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Abstract

Ensuring robustness is especially important when AI is deployed in responsible or safety-critical environments.
ChatGPT can perform brilliantly in both adversarial and out-of-distribution (OOD) robustness. Still, other popular
large language models (LLMs), like LLaMA-2, ERNIE, and ChatGLM, do not perform satisfactorily in this regard.
Therefore, it is valuable to study what efforts play essential roles in ChatGPT, and how to transfer these efforts
to other LLMs. This paper experimentally finds that linguistic rule induction is the foundation for identifying the
cause-effect relationships in LLMs. Accurately processing the cause-effect relationships in LLMs can improve
their adversarial and OOD robustness. Furthermore, we explore a low-cost way of aligning LLMs with linguistic
rules. Specifically, we constructed a linguistic rule instruction dataset to fine-tune LLMs. To further energize LLMs
for reasoning step-by-step with the linguistic rules, we propose the task-relevant LingR-based chain-of-thoughts.
Experiments showed that LingR-induced LLaMA-13B achieves comparable or better results with GPT-3.5 and GPT-4
on various adversarial and OOD robustness evaluations.
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1. Introduction

Large language models (LLMs) have performed re-
markably well in various natural language process-
ing (NLP) tasks (Li et al., 2022; Wang et al., 2023).
These foundation models show powerful in-context
learning capabilities, and their prompting learning
pattern has become a widely adopted paradigm for
various NLP tasks (Zhou et al.). Among all LLMs,
the generative pre-trained Transformers (GPT) fam-
ily language models, such as GPT-3.5 and GPT-
4, have made significant strides and even shown
great potential in replacing traditional search en-
gines (Mukherjee et al., 2023).

However, there still needs to be more research
on whether LLMs are plagued by the inherent vul-
nerability of deep neural networks to data distur-
bances (Wang et al., 2021a). These disturbances
include adversarial noises and out-of-distribution
(OOD) shifts (Milbich et al., 2021). The robustness
of these disturbances is an important metric for
trustworthy and secure AI research (Yang et al.,
2023). Wang et al. (2023) studied the state-of-the-
art adversarial and OOD robustness in ChatGPT.
However, due to the secrecy of ChatGPT training
(Liu et al., 2023), researchers still cannot determine
what efforts enhance the robustness of ChatGPT
(Liu et al., 2023). Is it the larger pre-training cor-
pus, the larger number of model parameters, or a
corpus designed explicitly for the language model
robustness?

Up to now, other newest LLMs, such as LLaMA 2
(Touvron et al., 2023b), ChatGLM (Du et al., 2022),
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Figure 1: LLMs respond to an NLI question “The
president advised the doctor. Does this imply that
"The doctor advised the president."? Yes, no, or
maybe? Give your thoughts on this decision from
a linguistic perspective.”

ERNIE (Wang et al., 2021b) et. al., do not catch
up with ChatGPT regarding adversarial and OOD
robustness (Wang et al., 2023). An effective way
to improve adversarial and OOD robustness in ma-
chine learning models is by identifying cause-effect
relationships (Zhang et al., 2021). For NLP, the
cause-effect pairs can be linked through linguistic
patterns (Nazaruka, 2020; Yang et al., 2022), such
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as the semantic dependency parsing tree. Our
preliminary experiments also found that LLaMA-
2, ChatGLM, and ERNIE have a significant gap
in their ability to answer linguistic questions com-
pared to GPT-3.5 and GPT-4. Herein, it inspires
us to explore whether linguistic rule induction plays
an essential role in the robustness of language
models (Ellis et al., 2022; Goldstein et al., 2022).
Language rule induction can be used to identify the
patterns of word usage, sentence structure, verb
conjugation, or any other grammatical component
of a language (Ellis et al., 2022). Whether LLMs
can reason with linguistic rules step-by-step is a
sign of interpretable AI services in NLP (Belinkov
et al., 2020).

Our test in Figure 1 used a natural language in-
ference (NLI) example from HANS (McCoy et al.,
2020) to evaluate whether popular LLMs have the
linguistic dependence parsing ability to answer the
NLI question accurately. This NLI example has
high word overlaps in its premise and hypothesis,
and an LLM will respond to incorrect answers if
it cannot correctly identify the difference between
subject and object in two sentences. In this ex-
ample, even though GPT-3.5, GPT-4, LLaMA-2,
and ERNIE (Wang et al., 2021b) give the correct
answers, only GPT-3.5 and GPT-4 reason the ques-
tion with linguistic rules, e.g., the semantic depen-
dencies. As GPT-3.5 and GPT-4 can analyze lin-
guistic rules, they outperform other LLMs in adver-
sarial and OOD robustness.

To explore the significance of linguistic rule in-
duction for enhancing the adversarial and OOD
robustness in LLMs, we construct the Linguistic
Rule (LingR) instruction dataset to fine-tune LLMs.
Specifically, the LingR dataset is constructed on
pure text from the Universal Dependencies (UD)
English EWT (Liu et al., 2018) dataset, in which
each sentence can be used to generate instruc-
tions corresponding to different linguistic questions.
By fine-tuning with LingR instructions, the LLMs ac-
quire the basic linguistic rules. Further, to leverage
linguistic knowledge to enhance the robustness of
LLMs in downstream NLP tasks, we also construct
the LingR chain-of-thoughts (LingR-CoTs) dataset
for LLMs fine-tuning and in-context learning.

