X-AMR 3195∗ 1245 847∗

w/ Nested ARG-1 1081 325 220
w/ ARG-Loc 2949 1243 707
w/ ARG-Time 3192 1244 805

Table 1: Corpus statistics for event mentions in
ECB+ and the mentions annotated with X-AMR
(∗Annotation in Progress). Inter-annotator agree-
ment for the Roleset ID is highest for the Dev set.

Arguments: Our analysis reveals a significant pres-
ence of mentions with nested ARG-1 annotations,
as highlighted in Table 1 (w/ Nested ARG-1). This
underscores the importance of capturing nested
event relationships effectively. Additionally, our an-
notations for location and time modifiers success-
fully capture this information for nearly all mentions
(w/ X-AMR), thanks to the assistance provided by
drop-down options and the model-in-the-loop ap-
proach. These tools are particularly valuable in
cases where date references are not explicitly men-
tioned in the document.
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4. Graph-based ECR Algorithm

Our proposed approach for ECR builds upon previ-
ous research efforts that use minimum participants.
Cybulska and Vossen (2013) utilize heuristics to as-
certain event relationships based on various factors,
such as location, time, and participant compatibility.
Choubey and Huang (2017) employ iterative tech-
niques to identify event relations, both within and
across sentences. It’s important to note that both of
these approaches are pairwise methods and do not
incorporate cross-document entity coreference into
their methodologies. In contrast, our approach with
X-AMR not only leverages cross-document entity
coreference but also capitalizes on AMR’s nested
event structure for ECR.

4.1. EID: Event Identifiers
We generate EID using the roleset, ARG-0, and
ARG-1. To evaluate the influence of location
and time, we produce EIDlt by incorporating
ARG-Loc and ARG-Time. These identifiers facil-
itate comparison between two events, allowing
coreference resolution by matching the identifiers.
Specifically, two events (mi, mj) are deemed coref-
erent (where coref(mi,mj) is true) if any of their
identifiers match in EID(mi) and EID(mj) match,
as illustrated in Equation 1.

coref(mi,mj) ≡ EID(mi) ∩ EID(mj) ̸= Ø (1)

Even though Eq 1 is represented pairwise, we de-
sign the clustering algorithm by first creating buck-
ets of mentions with the same identifiers. This way
we generate a sparse binary similarity matrix of
only the pairs of mentions in the same buckets
representing the EIDs.

4.1.1. EID Generation

We generate the identifiers differently for Standard
events (m, like m1, m2, m3) and Nested Events
(me, such as m4 and m5). For standard events,
the identifier (EID0) is constructed by merging the
ARG-0, roleset ID (PB), and ARG-1 as shown in
Equation 2. For instance, EID(m1) is denoted as
〈HP, acquire.01, EYP〉.

EID0(m) = 〈 ARG-0(m), PB(m), ARG-1(m)〉 (2)

In the case of Nested Events (ARG-1 is also an
event), we employ a recursive strategy to generate
identifiers. Specifically, we produce multiple EIDs
by traversing the arguments of nested events up to
a maximum depth, N, as delineated in Equations 3
and 4. This method aims to connect the root event
to a standard ARG-1 within the event chain. This
procedure is denoted as EIDn, where n indicates

state.01

HP

m5
roleset-id

ARG-0 ARG-1

VerbNet

USALOC

2007TIME

roleset-id

acquire.01

EYPHPARG-0 ARG-1

announce.01

HP

roleset-id

ARG-0 ARG-1

USALOC

2007TIME

roleset-id

sign.02

HPARG-0 ARG-1 roleset-id

acquire.01

EYPHPARG-0 ARG-1

2-hop

KB

m4

root

root

Figure 5: Event Identifier and Coreference for
events with eventive ARG-1. The EID2(m4) is
equivalent EID1(m5) with the help of VerbNet to
detect synonymy and KB to link arguments.

the utilized depth. Notably, for our experiments, we
set n = N during EID generation.

