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Abstract
Recently, it has been discovered that incorporating structure information (e.g., dependency trees) can improve
the performance of aspect-based sentiment analysis (ABSA). The structure information is often obtained from
off-the-shelf parsers, which are sub-optimal and unwieldy. Therefore, adaptively inducing task-specific structures is
helpful in resolving this issue. In this work, we concentrate on adaptive graph structure induction for ABSA and
explore the impact of neuron-level manipulation from a spectral perspective on structure induction. Specifically, we
consider word representations from PLMs (pre-trained language models) as node features and employ a graph
learning module to adaptively generate adjacency matrices, followed by graph neural networks (GNNs) to capture
both node features and structural information. Meanwhile, we propose the Neuron Filtering (NeuLT), a method
to conduct neuron-level manipulations on word representations in the frequency domain. We conduct extensive
experiments on three public datasets to observe the impact of NeuLT on structure induction and ABSA. The
results and further analysis demonstrate that performing neuron-level manipulation through NeuLT can shorten
Aspects-sentiment Distance of induced structures and be beneficial to improve the performance of ABSA. The effects
of our method can achieve or come close to SOTA (state-of-the-art) performance.

Keywords: Structure Induction, Sentiment Analysis, Neuron Analysis

1. Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained (token-level) sentiment analysis task for
aspects of a given sentence (Vo and Zhang, 2015;
Dong et al., 2014). The task aims to detect the
sentiment polarities (i.e., positive, negative, neu-
tral) of given aspects. For instance, in the sen-
tence "The decor is not a special at all but their
amazing food makes up for it" and corresponding
aspects "decor" and "food", the sentiment polar-
ity for "decor" is negative, while the sentiment for
"food" is positive.

To analyze token-level sentiment in sentences.
relevant research often relies on syntactic struc-
tures (Zhang et al., 2019b; Tian et al., 2021; Vey-
seh et al., 2020; Huang and Carley, 2019; Sun
et al., 2019; Wang et al., 2020a). In these studies,
syntactic structures showed promise in connecting
aspects to the corresponding opinion words and as-
sisting in improving the ABSA task’s performance.
Early works (Vo and Zhang, 2015; Kiritchenko et al.,
2014; Schouten and Frasincar, 2016) to deal with
ABSA mainly relied on manually designing syntac-
tic features, which is cumbersome. Lately, various
neural network-based models (Kiritchenko et al.,
2014; Vo and Zhang, 2015; Chen et al., 2017;
Zhang et al., 2019b; Wang et al., 2020a; Trusca
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Figure 1: Taxonomy of structure-based ABSA.

et al., 2020) have been put forth to deal with the
ABSA task, to get rid of hand-crafted feature design.
Additionally, some research endeavors (Chen et al.,
2020a; Dai et al., 2021; Zhou et al., 2021; Chen
et al., 2022) suggest there should exist task-specific
induced structures because syntactic structures
generated by off-the-shelf dependency parsers are
sub-optimal, and not specially designed for ABSA.

By summarizing prior research, we classify the
structure-based ABSA works into three categories:
i) external structure, ii) semi-induced structure,
and iii) full-induced structure. Their patterns are
summarized in Figure 1. Studies related to i) ex-
ternal structures utilize syntactic structures gener-
ated by off-the-shelf parsers (Zhang et al., 2019b;
Sun et al., 2019) or modified syntactic structures
(Wang et al., 2020a) to provide structural support
for ABSA. Works based on ii) semi-induced struc-
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tures consider induced structures as a complement
to external structures, merging them to offer struc-
tural support for ABSA (Chen et al., 2020a). The
first two require assistance from external structures,
which increases the complexity of preprocessing.
The third directly eliminates this burdensomeness,
and it still has the potential to perform comparable
or superior performance compared to the first two.

Our work follows iii) full-induced structures. Stud-
ies in this area plan to eliminate reliance on exter-
nal structures completely and instead induce task-
specific latent structures (Dai et al., 2021; Zhou
et al., 2021; Chen et al., 2022). Nevertheless,
these studies usually focus on generating tree-
based structures, converting them into graph struc-
tures, and feeding the graphs’ adjacency matrices
to Graph Neural Networks (GNNs) to capture struc-
tural information. Our research tracks this line of
thought but immediately induces graph structures.
Moreover, recent studies have suggested that a
model’s behavior can be controlled by manipulat-
ing neurons (Bau et al., 2019; Dai et al., 2022; Suau
et al., 2020; Sajjad et al., 2022). For instance, (Bau
et al., 2019) were able to modify tense, gender, and
other concepts in output translations by manipulat-
ing the values of neurons. Neuron-level manipu-
lation in structure induction and ABSA has rarely
been investigated in previous studies. Therefore,
our research aims to explore the impact of neuron-
level manipulation on structure induction for ABSA.