Experiments thoroughly evaluated adversarial ro-
bustness across the AdvGLUE Wang et al. (2021)
and ANLI Nie et al. (2020) benchmarks, and OOD
robustness across the Flipkart reviews Adane
et al. (2023), DDXPlus medical diagnosis datasets
Fansi Tchango et al. (2022), Heuristic Analysis
(HANS) for NLI systems McCoy et al. (2019), and
Paraphrase Adversaries from Word Scrambling
(PAWS) Zhang et al. (2019) benchmarks. Our re-
sults demonstrate that LingR fine-tuned LLaMA-
13B (LingR-LLaMA) possesses basic linguistic
rules. LingR-CoTs-based few-shot and in-context

learning can achieve comparable robustness with
GPT-3.5 and GPT-4 in downstream NLP tasks.
These results confirm that linguistic rule induction
is crucial in enhancing LLMs’ robustness, and our
study proposed a low-cost way to improve it.

Our contributions are as follows:

• We empirically found that whether LLMs can
analyze input text from the linguistic perspec-
tive plays an important role in adversarial and
OOD robustness.

• To align the linguistic rule induction among
LLMs, we propose a linguistic instruction con-
structing method based on knowledge distilla-
tion from ChatGPT.

• Linguistic instructions enable LLMs to acquire
the ability to analyze text linguistically. On
this basis, this study also proposes a linguistic
chain-of-thoughts (LingR-CoTs) construction
method. It further improves the adversarial and
OOD robustness on downstream NLP tasks.

2. Related Works

2.1. Large Language Models
Large language models (LLMs), like the popular
GPT-3.5, GPT-4, LLaMA, and ERINE, unify NLP
tasks into the instruction learning paradigm (Chang
et al., 2023). As LLMs are pre-trained on a large-
scale corpus, they show significant performance
on a wide of downstream NLP tasks such as senti-
ment analysis, question answering, logical reason-
ing, and automatic diagnosis (Wang et al., 2023).
Most popular LLMs use an auto-regressive lan-
guage model in their decoder-only architectures
(Min et al., 2023), such as GPT-3.5, GPT-4, LLaMA-
2, and ERNIE. Given a context sequence X, the
auto-regressive LM objective is to maximize the
log-likelihood of the next word while given previous
words.

L(X;θ) =

T∏
t=1

p(xt|xt−1, · · ·x1) (1)

where T is the sequence length.
LLMs use prompt engineering (Clavié et al.,

2023; White et al., 2023; Zhou et al.) to interact with
users, where users provide specific prompt texts to
guide LLMs in generating desired responses.

2.2. Chain-of-Thoughts Instruction
Chain-of-thoughts (CoTs) instruction is a two-tiered
querying strategy to elicit a sequence of interme-
diate reasoning steps for each query from LLMs
(Chen et al., 2023; Wei et al., 2022). The CoTs
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Figure 2: The overall framework includes LingR and LingR-CoTs construction and two-phase fine-tuning.

instructions have significantly bolstered the per-
formance of prompting in tackling intricate tasks
(Cai et al., 2023). By simply appending the instruc-
tion "Let’s think step-by-step, ......" to each query,
the CoTs instruction significantly improves GPT-3’s
math reasoning accuracy from 17.7% to 78.7% (Wei
et al.; Chen et al., 2023).

2.3. Robustness of Language Models
Robustness refers to the capacity of a system to
endure disruptions or external factors that could
lead to its malfunction (Wang et al., 2023). These
disruptions include adversarial disturbances and
OOD shifts.

The goal of adversarial robustness in language
models is summarized as follows,

min
f∈H

E(x,y)∈Dmax
|δ|⩽ϵ

ℓ [f (x+ δ) , y] (2)

where ϵ represents the imperceptible changes σ
of an input text sequence x, and y is the learning
objectives.

The objective of OOD robustness is the average
risk on all possible OOD shifts,

min
f∈H

Ee∼QE(x,y)∈Deℓ [f (x) , y] (3)

where e represents the OOD shift from the distribu-
tion Q of training data.

3. Methods

This section constructs two instruction datasets.
The first is Linguistic Rule (LingR) instructions
for pure text in the universal dependencies En-
glish EWT (UD-English-EWT) (Silveira et al., 2014)
dataset, and the second is LingR chain-of-thoughts
(LingR-CoTs) instructions for all downstream NLP

tasks evaluated in our experiment. As shown in
Figure 2, our proposed linguistic rule induction
for LLMs includes three phases: i. task-irrelevant
LingR instruction learning phrase, ii. task-specific
LingR-CoTs for few-shot fine-tuning phrases, and
iii. the in-context learning (ICL) to inference robust-
ness evaluations.

3.1. Linguistic Rule Instruction

This study designs the LingR instruction dataset
with pure text upon the UD-English-EWT dataset.
UD-English-EWT comprises 16,621 sentences
from weblogs, newsgroups, emails, reviews, and
Yahoo answers. The dependency trees in UD-
English-EWT are automatically converted into Stan-
ford Dependencies (Liu et al., 2018) and then hand-
corrected to Universal Dependencies. Each sen-
tence in UD-English-EWT can be used to construct
instructions by distilling the ChatGPT for the 72
linguistic questions (51 for the syntactic structure
parsing (SSP) tree and 20 for the semantic depen-
dency parsing (SDP) tree).