EIDn(me) =
n⋃
k

[
〈ARG-0(me), PB(me)〉×

EIDhop
k,n(ARG-1(me))

]
,

(3)

where × is the Cartesian product for generating all
the concatenations of the tuples.

EIDhop
k,n(m) =


ARG-1(m) if standard,

or k = n,

EIDn−1(ARG-1(m)) otherwise
(4)

Using Eq 3 and 4, we generate the identifiers for
m4 and m5 (Figure 5) as shown below:

EID2(m4) 〈HP, announce.01, HP, sign.02, HP, acquire.01, EYP〉,
〈HP, announce.01, HP, acquire.01, EYP 〉

EID1(m5) 〈HP, state.01, HP, acquire.01, EYP 〉

The 2-hop identifier of m4 is exactly same as the 1-
hop one of m5, except for the roleset IDs. To detect
synonymy between the rolesets, we use VerbNet
(PBHVN), and we maintain a KB to link the arguments.
With the combination of all these components, we
can infer that m4 is coreferent with m5.

We also use the ARG-Loc and ARG-Time to sep-
arately generate an identifier, EIDlt, for both kinds
of events as shown in Equation 5.

EIDlt(m) = 〈ARG-0(m), PB(m),

ARG-Loc(m), ARG-Time(m)〉
(5)

4.2. Clustering Methods
We generate the adjacency matrix of the mentions
by using certain baselines and the event identi-
fiers. The adjacency matrix is then used for hard-
clustering the events by finding the connected com-
ponents.
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Baseline (LEM): Clustering mentions with the
same lemma for their triggers serves as our base-
line method.
Rolesets IDs (PBH, PBG): We cluster mentions
based on the strict similarity of these PropBank
Roleset IDs. We use the human (PBH) and GPT-
generated (PBG, see §6) roleset IDs separately.
RS with VerbNet Syn classes (PBHVN, PBGVN): We
cluster mentions of synonymous rolesets based
on VerbNet Classes (Brown et al., 2011, 2022)
allowing less strict roleset matching.
Event Identifiers: We vary the EID methods in
the following ways:

EIDN: We cluster with EIDN using PBH or PBG
EIDlt: We cluster with EIDlt using PBH or PBG
EIDVNN : EIDN only, but with PBHVN or PBGVN to iden-
tify roleset classes for PBH or PBG
EIDVNlt : EIDlt only, but with PBHVN or PBGVN to iden-
tify roleset classes for PBH or PBG
EIDN ∧ EIDlt: We cluster the mentions when
they have the same EIDN and EIDlt.

EIDN ∨ EIDlt: We cluster the mentions when
they have either the same EIDN or EIDlt.

We also include the VerbNet class versions of the
final two methods.

In addition to the individual methods listed above,
we also employ combinations of methods on the
annotations of the two annotators (A1, A2). ∧-
clustering employs the rule that two mentions
should have the same annotations from A1 and
A2 (A1∧A2). ∨-clustering employs the rule that any
of the two annotators’s annotations could be the
same for two mentions (A1 ∨ A2).

5. ECR Results of A1 and A2

We use the standard clustering metrics for ECR
(MUC, B3, CEAFe, and CoNLL F1—the aver-
age of MUC, B3 and CEAFe; Vilain et al. (1995);
Bagga and Baldwin (1998); Luo (2005); Denis and
Baldridge (2009); Luo et al. (2014); Pradhan et al.
(2014); Moosavi et al. (2019)). To evaluate recall,
we compute the mean recall values from MUC and
B3 (Ravg). Similarly, our precision metric, Pavg is
derived from the average precision values of MUC
and B3. Our primary measure of overall perfor-
mance is CoNLL F1. We applied various algorith-
mic methods to the ECB+ development set, which
has been annotated using the X-AMR framework
by A1 and A2. Each annotator’s performance is in-
dependently assessed, along with the ∨-clustering