Particularly, we utilize the metric-based graph
structure learning (GSL) method (Zhu et al., 2021)
to induce latent structures. Moreover, we pro-
pose the Neuron Filtering (NeuLT) as a neuron-
level manipulation method to examine its impact
on structure induction. Extensive experiments re-
veal that appropriate heuristic neuron-level ma-
nipulation (NeuLT) is beneficial to obtaining suit-
able graph structures and improving model per-
formance. Meanwhile, further analysis about
Automatic Neuron Filtering (NeuLT(Auto)) demon-
strates that NeuLT(Auto) bypasses heuristic ma-
nipulations and achieves consistent improvements.
Here, we explore three widely used metric func-
tions (Attention-based (Attn.), Kernel-based (Ker-
nel), and Cosine-based (Cosine)) and contrast their
effects on structure induction for ABSA. Our re-
search is based on three encoder-based PLMs
(BERTbase, RoBERTabase, and RoBERTalarge). We
summarize our intriguing findings as follows:

Neuron-level Manipulations. Neuron-level ma-
nipulations can influence structure induction. The
induced structures of NeuLT obtain lower AsD and
better performance compared to the Attn. method.

Structure Induction. GSL-based structure induc-
tion is effective. The Attn. is more suitable for struc-

ture induction compared to Kernel and Cosine.

Extensive Experiments and Neuron-level Analy-
sis. We conduct extensive experiments and anal-
ysis. Results confirm our findings and demonstrate
the effectiveness of NeuLT, and neuron-level analy-
sis provides in-depth insights into the approach.

2. Related Work

2.1. Structure Induction in ABSA
Many works in ABSA aim to integrate syntactic
structures into neural networks to improve the per-
formance (Zhang et al., 2019b; Sun et al., 2019;
Wang et al., 2020a; Niu et al., 2022). Despite
advancements in integrating dependency trees,
the current state is sub-optimal due to parsing er-
rors in off-the-shelf parsers. Consequently, efforts
are being directed towards dynamically learning
task-specific tree structures. For example, (Dai
et al., 2021) propose to induce tree structure from
fine-tuned PLMs. (Chen et al., 2022; Zhou et al.,
2021) suggest inducing an aspect-specific latent
tree structure by employing policy-based reinforce-
ment learning and aiming to narrow the gap be-
tween aspect and opinion. (Chen et al., 2020a)
combines dependency trees and automatically in-
duced graph structure by a gate mechanism.

2.2. Controlling Model’s Behavior
through Neuron-level Manipulation

Recently, some studies have focused on analyzing
neurons and controlling the model’s performance
through neuron-level manipulation (Bau et al., 2019;
Dai et al., 2022; Suau et al., 2020). For instance,
(Suau et al., 2020) manipulate neurons of concepts
in PLMs to generate sentences of specific topics
of interest. Additionally, (Dai et al., 2022) updates
and erases specific factual knowledge without fine-
tuning by manipulating knowledge neurons.

2.3. Spectral Approach in NLP
One line of spectral methods in NLP is used in im-
proving efficiency (Han et al., 2022; Zhang et al.,
2018). For instance, (Han et al., 2022) introduces
a novel recurrent neural network incorporating the
discrete Fourier transformer, resulting in acceler-
ated training. Additionally, some works investigate
contextual representation learning from the spectral
perspective. (Müller-Eberstein et al., 2022; Tamkin
et al., 2020) propose using Frequency filters to con-
strain neurons to model structures at scales. (Kayal
and Tsatsaronis, 2019) proposes a method for cre-
ating sentence embeddings that use a spectral de-
composition method based on fluid dynamics.
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Figure 2: Overall architecture. The aspect (staff)
with negative sentiment polarity label is in red.

2.4. Metric-based Graph Structure
Learning

The metric-based graph structure learning (GSL)
determines edge weights by learning a metric func-
tion between pairwise representations(Zhu et al.,
2021). The method can be categorized into two
subgroups according to metric functions: Attention-
based and Kernel-based. Attention-based ap-
proaches typically employ attention networks or
more intricate neural networks to capture the inter-
action between pairwise representations (Velick-
ovic et al., 2018; Jiang et al., 2019a; Chen et al.,
2020b; Zhao et al., 2021a). Kernel-based ap-
proaches utilize Kernel functions as the metric func-
tion to model edge weights (Li et al., 2018; Yu
et al., 2020; Zhao et al., 2021b). The Cosine-based
method (Chen et al., 2020b) is typically categorized
as an Attention-based method.