Distilling SSP knowledge. SSP focuses on the
formal structure of sentences, which describes how
words and phrases are combined into more com-
plex structures. An SSP tree usually represents
the syntactic structure, where nodes are words or
phrases, and edges represent syntactic relation-
ships such as subjects, objects, modifiers, etc. 51
questions upon the SSP tree are listed from easy
to difficult in Table 1. These questions are catego-
rized into 4 groups: (i) “What/Which is/are the ... ?”
(ii) “How many ... ?” (iii) “Is/Are there ... ?” (iv) “If
there are ... ?”

Distilling SDP knowledge. Identifying cause-
effect relationships can help language models un-
derstand the connection between events, actions,
or situations, and thus accurately interpret, predict,
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What/Which
is/are the
. . . ?

1. root verb? 2. function of this noun? 3. subject?
4. object? 5. prepositional phrase? 6. direct ob-
ject of this verb? 7. indirect object of this verb? 8.
complement of this verb? 9. participial phrase? 10.
gerund phrase? 11. infinitive phrase? 12. adverbial
phrase? 13. prepositional phrase? 14. noun clause?
15. root of the dependency tree? 16. direct object
of this sentence? 17. predicate of this sentence? 18.
indirect object of this sentence? 19. subject comple-
ment of this sentence? 20. object complement of
this sentence? 21. subordinate clause? 22. modi-
fier of the subject? 23. modifier of the direct object?
24. modifier of the indirect object? 25. modifier of
the subject complement? 26. modifier of the object
complement? 27. modifier of the adverbial phrase?
28. modifier of the prepositional phrase? 29. modifier
of the subordinate clause? 30. head of the subject
phrase? 31. head of the object phrase? 32. head of
the predicate? 33. main subject of the sentence? 34.
verb is being used in the sentence? 35. direct object
in the sentence? 36. indirect object in the sentence?
37. adjective modifying in the sentence? 38. nature
of the pronoun? 39. being modified by prepositions?
40. are affected by the passive voice, if any? 41.
being negated by "not" or its equivalent? 42. being
compared by "like" or its equivalent? 43. being em-
phasized by italics or boldface?

How many
. . . ?

44. conjunctions are used in the sentence, and what is
their function? 45. noun phrases are in the sentence,
and what are their relationships to each other? 46.
nouns are in the sentence? 47. parts of the sentence
interact to convey meaning?

Is/Are
there . . . ?

48. a subordinate clause? If so, what is its relationship
to the principal clause? 49. a participial phrase? If
so, what is its relationship to the rest of the sentence?
50. any ellipses or omissions, and if so, what is their
effect on the syntax?

If there are
. . . ?

51. multiple clauses in the sentence, what is the rela-
tionship between them?

Table 1: Distilling SSP knowledge with 51 questions.

What/Which
is/are the
. . . ?

1. main predicate? 2. subjects of main predicate?
3. relationship between the arguments and main
predicate? 4. argument structure of main predi-
cate? 5. dependency relationship between subject
and main predicate? 6. arguments are modified
as a core argument? 7. discourse function of the
different arguments? 8. sentence participate in the
same event description? 9. semantic roles of the
arguments? 10. scope of negations? 11. types of
modality expressions? 12. aspectual profile of the
verb?

Are there
any . . . ?

13. clauses in the sentence? If so, what is their
relationship to the main predicate? 14. negations?
15. comparative or superlative expressions?

How
do/does/is
/are the
. . . ?

16. sentence express causation? 17. sentence ex-
press temporality? 18. arguments relate to one an-
other? 19. information in the sentence presented?
20. Is it new information or old information? 21. ar-
gument structures of the verb vary?

Table 2: Distillating SDP knowledge with 21 questions.

and generate text. Cause-effect relationships can
be represented in text in a variety of ways: (i) con-
nective words and phrases, such as “because”,
“due to”, “as a result of”, “therefore”, “hence”, “con-
sequently”, “so”, “thus” and so on; (ii) verbs and
verb phrases like in the sentence “The loud noise
alarmed the birds.”; (iii) nouns and noun phrases
like in the sentence “The storm was the cause of
the power outage.”; (iv) passive voice, such as the
"by" phrase in “The town was destroyed by the hurri-
cane.” (v) context or common sense; (vi) modifiers
and adverbial phrases.

Understanding and identifying cause-and-effect
relationships in text is critical for general NLP tasks,
such as (i) answering the “Why ... ?” in question
answering, (ii) understanding the cause-effect rela-
tionships in premise and hypothesis in natural lan-
guage inference, (iii) understanding the reason for
emotions and viewpoints in sentiment analysis, (iv)
the cause and effect of an event in event extraction.
For LLMs, accurately identifying and processing
these relationships is critical to achieving higher
adversarial robustness and OOD generalization.

SDP is a powerful tool to capture cause-effect
relationships in the text as it can provide transpar-
ent semantic relationships and complex structure
analysis. Table 2 shows 21 questions to distill SDP
knowledge.

Figure 3: LLMs responses for request: “For the following
sentence, are there any clauses in the sentence? If so,
what is their relationship to the main predicate? Are there
any negations? Are there any comparative or superla-
tive expressions? How does sentence express causa-
tion? Despite taking the medicine, John’s condition

worsened because of an unrelated infection." GPT
and ERNIE correctly recognize the cause-effect rela-
tionship in it, but LLaMA-2 reasons the spurious causal
dependency.