Method Ravg Pavg CoNLL

LEM 72.6 64.0 63.7
PBH 81.2 63.5 66.1
PBHVN 91.0 43.0 44.9

A 1

EIDN 75.6 90.5 78.4
EIDlt 77.9 91.2 79.8
EIDN ∧ EIDlt 74.2 92.8 78.4
EIDN ∨ EIDlt 79.3 88.9 79.8
EIDVN

N ∧ EIDVN
lt 80.0 84.2 78.5

A 2

EIDN 69.8 89.4 75.0
EIDlt 66.6 88.8 72.1
EIDN ∧ EIDlt 61.0 91.8 69.7
EIDN ∨ EIDlt 76.0 86.4 77.1

A 1
∨

A 2

EIDN 79.0 82.9 77.4
EIDlt 80.2 83.6 77.8
EIDN ∧ EIDlt 78.4 85.6 78.3
EIDN ∨ EIDlt 80.8 80.8 76.9
EIDVN

N ∧ EIDVN
lt 86.9 69.1 73.1

Table 2: ECR results comparing the annotators on
the Development Set of the ECB+ Corpus. We re-
port the baseline results using only the lexical infor-
mation, and, the ECR performance of the proposed
graph-based algorithm on the X-AMR annotations
of A1 and A2, and, a union of A1 and A2 (A1∨A2).
Boldened are the interesting results.

approach, A1 ∨ A2. We collate the results in Table
24.

From the table, it is evident that utilizing the role-
set IDs (PBH) achieves a better result than lemmas
(LEM). Even though PBHVN has the highest recall of
91%, the overall performance is quite low. The 9%
recall error indicates the gap in the VerbNet class
annotations for all the PropBank rolesets. This sug-
gests there may be room for refining the VerbNet-
Pro annotations for better compatibility (Spaulding
et al., 2024).

Comparing annotators, A1 provided more accu-
rate annotations than A2, particularly in identifying
location and time elements. Both annotators per-
formed best with the EIDN ∨ EIDlt setting, with
A1 recording the best CoNLL F1 score of 79.8%.
A2’s annotations would need further refinement in
order to match A1’s recall. When considering pre-
cision, the EIDN ∧ EIDlt method stood out, with
A1registering the highest precision at 92.8%.

For A1 ∨ A2, the results are mixed. Although
the recall is consistently higher than any individual
annotator, it does not beat A1’s best CoNLL. This
method achieves the best recall of 86.9 when used
in conjunction with the VerbNet classes while also

4A1 ∧ A2 results are excluded due to inferior quality.
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having a CoNLL F1 greater than 70%. The mixed
results for the combined method underscore the
complexities involved in integrating and harmoniz-
ing annotations from different sources.

A CoNLL F1 of 80% seems to be an upper bound
for a purely symbolic approach for ECR. However,
we want to stress that after annotating X-AMR, we
are in effect collecting free ECR annotations (eg.
75% coreference links with 93% precision). ECR
annotations are traditionally done in a pairwise man-
ner, an approach that is tedious and error-prone
(Song et al., 2018; Wright-Bettner et al., 2019). In
contrast, X-AMR has an annotator-friendly method-
ology where an annotator would need to read a
particular event mention typically only once. It also
avoids annotation errors cascading into subsequent
mentions as demonstrated by the high precision of
our method.

6. GPT-4 as Annotator

Recent work in prompt engineering converts a text-
based natural language task to a corresponding
structured prediction task. In this spirit, we create
prompts for extracting the X-AMR graph for a spe-
cific event, by providing the instructions for the task,
exemplars for the structure of the response, and
the right context for in-context zero-shot learning.
Due to budget and time constraints, we make a
smaller subset (120 mentions) of the development
set (devsmall) to run our experiments on. We then
assess the performance of GPT-4 (September 27,
2023 version) against the human annotations for
this subset. We try two prompt engineering tech-
niques (G1, G2) to extract the X-AMR graphs of the
events, and use the EID generation and clustering
methods from §4.2.

6.1. G1: Prompt Engineering
For G1, we use a straightforward approach to gen-
erate the prompts. We start by generating a list of
instructions. As shown in Figure 7, we arrive at five
instructions by condensing the relevant sections
of the annotation guidelines. We adopt a semi-
automated way of generating the instructions, in
which we first pass the relevant sections to Chat-
GPT and then hand-correct its output.