3. Methodology

We introduce the architecture (in Figure 2) as well
as Neuron Filtering (NeuLT) to take neuron-level
manipulations when adaptively inducing structures.

3.1. Overview
Given an input sentence S = {w1, w2, · · · , wn}
and a specific aspect term a, we plan to induce
a graph structure g relying on a Graph Learner
and utilize the GNNs module as well as Prediction
Head to make a judgment about sentiment polarity
y ∈ {positive,neurtal,negative}. Firstly, we em-
ploy a type of PLMs (BERTbase (Devlin et al., 2019),
RoBERTabase or RoBERTalarge (Liu et al., 2019))
served as the contextual encoder to obtain the hid-
den contextual representation H ∈ Rn×d of the
input sentence S, where d is the dimension of word
representations, and n is the length of the given sen-
tence. To facilitate neural-level manipulations, we
introduce Module Neuron Filtering (NeuLT) to ob-

tain the adjusted contextual representation Hneult,
which is elaborated in Section 3.3.

Then, we feed Hneult into the Graph Learner
module to induce structures g, which serve as ad-
jacency matrices A for the GNNs module. Simulta-
neously, the contextual representation H is waited
for inputting into the GNNs module as node repre-
sentations. Based on A and H, the GNNs module
can extract aspect-specific features ha utilizing both
structural information from A and pre-trained knowl-
edge information from H. Finally, we concatenate
the representation of [CLS] token hcls from PLMs
as well as ha, and send them into a Multi-layer Per-
ception (MLP) (served as the Prediction Head) to
make predictions.

3.2. Graph Structure Learning (GSL)
We present the configurations of the Graph Learner
and the GNNs module. The Graph Learner module
is based on Graph Structure Learning (GSL). We
investigate the effectiveness of three common GSL
methods based on metric learning: Attention-based
(Attn.), Kernel-based (Kernel), and Cosine-based
(Cosine) (refer to (Zhu et al., 2021) for specific de-
scriptions of Kernel-based and Cosine-based meth-
ods), and their performance is demonstrated in
Section 4.5. Here, our description primarily centers
on the Attention-based GSL method. Firstly, we
calculate the unnormalized pair-wise edge score
ϵij for the i-th and j-th words utilizing the given rep-
resentations hi ∈ Rd and hj ∈ Rd. Specifically, the
pair-wise edge score ϵij = (Wihi)(Wjhj)

⊤, where
Wi,Wj ∈ Rd×dh are learnable weights, and dh is
the hidden dimension.

Then, based on the pair-wise scores ϵij for all
word pairs, we can construct the adjacency matri-
ces A for induced graph structures. Concretely,

Aij =

{
1 if i = j

exp(ϵij)∑n
k=1 exp(ϵik)

otherwise , (1)

where the adaptive adjacency matrix is A ∈ Rn×n,
and Aij is the weight score of the edge between
the i-th and j-th words.

In addition, we employ commonly used Graph
Neural Networks (GCNs) (Kipf and Welling, 2017)
as the GNNs module for conciseness without los-
ing generality (other variants of GNNs can also be
employed here). Given the word representations
H and the adaptive adjacency matrix A, we can
construct an induced graph structure consisting of
words (each word acts as a node in the graph).
Then, we feed them into GCNs. Specifically,

Hl = σ
(

D− 1
2 AD− 1

2 Hl−1Wl
)
, (2)

where σ is an activation function (e.g., ReLU), Wl

is the learnable weight of the l-th GCN layer, and
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Dii =
∑

j Aij as in (Kipf and Welling, 2017). There-
fore, by stacking several layers of Graph Learners
and GNNs modules, we can obtain structure infor-
mation enhanced word representations Hg for the
downstream task. Then, we can get aspect repre-
sentations ha from Hg, and feed ha along with the
pooler output hcls of PLMs (the output representa-
tion of [CLS] token) into a task-specific Prediction
Head to make predictions. It should be noted that
the induced graph structure is dynamically updated
while training.