Leveraging SDP knowledge in language models
can improve robustness against spurious correla-
tions in the text. (i) SDP reveals the true relation-
ships between words in a sentence, beyond just
their position in the sentence or their syntactic rela-
tions. (ii) SDP trees can aid the language models in
recognizing the core information of a sentence (like
subjects and predicates) and peripheral information
(like modifiers or additional details). (iii) SDP offers
a more precise and structured context, mitigating
dependence on spurious correlations or noise in the
data. These advantages ensure that the language
models don’t over-rely on peripheral information for
decision-making. Without proper SDP knowledge,
as shown in Figure 3, LLaMA-2 might mistakenly
associate “taking the medicine” with “John’s condi-
tion worsened” and respond that the medicine led
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to the deterioration in John’s health. However, the
sentence explicitly states that the deterioration was
due to an "unrelated infection." By correctly parsing
semantic dependencies, the language model can
recognize that ’Descite’ represents a relationship
despite this, while ’reason’ represents the true rea-
son. In this way, the model will not be misled by
the spurious correlation between the drug and the
condition but will understand that the true cause is
an infection unrelated to the drug.

A

Whether the premise and hypothesis have the same
1. root verbs? 2. subjects? 3. objects? 4. preposi-
tional phrases? 5. roots of their the dependency trees.
6. Which words are compared by ’like’ or equivalent in
premise and hypothesis? 7. Are there any ellipses or
omissions in both the premise and hypothesis, and if so,
what is their effect on the syntax? 8. Which words are
emphasized by italics or boldface in the premise and
hypothesis?

I

9. Are there subordinate clauses in both premise and
hypothesis? If so, are its relationships to the principal
clauses the same? 10. Which parts of both the premise
and hypothesis are affected by the passive voice? If
any, are these parts in both sentences the same? 11.
Which words are negated by ’not’ or its equivalent in both
premise and hypothesis? If any, are these words in both
sentences the same? 12. Are there any comparative or
superlative expressions in the premise and hypothesis?
And whether these expressions in the premise and hy-
pothesis are the same.

C

13. Whether both premise and hypothesis have indirect
objects of the root verbs? If so, are two indirect objects
the same? 14. Whether the predicates of the premise
and hypothesis are the same. 15. What is their relation-
ship (e.g., co-ordinate, subordinate) if multiple clauses
exist in the premise and hypothesis? 16. How do the var-
ious parts of both premise and hypothesis interact to con-
vey their overall meaning? 17. How do the premise and
hypothesis express causation respectively? 18. Whether
the causations are the same in premise and hypothesis.
19. What are the relationships between the arguments
and the main predicate in premise and hypothesis? And
whether these relationships in premise and hypothesis
are the same. 20. Are there any negations in the premise
and hypothesis? If so, are these negations in the premise
and hypothesis the same, and are the scopes of nega-
tions in the premise and hypothesis the same? 21. What
types of modality expressions are present in the premise
and hypothesis? And whether these types of premises
and hypotheses are the same. 22. What are the aspec-
tual profiles of the verbs in the premise and hypothesis
respectively? And whether these aspectual profiles are
the same in premise and hypothesis.

Table 3: Knowledge distillation question on NLI tasks in
association (A), intervention (I) and counterfactual (C)
on cause-effect semantic relationships.

Our preliminary experiments verified that GPT-4
masters the ability of SSP and SDP analysis on text.
We use SSP and SDP questions in Tables 1 and 2
to distill the linguistic rule (LingR) instructions from
GPT-4 by Algorithm 1. Because not all sentences
contain the grammatical structures in the above 72
questions, distilled instructions with no answers are
filtered out automatically and manually.

The final LingR dataset contains 301,286 instruc-
tions. An instruction example for an SSP question
upon an English sentence is listed in Table 4.

Algorithm 1 Instruction construction
Input: Dataset D={xi, yi}Ni=1, questions
Q={qm}Mm=1

1: Initialize LingR = [] # Instruction Set
2: for x, y in D do
3: item = {} # instruct set
4: for q in Q do
5: response← request (ChatGPT;x, y, q)
6: item [‘cot‘]± response [‘answer‘]
7: if response [‘decision‘] == True then
8: LingR± [item]
9: end if

10: end for
11: end for
12: # the request() function
13: request (ChatGPT;x, y, q) = {
14: model=gpt-4;
15: messages=give answer for q on x;
16: can y be made from answer of q }

### Instruction:
For the given sentence: “You wonder if he was manipu-
lating the market with his bombing targets.”.
What is the prepositional phrase in this sentence?",
### Input:
### Response:
“with his bombing targets” is the prepositional phrase in
this sentence.

Table 4: An example of instruction on SSP questions.

3.2. LingR-CoTs Instruction
After the LingR instruction fine-tuning, how to im-
prove the linguistic reasoning step-by-step in LLMs
on downstream NLP tasks is another key in our
study. To this end, we designed a task-specific lin-
guistic rule-based chain-of-thoughts (LingR-CoTs)
for few-shot fine-tuning and ICL. As the tasks used
for adversarial and OOD robustness evaluations
are all included in the GLUE benchmark, we used
the proposed LingR-CoTs construction summarized
in the Algorithm 1 to generate few-shot examples.
Take the NLI task as an example, there are 22 ques-
tions to distill linguistically step-by-step thoughts
from ChatGPT as shown in Table 3 with three lev-
els of causal reasoning.