6.1.1. Structured Prediction: Label
Definitions

We then prompt GPT to produce a JSON output
as the response. We offer detailed definitions for
the keys in the JSON string, as illustrated in Fig-
ure 6. Additionally, we incorporate the coreference
key and prompt GPT to generate Wikipedia links
in the format “/wiki/Title_Name". Labels for Chain
of Thought reasoning (Wei et al., 2022) are also

Label Definitions

Here are the definitions of the keys in the JSON output:
Roleset ID: The PropBank Roleset ID corresponding to
the event trigger
ARG-0: The text in the Document corresponding to the
typical agent
ARG-0 Coreference: The reference to the ARG-0 in
Wikipedia in the format /wiki/Wikipedia_ID
...
ARG-1 Roleset ID: If the Event is Nested, provide the
Roleset ID for the head event in ARG-1 clause
ARG-Location: The reference to the event location in
Wikipedia
ARG-Time: The event time in the format of Month-Day-
Year in your knowledge of the world or the document
Event Description: In a single sentence, summarize the
event capturing the Roleset_ID and the names and wiki
links of the Participants, Location and Time

Figure 6: Label definitions for the event’s Roleset
ID and the Arguments that include the Wikipedia
links. Event Description is a single sentence en-
capsulating the key components of the event.

Annotation Instructions

You are a concise annotator that follows these instructions:
1. Identify the target event trigger lemma and its correct

roleset sense in the given text.
2. Annotate the document-level ARG-0 and ARG-1 roles

using the PropBank website for the roleset definitions.
3. If the ARG-1 role is an event, identify the head predicate

and provide its roleset ID.
4. Perform within-document and cross-document ana-

phora resolution of the ARG-0 and ARG-1 using
Wikipedia.

5. Use external resources, such as Wikipedia, to annotate
ARG-Loc and ARG-Time.

Figure 7: The condensed annotation instructions
serve as a guide for GPT-4 in its generation of X-
AMR event extraction.

included, addressing questions like “Is it a Nested
Event?", “What is the event trigger?", “Who are
the participants?", and “When and where did the
event take place?". The final key in the list is “Event
Description" that is a way to prompt GPT to pro-
duce a concise sentence encapsulating the event
arguments including Time and Location.

Finally, we add the entire document of the event
and the sentence with the marked trigger (phrase
in the sentence sorrounded by <m> and </m>) as
context, and then prompt GPT to generate the cor-
responding JSON response.

6.2. G2: Prompt Engineering

A challenge observed in G1 is its inability to de-
termine specific pieces of information, particularly,
‘Location’ and ‘Time’ when they are absent within
the source document. To address this shortfall, we
introduce a complementary method, G2.
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Event Descriptions: In G2, instead of relying
solely on the document’s raw content, we incor-
porate additional context derived from the event
descriptions of what we term as complete events.
These complete events are identified across all
documents related to a specific topic at the predic-
tion stage. A complete event is characterized by
having all its requisite arguments, including Time
and Location, predicted by G1.
De-duplication: To enhance the quality and rele-
vancy of this list, any coreferent events (duplicates)
are eliminated.
Event List in Context: With the refined list, we
pivot from using the entire document as context
(as practiced in G1) to utilizing this labeled list of
Event Descriptions. Furthermore, the description
of the current target event is also included.
Best Matching Event Description: We introduce
a label called “Best Matching Event Description"
at the beginning of prediction. This label pinpoints
the most comprehensive and relevant description
in correlation to the target mention. The intention
behind this is to direct GPT’s attention to a singular
event description, enabling it to supplement the
arguments not identified by G1.

In essence, G2 furnishes a richer context, com-
bining aggregated information from various docu-
ments, to rectify the limitations observed in G1.