3.3. Neuron Filtering (NeuLT)
We explore how neuron-level manipulations affect
structure induction and ABSA. Therefore, we intro-
duce NeuLT to achieve this purpose. In addition,
as to why we explore manipulating the frequency
domain, we found in experiments that manipula-
tions in the frequency domain are easier to optimize
than in the time domain. For details, please see
the paragraph Without DFT in Section 4.9.

Neuron. According to (Sajjad et al., 2022), the
term neuron refers to the output of a single di-
mension from any neural network dimension. For
instance, in the BERTbase, a layer block’s output
comprises 768 neurons, while the output of an at-
tention head has 64 neurons. In this work, we adopt
the aforementioned definition of neuron to investi-
gate the impact of neuron-level manipulations.

Method Description. The Neuron Filtering
(NeuLT) is based on Discrete Fourier Transform
(DFT) to conduct disentangling manipulations in
the frequency domain. Specifically, given word
representations H ∈ Rn×d from PLMs, we send
them into the NeuLT before the Graph Learner.
Specifically, for the word representations hi ∈ Rd

and hj ∈ Rd, the pair-wise edge score ϵij is
calculated as follows:

Υnlt(x) = F−1
(
Π
(
F(x)

))
, (3)

ϵij = Υnlt(Wihi)Υ
nlt(Wjhj)

⊤, (4)

where F(·) and F−1(·) denote the Fast Fourier
Transform (FFT) as well as its inverse (IFFT), and Π
indicates the filtering operation. Different from (Niu
et al., 2023), they conduct filtering at the sentence
dimension, but NeuLT’s manipulations are all in the
neuron dimension. Additionally, Υnlt denotes the
Neuron Filtering (NeuLT).

4. Experiment

To prove the effectiveness of our approach, we
demonstrate results conducted on three datasets
for ABSA and compare them with baselines.

Table 1: Statistics of datasets.
Dataset Positive Neutral Negative

Train Test Train Test Train Test
Rest14 2164 728 807 196 637 196

Laptop14 994 341 870 128 464 169
Twitter 1561 173 3127 346 1560 173

4.1. Datasets

We perform experiments on well-established
datasets including SemEval 2014 (Rest14 and Lap-
top14) (Pontiki et al., 2014) and Twitter (Dong et al.,
2014). Each dataset comprises three sentiment
label categories: positive, neutral, and nega-
tive. Table 1 presents the dataset statistics, where
(Train|Test) indicates the number of instances in
the training and testing sets for each dataset.

4.2. Implementation Details

We employ popular Encoder-based Pre-trained
Language Models (PLMs), namely BERTbase (De-
vlin et al., 2019), RoBERTabase, and RoBERTalarge

(Liu et al., 2019), for word representations. Addition-
ally, all Graph Learners have hidden dimensions
of 60, with a batch size of 32. For RoBERTabase
and RoBERTalarge, we train for 60 epochs, and
for BERTbase, we train for 30 epochs. During train-
ing, we utilize the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1e-5. Accuracy and
Macro-F1 scores are employed as metrics, con-
sistent with previous studies. All experiments are
conducted on an NVIDIA Tesla P100 GPU. 1

4.3. Baselines

We classify the structure-based ASBA methods
into three genres: i) external structure, ii) semi-
induced structure, and iii) full-induced structure.
Each category is elaborated in the following.

External Structure. These studies utilize syntac-
tic structures generated by external dependency
parsers (such as Spacy2 and Stanford CoreNLP3)
to provide supplementary structural information for
ABSA. Their methodologies typically proceed as
follows:

SAGAT (Huang et al., 2020) leverage both graph
attention network and BERT to investigate syntax
and semantic information for ABSA.

DGEDT (Tang et al., 2020) simultaneously incor-
porate BERT outputs and dependency syntactic
representations using GCNs.

1Our code is at https://github.com/hankniu01/NeuLT
2https://spacy.io/
3https://stanfordnlp.github.io/CoreNLP/

https://github.com/hankniu01/NeuLT
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Table 2: The overall performance across the three datasets. The baselines in the ’Structure’ column are
classified according to the structure categorization (Dep.: external structures (dependency syntactic tree),
Semi.: semi-induced structures, Full: full-induced structures, and None: no structure information used).