The association (A) level questions are related
to whether there is a certain correlation between
premise and hypothesis sentences in NLI. At this
level, the distilled chain-of-thoughts mainly focuses
on the surface structure and content of two sen-
tences. The intervention (I) level questions con-
sider the ability to change the meaning of a sen-
tence through some intervention, such as adding or
removing certain components. The counterfactual
(C) level questions focus on the deep meanings
of sentences, considering the authenticity of sen-
tences in other contexts or conditions.

For QQP, MNLI, QNLI, RET, and SST-2 tasks in



10570

Model & #Param
Adversarial robustness (ASR) ↓ OOD robustness (F1) ↑

SST-2 QQP MNLI QNLI RTE ANLI Flipkart DDXPlus
Random baseline 50.0 50.0 66.7 50.0 50.0 66.7 20.0 4.0
BERT-B (110M) 67.0 62.1 71.3 60.2 59.5 N/A N/A N/A
RoBERTa-B (125M) 41.5 38.6 48.2 47.5 54.6 N/A N/A N/A
DeBERTa-L (435M) 66.9 39.7 64.5 46.6 60.5 69.3 60.6 4.5
BART-L (407M) 56.1 62.8 58.7 52.0 56.8 57.7 57.8 5.3
GPT-J (6B) 48.7 59.0 73.6 50.0 56.8 66.5 28.0 2.4
Flan-T5-L (11B) 40.5 59.0 48.8 50.0 56.8 68.6 58.3 8.4
OPT (13B) 47.6 53.9 60.3 52.7 58.0 58.3 44.5 0.3
OPT-ICL (13B) 50.0 41.0 67.8 50.0 50.4 65.4 75.4 1.2
LLaMA (13B) 67.3 71.0 56.8 61.7 45.3 68.0 67.8 6.3
LLaMA-ICL (13B) 63.9 52.3 52.6 50.0 36.7 64.6 76.1 11.2
LLaMA-2 (13B) 55.1 47.1 54.8 55.3 61.4 56.5 77.1 0.2
LLaMA-2-ICL (13B) 52.7 44.3 48.8 41.5 38.9 60.0 78.0 6.8
GPT-NEOX (20B) 52.7 56.4 59.5 54.0 48.1 70.0 39.4 12.3
BLOOM (176B) 48.7 59.0 73.6 50.0 56.8 66.5 28.0 0.1
text-davinci-002 (175B) 46.0 28.2 54.6 45.3 35.8 68.8 57.5 18.9
text-davinci-003 (175B) 44.6 55.1 44.6 38.5 34.6 62.9 57.3 19.6
GPT-3.5-turbo (175B) 39.9 18.0 32.2 34.5 24.7 55.3 60.6 20.2
LingR-OPT (13B) 40.5 26.9 50.4 50.0 61.1 49.0 95.5 1.2
LingR-LLaMA (13B) 46.6 62.8 52.0 48.7 22.2 53.6 76.8 20.6
LingR-LLaMA-2 (13B) 40.5 30.3 42.9 30.6 29.6 55.5 95.0 0.9

Table 5: All results about adversarial robustness on AdvGLUE, ANLI, Flipkart, and DDXPlus. The best
and top-2 results are highlighted with bold types and underlines respectively.

GLUE, the LingR-CoTs are constructed with step-
by-step answers incrementally distilled from Chat-
GPT with related questions. Table 6 demonstrates
two instruction examples to fine-tune LLMs with
step-by-step CoTs distilled from ChatGPT.

### Instruction of NLI task:
Are the following premise and hypothesis sentences entailment,
neutral or contradiction with each other?
Premise: Conceptually cream skimming has two basic dimen-
sions - product and geography.
Hypothesis: Product and geography are what make cream skim-
ming work.
Answer me with ’entailment’, ’neutral’ or ’contradiction’.,
### Let’s think step by step.
1. From a linguistic perspective, the premise and hypothesis
sentences do not have the same root verbs.
... ...
16. There are no ellipses or omissions in either premise or hy-
pothesis sentences.
17. Therefore: the answer is neutral.
### Response: neutral
### Instruction of sentiment analysis task:
The movie review below is positive or negative? Give an answer
with ’positive’ or ’negative’.
tapestry woven of romance, dancing, singing, and unforgettable
characters.
### Let’s think step by step.
1. Here’s the linguistic analysis step by step. The review uses
words like "tapestry woven," which connotes something that is
intricately and beautifully made. This choice of words suggests a
positive connotation.
... ...
6. The review does not contain words that typically indicate a
negative sentiment, such as "boring," "dull," "poor," etc.
7. Therefore: the answer is positive.
### Response: Positive

Table 6: Examples of LingR-CoTs on NLI and sen-
timent analysis tasks.