7. ECR Results of G1 and G2

We compare the methods G1 and G2 (The cost for
running G1 was $4, and G2 was $6.) separately
with A1 (the annotations with better quality among
the two annotators) on devsmall. As shown in Table
3, the roleset identification by GPT-4 is impressive,
thereby we only see a 3 point difference between
PBH and PBG. In devsmall, we observe the results are
bounded by recall, therefore we use the VerbNet
class approaches.

When using EID methods, A1 achieves the best
CoNLL F1 of 83.6. When it comes to GPT-4, both
G1 and G2, fell terribly short of A1 and do not even
surpass the Roleset ID baseline (PBG), with G1’s
best performance is short by 25 points and G2 by
15. The shortcoming of G2 can mainly be attributed
to the failure of capturing nested events (only 5 of
the 26 nested event arguments were identified).
Interestingly, these methods consistently improve
performance over the VerbNet baseline (PBGVN). Be-
tween G1 and G2, we see a large performance in-
crease (G2 over G1 by 10 points), emphasizing the
benefits of using corpus-level Event Descriptions
in the prompts.

The results reveal the limitations of GPT-4 on
this task. However, efficient usage of corpus-level
information in generating X-AMR graphs lays out
an exciting path forward for future work.

Method Ravg Pavg CoNLL

LEM 57.2 84.8 65.1
PBH 72.2 85.7 75.3
PBG 70.6 80.6 72.4
PBHVN 90.4 51.8 55.9
PBGVN 87.6 46.7 49.3

A 1

EIDN 68.8 100 77.7
EIDVN

N 78.4 97.2 83.6
EIDVN

N ∨ EIDVN
lt 80.8 93.3 83.4

G
1

EIDVN
N 41.8 88.9 53.6

EIDVN
lt 37.2 83.0 49.4

EIDVN
N ∨ EIDVN

lt 51.2 83.8 58.0

G
2

EIDVN
N 51.8 90.6 62.2

EIDVN
lt 57.0 87.4 65.3

EIDVN
N ∨ EIDVN

lt 63.4 86.1 68.4

Table 3: ECR results comparing A1 with the two
prompting methods G1 and G2, on devsmall. We
report the baseline results using only the lexical
information, and, the ECR performance after lever-
aging X-AMR. Boldened are the interesting results.

8. Analysis

8.1. Algorithm Complexity
We conduct an artificial experiment to empirically
demonstrate the ECR algorithm’s linear complexity
when coupled with X-AMR. In this experiment, we
expand the annotated event mentions of the de-
velopment set (by duplicating) to create a sizable
collection comprising 200,000 mentions. Next, we
systematically execute the algorithm across varying
ranges, from 60,000 to 200,000 mentions. For each
iteration, we measure the time the ECR algorithm
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Figure 8: X-AMR ECR Algorithm running time on
synthetic mentions. The dotted line is used as a
reference to check the linearity of the algorithm (red
line).The complexity is roughly linear.



10524

Error Category % Error Snippet and Explanation

Annotation Error 1.6
m1: The man is thought to have fallen much earlier in the day.
m2: [...] Duncan Rait died after slipping and falling [...]
Explanation: annotator misidentifies"the man" as "Duncan Rait".

ECB+ Annotation Error 5.8
m1: [...] the Philly Sixers canned Jim O’Brien [...]
m2: Jim O’Brien was terminated from [...] Ohio State University [...]
Explanation: In ECB+ these events are falsely labelled as coreferent.

Incorrect VerbNet Class 9.1
[...] who was gunned down at their office Christmas party.
Explanation: new Propbank rolesets aren’t yet mapped to VerbNet.

Table 4: Qualitative Error Analysis of the ECR Algorithm for A1 on devsmall. In Snippet, the event triggers
are in bold font, and the key texts that help recognize the errors are underlined.

takes to run and depict the plot in Figure 8. The
figure shows that the algorithm’s running time is
roughly linear. Efficiency-wise, the algorithm would
take under 30 seconds even when the number of
mentions surpasses 100,000, thus presenting a
tractable solution for ECR at scale.

8.2. Error Analysis
We analyze the errors made by our system by ex-
amining the clustering decisions based on the A1,
G1, and G2 annotations of devsmall (121 mentions).