Embedding Model Structure Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Static Embedding

depGCN Dep. 80.77♯ 72.02♯ 75.55♯ 71.05♯

CDT Dep. 82.30♯ 74.02♯ 77.19♯ 72.99♯

kumaGCN Semi. 81.43 73.64 76.12 72.42 72.45 70.77
RGAT Dep. 83.30 76.08 77.42 73.76 75.57 73.82

FT-RoBERTa(ASGCN) Full 82.31 73.53 76.33 72.76 73.84 72.66
FT-RoBERTa(PWCN) Full 82.40 73.95 76.95 73.21 73.84 71.43
FT-RoBERTa(RGAT) Full 82.76 75.25 77.43 74.21 75.43 74.04

BERTbase

BERT None 85.62♯ 78.28♯ 77.58♯ 72.38♯ 75.28 74.11
SAGAT Dep. 85.08 77.94 80.37 76.94 75.40 74.17
DGEDT Dep. 86.30 80.00 79.80 75.60 77.90 75.40

depGCN-BERT Dep. 85.00 78.79 81.19 77.67 75.58 74.58
RGAT-BERT Dep. 86.60 81.35 78.21 74.07 76.15 74.88

KumaGCN-BERT Semi. 86.43 80.30 81.98 78.81 77.89 77.03
dotGCN-BERT Full 86.16 80.49 81.03 78.10 78.11 77.00

RoBERTabase

Roberta + MLP None 87.32 81.01 82.60 79.33 77.17 76.20
RoBERTa-ASC(Dep) Dep. 82.82 75.12 74.12 70.52 - -

LCFS-ASC-CDW(Dep) Dep. 86.71 80.31 80.52 77.13 - -
Dep(ASGCN) Dep. 86.90 80.75 81.66 78.31 75.28 74.38
Dep(PWCN) Dep. 87.41 81.07 84.16 81.18 76.63 75.60
Dep(RGAT) Dep. 87.43 80.61 83.43 80.28 74.42 72.93

FT-RoBERTa(ASGCN) Full 86.87 80.59 83.33 80.32 76.10 75.07
FT-RoBERTa(PWCN) Full 87.35 80.85 84.01 81.08 77.02 75.52
FT-RoBERTa(RGAT) Full 87.52 81.29 83.33 79.95 75.81 74.91

NeuLT Full 88.93 83.28 84.95 82.26 78.18 77.59
RoBERTalarge NeuLT Full 89.64 84.18 86.05 84.68 78.53 77.78

depGCN (Zhang et al., 2019a) integrates BiL-
STM to capture contextual information on word or-
ders along with multi-layered GCNs.

CDT (Sun et al., 2019) leverages both depen-
dency and contextual information through the uti-
lization of GCNs and BiLSTM.

RGAT (Wang et al., 2020a) supplies reshaped
syntactic dependency graphs to RGAT to capture
aspect-centric information.

LCFS-ASC-CDW (Phan and Ogunbona, 2020)
integrate dependency syntactic embeddings, part-
of-speech embeddings, and contextualized embed-
dings to improve ABSA performance.

Semi-induced Structure. Research in this area
commonly leverages both dependency syntactic
structures from off-the-shelf parsers and induced
structures from PLMs, the representative works
include:

KumaGCN (Chen et al., 2020a) fuse latent
graphs generated by self-attention neural networks
with dependency syntactic structures for ABSA.

Full-induced Structure. This research aims to
eliminate the need for external parsers entirely by
inducing task-specific latent structures for down-
stream tasks. Its delegate does the following:

dotGCN (Chen et al., 2022) utilize reinforcement
learning and attention-based regularization to in-
duce aspect-specific opinion tree structures.

FT-RoBERTa (Dai et al., 2021) employ a de-
pendency probing approach to induce tree struc-

tures from a RoBERTa model, which has been pre-
trained on ABSA datasets.

4.4. Main Results
The main results of baselines and NeuLT on the
three datasets are shown in Table 2. Baselines are
categorized based on their embedding type (static
embedding (GloVe), BERTbase, RoBERTabase, and
RoBERTalarge) and the structure they utilize (None,
Dep., Semi., and Full). The parameters of PLMs
are tuned in conjunction with the parameters of the
entire model. Compared with all of the baselines,
NeuLT obtains the best results. In comparison with
FT-RoBERTa-series works (Dai et al., 2021), the
most relevant work, NeuLT outperforms them a lot
on all three datasets. It’s noteworthy that while
FT-RoBERTa-series approaches necessitate pre-
training of PLMs on ABSA datasets, NeuLT does
not. As a result, NeuLT is less complicated and
more effective than the FT-RoBERTa-series works.