4. Experiments

4.1. Implementation details

To evaluate the effectiveness of our proposed
LingR&CoTs (LingR + LingR-CoTs), we fine-tuned
OPT-13B (Zhang et al., 2022), LLaMA-13B (Tou-
vron et al., 2023a) and LLaMA-2-13B (Touvron
et al., 2023b) with the efficient low-rank adaptation
(LoRA) (Hu et al., 2021) on two NVIDIA A100 GPUs
with 160GB memory. The LoRA hyper-params are
set as r = 8, α = 16 and dropout p = 0.05, and the
optimizer is AdamW (Loshchilov and Hutter) with a
learning rate r = 1e− 5 and a batch size of 8, and
the maximum length of prompt input is 2, 048. The
number of training epochs is set to 5.

4.1.1. Benchmark and Metric

In order to verify the effectiveness of LingR&CoTs in
improving LLMs’ adversarial robustness, we chose
AdvGLUE Wang et al. (2021) and ANLI Nie et al.
(2020) as benchmarks. The metric for the adver-
sarial robustness is adopted as the attack success
rate (ASR) (a small ASR means well adversarial ro-
bustness). For OOD robustness, we chose Flipkart
reviews Vaghani and Thummar, DDXPlus medical
diagnosis datasets Fansi Tchango et al. (2022),
Heuristic Analysis (HANS) for NLI systems McCoy
et al. (2019), and Paraphrase Adversaries from
Word Scrambling (PAWS) Zhang et al. (2019) as
benchmarks. On Flipkart and DDXPlus, the F1
score is chosen as the metric, and the accuracy is
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chosen as the metric for HANS and PAWS.
As GPT-3.5 may include the entire GLUE

datasets in its training data, we performed few-shot
fine-tuning (FFT) on LLaMA-13B for evaluation fair-
ness. In the FFT phrase, the numbers of few-shot
LingR-CoTs examples are 500 for SST-2, and 1000
for QQP, MNLI, QNLI, RTE, and ANLI respectively.

4.1.2. Baselines

We evaluated several state-of-the-art LLMs as
baselines, including i. supervised fine-tuning (FT)
LLMs, like the BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2020), BART (Lewis et al., 2020), GPT-J (Wang,
2021), Flan-T5 (Chung et al., 2022) and ii. the in-
context learning (ICL) based LLMs, like the LLaMA,
GPT-NEOX (Black et al., 2022), OPT (Zhang et al.,
2022), BLOOM (Scao et al., 2022) and ChatGPT
(text-davinci-002, text-davinci-003, gpt-3.5-turbo,
gpt-4).

4.2. Result Analysis

4.2.1. Main Results

Table 5 lists all experimental results about the adver-
sarial robustness of AdvGLUE and ANLI, and part
of the OOD robustness on Flipkart and DDXPlus.

(1) These results show that the latest GPT mod-
els (including text-davinci-002/003, GPT-3.5-turbo,
and GPT-4) and our proposed LingR-OPT, LingR-
LLaMA, LingR-LLaMA-2 show consistent improve-
ments for adversarial and OOD evaluations. (2)
The results of zero-shot learning on OPT-13B,
LLaMA-13B, and LLaMA2-13B are very close to the
random baseline regarding adversarial robustness.
(3) The ICL on three LLMs shows improvement
on most of these benchmarks. However, there is
still a significant gap compared to GPT-3.5. (4)
Our LingR-CoTs fine-tuned OPT-13B, LLaMA-13B,
and LLaMA2-13B perform well against adversar-
ial robustness, improved by ⩾ 9.5 ASR compared
with their vanilla ones. Even though LingR-LLaMA
did not achieve the top-1 adversarial robustness
on SST-2 and MNLI, it also performed comparably
with the earlier versions (text-davinci-002/003) of
GPT-3.5. (5) On OOD benchmarks, LingR-OPT-
13B, LingR-LLaMA-13B, and LingR-LLaMA2-13B
improve at least 17.9 F1-score on Flipkart. Specifi-
cally, even though DDXPlus is an unseen domain
dataset from all fine-tuning data, LingR-LLaMA
achieves a better result than GPT-4. The source
code will be released soon.

Table 7 lists OOD robustness evaluations on
HANS and PAWS. LingR-LLaMA-13B beats all
compared models on HANS and PAWS with test ac-
curacies of 93.8% and 71.2%. The OOD accuracy

Model

OOD Robustness (Acc) ↑

ID OOD ID OOD
dev-m HANS QQP PAWS

Random baseline 66.7 50.0 50.0 50.0
OPT (full-shot) 85.5 70.8 91.2 47.5
OPT (1000-shot) 46.5 50.3 64.0 58.9
LLaMA (full-shot) 85.3 75.3 90.5 46.9
LLaMA (1000-shot) 59.3 49.6 65.8 57.2
LLaMA2 (full-shot) 87.3 70.7 90.7 69.2
LLaMA2 (1000-shot) 85.2 56.3 83.4 58.5
LingR-LLaMA (1000-shot) 84.7 93.8 82.7 68.7
LingR-LLaMA (full-shot) 86.1 91.5 91.5 71.2
LingR-LLaMA2 (1000-shot) 82.7 81.5 83.0 86.5

Table 7: OOD robustness on HANS and PAWS,
where all compared foundation models are 13B.

on HANS exceeds its in-distribution counterpart
(dev-matched in MNLI).