In the human-annotated A1, we observe that
∼1.6% (2/121) of the misclassifications were due
to annotator misinterpretations of the passages.
In another ∼5.8% (7/121) of cases, an incorrect
cluster is assigned due to errors in the original
ECB+ dataset’s labels, which are made evident
by mismatched X-AMR arguments. For exam-
ple, the ECB+ labels erroneously consider football
coach Jim O’Brien’s separate terminations from
Ohio State University and the Philadelphia 76ers
as the same event. Finally, ∼9.1% (11/121) are mis-
clustered due to PropBank labels which do not yet
exist in VerbNet and so do not belong to a class; e.g.
the newer “opening fire" roleset wasn’t identified as
being of the same class as “shoot". Examples of
each type of error are provided in Table 4.

In addition to the problems faced by human an-
notators, the machine-created annotations G1 and
G2 suffered heavily from their inability to access
external resources to resolve relative times, loca-
tions, and references to entities, in addition to in-
consistent annotations (which the human annota-
tors did not suffer from due to the saved argument
drop-down), e.g [’South_Richmond_Hill,_Queens’,
’Queens’, ’Richmond_Hill,_Queens’] all refer to the
same place5.

5For a more comprehensive list of examples, please
refer to the provided Excel file in the repository

9. Limitations & Future Work

One limitation of our approach is that we require
the PropBank resource for a particular language.
In addition, the annotation tool is for-pay software.
However, PropBank now has annotations for Chi-
nese, Arabic, Urdu, Hindi, French, German, Span-
ish, and Catalan, and the annotation tool also works
on a variety of languages. Our future work involves
annotating X-AMR on a Spanish corpus.

The annotation tool released by Ahmed et al.
(2024) omits a lot of AMR information (e.g. modal-
ity and negation), sticking strictly to the concept
of minimal information for ECR. We also do not
empirically demonstrate the efficiency of the model-
in-the-loop annotations in this work. We leave the
tool enhancements, including the incorporation of
GPT-in-the-loop and a thorough analysis of the an-
notation efficiency (like Cai et al. (2023) and Ahmed
et al. (2023b)) for future work.

The results for both human and GPT-annotated
approaches fall short of state-of-the-art techniques
for ECR that involve heuristics (for filtering) and
fine-tuning BERT in a pairwise manner (Held et al.,
2021; Ahmed et al., 2023a). We hypothesize that
the X-AMR annotations might be beneficial to the
heuristic-based filtering step in these methods. The
Event Description generated by G1 could also be
employed while fine-tuning BERT which we believe
is an interesting direction for neuro-symbolic meth-
ods for ECR.

Two main issues of using GPT-4 in our work are
Data contamination (Magar and Schwartz, 2022;
Wu et al., 2023) and reproducibility. Since both
PropBank and ECB+ are publicly available re-
sources, it is most likely that the test sets might be
part of its pre-training data. We argue that since our
task is vastly different from the pretraining task, the
effect of contamination is minute as demonstrated
by the results. Reproducibility, however, is a much
greater limitation. By providing the GPT-4 output
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on the train set (will release this upon acceptance),
we set a mechanism to distill the knowledge into
smaller in-house reproducible models like LlAma
(Touvron et al., 2023) (Or even much smaller tradi-
tional auto-regressive models like FLAN-T5 (Chung
et al., 2022)) for future work.

Finally, we limit the scope of our work to gold
mentions instead of predicted mentions (Cattan
et al., 2021). As a result, we could not compare
X-AMR directly with the output of standard AMR
parsers (Flanigan et al., 2014). Future work can
approach this in a two-step way, with the first step
being trigger identification, and then we can employ
X-AMR on the predicted mentions.

10. Related Work
Document-level event extraction and event extrac-
tion with prompts (Li et al., 2021; Yang et al., 2022a;
Xu et al., 2022) has been a major source of inspi-
ration for our work. We extend this methodology
for a more comprehensive cross-document level
extraction by taking into account the named and un-
named arguments from previously seen documents
into the annotation framework.