4.5. Metric Function
From the insight of Graph Structure Learning (Chen
et al., 2020b; Zhu et al., 2021), the common options
for metric learning include attention mechanism
(Vaswani et al., 2017; Jiang et al., 2019a), radial
basis function Kernel (Li et al., 2018; Yeung and
Chang, 2007), and Cosine similarity (Wojke and
Bewley, 2018). Therefore, in this section, we com-
pare the impact of three representative metric func-
tions on structure induction: Attention-based (Attn.),
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Table 3: Results of Ablation Studies.

Embedding Model Structure Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERTbase
Attn. Full 85.43 78.04 80.54 77.06 76.22 75.04

NeuLT Full 86.95 81.20 81.33 77.20 77.10 75.83

RoBERTabase
Attn. Full 87.59 81.72 83.86 80.53 75.72 73.92

NeuLT Full 88.93 83.28 84.95 82.26 78.18 77.59

RoBERTalarge
Attn. Full 89.46 84.12 84.80 82.19 77.02 75.75

NeuLT Full 89.64 84.18 86.05 84.68 78.53 77.78

Table 4: The influence of various metric functions
based on RoBERTabase.

Metric Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Attn. 87.59 81.72 83.86 80.53 75.72 73.92
Kernel 87.14 80.45 83.54 80.44 76.01 73.98
Cosine 87.14 79.94 83.39 79.93 74.28 72.80

Kernel-based (Kernel), and Cosine-based (Cosine).
Following the footsteps of previous works, We im-
plement the counterpart metric functions (Kernel
and Cosine) for comparison, the results are shown
in Table 4. Except for Twitter, the performance of
Attn. yields the best results. However, the mar-
gin between Attn. and Kernel on Twitter is small
(0.29% for Accuracy and 0.06% for Macro-F1), so
we chose Attn. as the default setting for our work.

4.6. Ablation Study
We perform ablation studies to showcase the effec-
tiveness of NeuLT, built upon the Attn. method. We
contrast Attn. with NeuLT across three PLMs. Re-
sults are illustrated in Table 3. Compared to Attn.,
NeuLT notably enhances consistency across three
datasets across different PLMs. Thus, the neuron-
level manipulation facilitated by NeuLT demon-
strates its effectiveness.

4.7. Aspects-sentiment Distance (AsD)
Method Description. To exhibit the effectiveness
of induced structures, in line with (Dai et al., 2021),
we introduce the Aspects-sentiment Distance (AsD)
metric to measure the average distance between
aspect and sentiment words across various struc-
tures. AsD is computed as follows:

AsD(Si) =

ap∑
A

cq∑
C⋆

dist(ap, cq)

|A||C⋆|
, (5)

AsD(D) =

∑
D

AsD(Si)

|D|
, (6)

where C = ⟨c1, · · · cq⟩ is a sentiment words set
(following the setting from (Dai et al., 2021)), Si de-
notes each sentence in dataset D, and C⋆ = Si∩C.
Additionally, A = ⟨a1, · · · , ap⟩ denotes the set of as-
pects for each sentence. We utilize dist(n1, n2) to

Table 5: The Aspects-sentiment Distance (AsD)
across different structures in all datasets. The de-
pendency tree structure (Dep.) is derived from the
Spacy parser.

Structure Rest14 Laptop14 Twitter
Dep. 8.19 8.02 8.33
Attn. 2.26 2.55 2.64

NeuLT 2.04 2.39 2.48

calculate the relative distance between two nodes
(n1 and n2) on the graph structure, and | · | denotes
the cardinality of the given set.

Results. As shown in Table 5, the less magnitude
indicates the shorter distance between aspects
and sentiment words. Compared to dependency
structure (Dep.), Attn. and NeuLT shorten the AsD
greatly, which shows that GSL methods encourage
the aspects to find sentiment words. Furthermore,
when compared to Attn., NeuLT has a lower AsD
score, demonstrating that a reasonable adjustment
at the neuron level can result in better structures.

4.8. Automatic Neuron Filtering
(NeuLT(Auto))

To further indicate the effectiveness of NeuLT, get
rid of the cumbersome heuristic frequency selec-
tion, and get consistent improvement, we introduce
an Automatic Neuron Selection (ANS) module
to adaptively perform neuron-level manipulations
along with the optimization of the overall model.
We denote it as textbfAutomatic Neuron Filtering
(NeuLT(Auto)), as a variant of NeuLT.