(i) Under the few-shot (1000 examples) learning
setting, LingR-LLaMA-13B achieves a compara-
ble level with LLaMA-2-13B on the in-distribution
benchmarks and significantly outperforms LLaMA-
13B, OPT-13B. Most importantly, the OOD gen-
eralization level of LingR-LLaMA-13B far exceeds
vanilla OPT-13B, LLaMA-13B, and LLaMA-2-13B
respectively. (ii) Under the fine-tuning of the to-
tal training data, the in-distribution test accuracy of
LingR-LLaMA-13B is close to the other three vanilla
LLMs. At the same time, it maintains its absolute
advantage on the OOD benchmarks.

The above experimental results prove that LingR
instructions significantly improve the adversarial
and OOD robustness without the incremental pre-
training on this related corpus. In addition, com-
pared with GPT-3.5 and GPT-4, the LingR-LLaMA
performs equivalently and saves 162 billion param-
eters.

4.2.2. Ablation study

LLaMA-13B SST2 QQP MNLI QNLI RTE ANLI
FFT (1000-shots) 67.3 71.0 56.8 61.7 45.3 68.0

w/ LingR 66.4 71.8 55.4 64.3 40.3 68.5
w/ LingR-CoTs 53.4 62.8 52.0 58.7 22.2 53.6
w/ LingR&CoTs 50.2 60.0 48.5 55.5 22.4 50.7
w/ LingR&CoTs&ICL 50.2 59.4 48.3 55.7 23.6 51.4

FFT (2000-shots) 66.8 72.4 54.5 62.2 40.2 66.7
w/ LingR 67.2 68.9 52.1 60.1 40.2 68.0
w/ LingR-CoTs 50.3 61.1 53.6 59.2 21.8 54.1
w/ LingR&CoTs 46.5 50.7 48.2 55.0 24.6 49.1
w/ LingR&CoTs&ICL 47.9 50.4 48.2 54.8 22.3 48.3

Table 8: Ablation study evaluates the effectiveness
of LingR, LingR-CoTs, LingR&CoTs, in which all
models are fine-tuned with 1000-shots and 2000-
shots respectively.

In order to verify the effectiveness of our pro-
posed LingR&CoTs dataset for linguistic rule induc-
tion and robustness in LLMs, we designed this abla-
tion study. This experiment performed adversarial
robustness (ASR) evaluations in (1) FFT LLaMA-
13B with 1000-shots and 2000-shots, (2) FFT
LLaMA-13B with LingR-only instructions (w/ LingR),
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(3) FFT LLaMA-13B with LingR-CoTs-only instruc-
tions (w/ LingR-CoTs), (4) FFT LLaMA-13B with
LingR&CoTs instructions (w/ LingR&CoTs) and (5)
in-context learning LLaMA-13B with LingR&CoTs
instructions (w/ LingR&CoTs&ICL).

Table 8 shows that 2000-shots of LingR&CoTs
have significantly improved the robustness and gen-
eralization compared with LingR-only and LingR-
CoTs-only, especially for the ASRs of SST-2, QQP,
MNLI, QNLI, and ANLI with declines of 3.8, 10.4,
and 3.9, 4.2, 5.0 respectively. LingR&CoTs and
LingR&CoTs&ICL achieve closed results, with a
maximum ASR difference of 2.3 across all datasets.
This result is reasonable and interpretable accord-
ing to Dai et al. (2023) that ICL behaves similarly to
explicit fine-tuning at the prediction, representation,
and attention behavior levels. In addition, the more
examples of FFT, the more adversarial robustness
our proposed LingR&CoTs achieve.

4.3. Case Study
To explain how our proposed LingR&CoTs improve
adversarial and OOD robustness in an interpretable
way, we analyze the chain-of-thoughts output from
the inference stage in LLaMA2-13B and LingR-
LLaMA2-13B, respectively. The details are shown
in the following Tables 9, 10 and 11.

### LingR-LLaMA2 responds: The phrase "one to jump"
from the linguistic perspective green is the adjective clause
and implies that this movie is something to avoid or miss
out on, even for those who are fans of horror films. Answer:
Negative
### LLaMA2 responds: The movie review below is positive
or negative? Give an answer with ’positive’ or ’negative’.
This one is definitely one to jump, even for horror movie
fanatics.

Table 9: Responses on AdvSST2

Table 9 illustrates a semantic analysis request:
“Below is an instruction that describes a task. Write
a response that appropriately completes the re-
quest. The movie review below is positive or nega-
tive? Answer with ’positive’ or ’negative’, and the
gold rationale for making this decision. This one
is definitely one to jump, even for horror movie fa-
natics.” The word “fanatics” in this request usually
strongly correlates with positive emotions. In com-
mon expressions, like weblogs, news, and online
movie reviews, sentences with this strongly pos-
itive word usually express positive emotions. In
this example, LLaMA2 does not understand the
instruction intent and answer the question. While,
Ling&CoTs fine-tuned LLaMA2 answers the ques-
tion correctly and gives the linguistic rationale.

Table 10 exhibits an NLI request: Below is
an instruction that describes a task. Write a re-
sponse that appropriately completes the request.
In Nigeria, by far the most populous country in sub-
Saharan Africa, over 2.7 million people are infected

### LingR-LLaMA2 responds: Not entailments. The original
statement only indicates the number of people infected with
HIV in Nigeria but does not provide the overall percentage
for the entire African region.
### LLaMA2 responds: Not entailment. While the statement
is true for Nigeria alone, it cannot be generalized to the entire
sub-Saharan African region without additional contextual
information.