The Generative Pre-trained Transformer (GPT;
Radford et al. (2018, 2019)) is an auto-regressive
Transformer (Vaswani et al., 2017) language model
developed by OpenAI, demonstrating exceptional
performance across various natural language pro-
cessing tasks. It uses a unidirectional, self-
attention mechanism for effective context represen-
tation and is pre-trained on extensive unsupervised
text corpora. The model follows a two-stage pro-
cess of pre-training and fine-tuning, allowing it to
adapt to specific tasks with minimal labeled data.
GPT has undergone several iterations, with GPT-4
(OpenAI, 2023) being the most recent.

In recent years, research has increasingly fo-
cused on evaluating GPT’s performance in multi-
task and zero/few-shot learning scenarios (Brown
et al., 2020; Kojima et al., 2023). For instance, the
study conducted by Radford et al. (2019) assesses
the effectiveness of various LLMs in a zero-shot
learning setting. Their findings imply that these
models have the potential to equal, if not exceed,
the performance of existing baselines on a range
of NLP benchmarks.

Our objective is to underscore the importance
of X-AMR with a focus on event coreference res-
olution, which integrates PropBank (Palmer et al.,
2005; Pradhan et al., 2022) SRL as an intermedi-
ate phase. This approach is motivated by GPT-4’s
capability to produce free-text SRL for individual
events (Zhang et al., 2022) instead of directly gen-
erating interconnected event graphs, as necessi-
tated by AMR. By leveraging GPT-4’s strengths, our
suggested method can offer a more thorough and
effective representation of events in a given text

while preserving their structure and relationships,
and therefore facilitate ECR.

Besides the hybrid approach and prompt engi-
neering, we also stress the need for a linear al-
gorithm over a quadratic ECR method, utilizing
the generated graphs. Quadratic ECR with GPT
(i.e., binary coreference decision between men-
tion pairs) has produced negative outcomes, as
evidenced by Yang et al. (2022b). Furthermore,
this method would be expensive, potentially cost-
ing hundreds of dollars to execute using GPT-4.
By adopting a linear algorithm, we aim to address
these limitations, offering a more cost-effective and
efficient solution for ECR. We propose a linear
graph-based method for ECR using the generated
key semantic information for the event mentions.

Over time, efforts have been made to enrich
event datasets, such as the Richer Event Descrip-
tions (RED; O’Gorman et al. (2016)) corpus and
the Event Coref Bank plus corpus (ECB+; Cybul-
ska and Vossen (2014)). The RED corpus en-
hanced ERE (Song et al., 2015) annotations by
marking coreference for entities, events, and times,
as well as temporal, causal, and subevent relation-
ships in partial coreference through a multi-stage
pipeline. In ECB+, Cybulska and Vossen (2014) ex-
panded event descriptions by adding event classes
with specific entity types and times, as well as
inter-/intra-document coreference, to better repre-
sent the events within the ECB corpus (Bejan and
Harabagiu, 2010). In a similar light, we enrich the
ECB+ corpus with the X-AMR annotations with the
goal of making ECR efficient and as a way to as-
sess the performance of GPT-4.

11. Conclusion

In this paper, we introduced X-AMR, a corpus-level
version of AMR. We provided a new model-in-the-
loop tool with which we enriched the ECB+ corpus
with X-AMR annotations. We then introduced a
novel linear graph-based ECR algorithm that lever-
ages the nested event structure and the cross-
document entity coreference of X-AMR. The an-
notations coupled with the algorithm serve as a
way for linearly generating cross-document event
coreference annotations, cutting through a very
challenging task. Finally, we developed two prompt
engineering approaches for GPT-4 to automatically
produce X-AMR graphs. We then compared the
results against human annotations and showed lim-
itations of GPT-4 on this task. We also provide
comprehensive and concise GPT-generated event
descriptors in this process that we believe have a lot
of utility in other event tasks. Collectively, our contri-
butions pave a path toward efficient ECR methods
and their corresponding annotations.
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