Method Description. To achieve this goal, we
design the ANS module Υ under a probabilistic sce-
nario to replace the filtering operation Π. Specifi-
cally, we map the FFT-processed contextual word
representations Hfft ∈ Rn×d (Hfft = F(H)) into
a Bernoulli parameter space by employing a Multi-
layer Perceptron (MLP) architecture to parameter-
ize this mapping process. We utilize the MLP archi-
tecture (composed of two linear projection layers
Linear1 and Linear2, and an activation function σ
(i.e., ReLU)) to map each neuron of Hfft into the
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Table 6: Results of Automatic Neuron Filtering (NeuLT(Auto)).
Embedding Model Structure Rest14 Laptop14 Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERTbase
Attn. Full 85.43 78.04 80.54 77.06 76.22 75.04

NeuLT(Auto) Full 87.04 81.19 81.96 78.70 76.96 76.01

RoBERTabase
Attn. Full 87.59 81.72 83.86 80.53 75.72 73.92

NeuLT(Auto) Full 88.48 83.20 84.95 82.15 78.10 77.76

RoBERTalarge
Attn. Full 89.46 84.12 84.80 82.19 77.02 75.75

NeuLT(Auto) Full 89.55 84.87 85.89 82.19 78.87 78.02

Bernoulli parameter space to get Hbern ∈ Rn×d×2,

zbern = MLP (Hfft)

= Linear2

(
σ
(
Linear1(Hfft)

))
, (7)

Hbern = φ

((
zbern − log

(
− log(ϵ)

))
/τ

)
, (8)

where the last dimension of Hbern denotes the suc-
cess probability of Bernoulli distribution for each
neuron, and φ denotes the Softmax function.

Here, we utilize the Gumbel reparameterization
proposed by (Jang et al., 2017; Maddison et al.,
2017) to address the differentiable difficulty during
training, where ϵ is a tensor with the same dimen-
sion as zbern ∈ Rn×d×2, where the values of ϵ is
random variables of a uniform distribution on the
interval (0, 1). The hyperparameter τ → 0 is the
annealing temperature, which is adjusted to zero
progressively in practice. Next, we can obtain a
mask matrix Mbern ∼ Bern(Hbern) composed of a
set of Bernoulli random variables with the same
dimension as Hfft, where Mbern ∈ Rn×d and the
values of Mbern are ∈ {0, 1}n×d. Each value in
Mbern indicates whether to manipulate the corre-
sponding neuron. During the non-training phase,
we can set a hyperparameter threshold γ to control
the sparsity of Mbern. Therefore, the ANS module
Πans is to obtain a mask matrix Mbern to indicate
which neurons need to be manipulated. Thus,

Πans(F(H)) = Mbern ⊙ Hfft, (9)

where ⊙ denotes the Hadamard product. For the
i-th and j-th word representations hi ∈ Rd and
hj ∈ Rd, we can calculate the pair-wise edge score
ϵij as follows:

Υafs(x) = F−1
(
Πans

(
F(x)

))
, (10)

ϵij = Υauto(Wihi)Υ
auto(Wjhj)

⊤, (11)

where Υauto denotes the NeuLT(Auto).

Results. We utilize NeuLT(Auto) instead of
NeuLT to conduct experiments, which are shown
in Table 6. In this context, the ANS module is also
optimized using the Adam optimizer and has an
independent learning rate set to 5e-3. Compared to

Table 7: Different frequency filters on RoBERTabase.
Bold indicate improved performance.

Model Pattern Rest14(emb) Laptop14(emb) Twitter(emb)
Acc F1 Acc F1 Acc F1

NeuLT

High

256 87.68 81.28 83.70 80.66 76.88 76.04
154 87.50 82.49 83.39 80.22 75.29 74.47
77 87.59 80.50 83.70 80.99 74.57 72.90
16 88.04 82.93 84.01 81.19 75.29 74.46
8 88.13 82.09 83.23 80.43 74.57 74.13
4 87.32 81.42 84.33 81.69 74.13 72.50
2 87.68 81.00 83.86 80.82 74.71 73.13

Bond

256 87.23 80.83 83.54 80.30 76.44 75.44
154 87.95 81.90 84.33 81.29 75.58 74.62
77 87.41 80.64 84.48 81.44 75.29 74.26
16 87.86 81.66 83.70 80.51 75.43 74.45
8 87.32 81.52 84.48 81.59 75.14 74.22
4 88.04 82.19 83.86 80.89 74.71 73.66
2 87.77 81.82 82.92 79.63 75.14 74.00

Low

256 87.05 80.61 84.01 81.07 75.87 75.17
154 87.95 82.32 83.54 80.69 75.00 74.07
77 88.75 82.99 83.07 79.87 74.28 73.15
16 88.84 83.33 83.07 79.22 75.58 74.52
8 87.32 80.71 84.33 81.71 74.57 73.46
4 87.14 80.16 84.48 81.30 74.86 73.61
2 87.41 80.96 83.54 80.41 74.71 73.99

Attn. - 87.77 81.33 84.01 80.94 75.43 74.81
NeuLT(Auto) - 87.95 81.99 84.95 82.26 76.30 75.67

NeuLT(Auto) w/o DFT - 87.50 80.54 83.70 80.76 75.87 74.37

Table 8: Neuron statistics in the frequency domain
(arranged from high to low frequency).