Table 10: Responses on AdvRTE.

with HIV. Based on that information, is the sentence
“2.7 percent of the people infected with HIV exist
in Africa.” entailments or not entailments, and give
the Gold Rationale for making this decision? The
premise and hypothesis have high word overlaps,
and two sentences often have an implicit relation-
ship in common expressions. LLMs pre-trained on
a corpus collected from the Internet will often pre-
dict that two sentences are mutually entailed only
based on lexical overlaps. For example shown in
Tabel 10, LingR-LLaMA2-13B responds with a rea-
sonable rationale and correct answer, but LLaMA2-
13B cannot give any information in response.

### LingR-LLaMA2 responds: No. The first sentence uses
"lead to," which implies a cause-and-effect relationship. The
second sentence uses "help with," which suggests a sup-
portive or beneficial relationship.
### LLaMA2 responds: Yes, the original sentence you pro-
vided is a paraphrase of the same idea as the second sen-
tence you mentioned. From a linguistic perspective, the
choice to use "precise advancement for dinner" instead of
"eating dinner earlier in the evening" reveals a more formal
and technical tone. This phraseology suggests a more sci-
entific or medical approach to weight loss, emphasizing the
precision and accuracy involved in determining the optimal
time for dinner.

Table 11: An example of LingR&CoTs-LLaMA2-13B
and LLaMA2-13B response in Flipkart.

Table 11 shows a review classification request:
Write a response that appropriately completes the
request. Can eating precisely advance for dinner
lead to weight loss? Is that a paraphrase of the
following sentence? Does eating dinner earlier in
the evening help with weight loss? Yes or No?
Give the gold rationale in linguistic perspective why
make this decision. Even though LLaMA2-13B can
analyze the request from a linguistic perspective, it
does not capture the key grammatical components
in the text to reason and answer questions. In
contrast, LingR-LLaMA2 accurately captures the
difference between "precisely" and "earlier" as time
adverbs.

5. Conclusion

This paper finds that the linguistic rule induction
plays an important role in improving the LLMs’ ro-
bustness, and further proposes a low-cost knowl-
edge distillation for aligning ChatGPT and other
LLMs with linguistic rules. We proposed LingR
and LingR-CoTs instruction datasets to enhance
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the linguistic rule induction in LLMs. By fine-tuning
LLMs via these two datasets, LLMs’ adversarial and
OOD robustness shows consistent improvements.
In addition, we provided a low-cost way to design
linguistic rule instruction and task-specific linguistic
CoTs. This study is of great significance for fur-
ther research to improve the LLMs’ robustness in
multilingual domains.
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9. Appendix

As it can not be sure that the entire GLUE bench-
mark is not in the training data for OpenAI’s models,
we conducted another experiment, as shown in Ta-
ble 12, to evaluate fine-tuning LLMs with the GPT-4-
generated examples of the downstream task. This
comparison would be stronger to demonstrate the
inductive ability of our proposed LingR&CoTs in-
struction dataset.

As Table 12 shows the GPT-4-generated sam-
ples fine-tuned LLMs do not exhibit significant
improvements compared to the zero-shot learn-
ing LLMs. Even though combining the GPT-4-
generated dataset with LingR&CoTs together to
fine-tune LLMs, there are no further improvements
in the results.

This experiment demonstrates that our proposed
linguistic rule instructions can distill the reasoning
logic of an LLM into other LLMs from a linguistic
perspective, instead of the simple data augmenta-
tion.
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Fine-tuning setting Model (#Param)
Adversarial robustness (ASR) ↓ OOD robustness (F1) ↑

SST-2 QQP MNLI QNLI RTE ANLI Flipkart DDXPlus
OPT (13B) 47.6 53.9 60.3 52.7 58.0 58.3 44.5 0.3

Zero-shot LLaMA (13B) 67.3 71.0 56.8 61.7 45.3 68.0 67.8 6.3
LLaMA-2 (13B) 55.1 47.1 54.8 55.3 61.4 56.5 77.1 0.2
OPT (13B) 44.5 30.8 68.6 51.8 30.9 59.2 57.1 2.4

GPT-4-generated LLaMA (13B) 45.3 60.3 75.2 50.0 58.0 69.4 62.7 6.5
1000-shots LLaMA-2 (13B) 45.3 59.0 51.2 48.6 51.9 59.1 66.3 3.7

OPT (13B) 40.5 26.9 50.4 50.0 61.1 49.0 95.5 1.2
LingR&CoTs LLaMA (13B) 46.6 62.8 52.0 48.7 22.2 53.6 76.8 20.6

LLaMA-2 (13B) 40.5 30.3 42.9 30.6 29.6 55.5 95.0 0.9
OPT (13B) 43.9 29.5 51.2 50.0 61.7 51.3 93.4 2.6

Combined LLaMA (13B) 48.6 57.7 53.7 52.7 32.1 55.2 79.7 17.9
LLaMA-2 (13B) 40.5 43.6 41.3 30.4 35.8 53.4 95.2 4.5

Table 12: Comparison about the zero-shot, GPT-4-generated samples, LingR&CoTs and GPT-4-
generated+LingR&CoTs fine-tuned LLMs for adversarial robustness on AdvGLUE, ANLI, Flipkart, and
DDXPlus.
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