Pattern Range
Ratio(%)

Rest14 Laptop14 Twitter
Train Test Train Test Train Test

High 512 → 768 69.42 69.37 44.36 44.58 69.28 69.19
Bond 256 → 512 67.93 67.90 42.31 42.15 67.57 67.61
Low 1 → 256 68.61 69.05 41.93 42.00 67.21 67.18

Attn., NeuLT(Auto) is consistently improved. This
further illustrates that neuron-level manipulation is
conducive to improving the effectiveness of ABSA.
Furthermore, compared with NeuLT, NeuLT(Auto)
avoids the burden brought by manual frequency
selection, making it more flexible.

4.9. Neuron-level Analysis
Method Description. In this section, we provide
an in-depth analysis of the neuron level to investi-
gate how neurons change after NeuLT processing.
Firstly, in order to explore the neuron adjustment at
the word embedding level, we remove the weight
matrices (Wi and Wj) in Formulae 4 and 11. Hence,
in this section, the Formulae are written as follows:

ϵij = Υnlt/auto(hi)Υ
nlt/auto(hj)

⊤. (12)

Under this setting, we compare the performance
with different filtering operations, including High-,
Bond-, and Low-based filters, as well as ANS.
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Table 9: Statistics in the frequency domain. Bold
indicates distinct neurons in top-N.

Dataset Top-N Neurons (N=10)

Rest14 Train 61, 344, 305, 227, 211, 88, 71, 256, 168, 310
Test 61, 305, 344, 227, 88, 229, 32, 173, 211, 71

Laptop14 Train 0, 264, 134, 299, 95, 123, 367, 209, 384, 281
Test 0, 264, 134, 367, 299, 192, 281, 384, 95, 123

Twitter Train 0, 113, 256, 134, 49, 332, 339, 264, 3, 111
Test 0, 113, 256, 264, 49, 332, 3, 134, 339, 115

Table 10: Statistics in the time domain. Underline
indicates distinct neurons, and bold indicates the
same neurons.

Dataset Top-N Neurons (N=10)

Rest14 Train 0, 181, 1, 594, 304, 269, 675, 241, 499, 194
Test 0, 181, 1, 194, 304, 499, 594, 269, 136, 241

Laptop14 Train 0, 32, 689, 642, 383, 747, 280, 724, 230, 464
Test 32, 689, 0, 383, 626, 642, 485, 724, 747, 464

Twitter Train 1, 767, 3, 510, 691, 645, 116, 344, 727 , 146
Test 1, 767, 3, 691, 116, 645, 96, 448, 112, 533

Results. The results in Table 7, present that
NeuLT can effectively enhance the performance,
but it is sensitive to filtering parameters, as inappro-
priate parameter selection can lead to degraded
performance. Moreover, different datasets require
different filtering parameters to achieve optimal per-
formance enhancement. In the same setup, we
also conduct NeuLT(Auto) experiments under the
Formula 12. NeuLT(Auto) achieves consistent im-
provement compared to Attn. It is evident that re-
moving the weight matrices, and directly adjusting
the neurons in word embeddings remains effective.

Without DFT. We eliminated the Discrete Fourier
Transform (DFT) and performed neuron adjust-
ments directly in the time domain (word embed-
ding level). We denote this setting as NeuLT(Auto)
w/o DFT. Actually, we adjusted the parameters of
the ANS module with different learning rates of
{1e − 3, 5e − 3, 8e − 3}, but we all got the same
results in Table 7. We find that, when omitting the
DFT, neuron-level manipulations directly in the time
domain by optimizing the ANS module are more
challenging than in the frequency domain.

Neuron-level Statistics. We conducted an analy-
sis of the neuron adjustments in both the frequency
and time domains while utilizing NeuLT(Auto).

Frequency Domain. We computed the adjust-
ment ratios of NeuLT(Auto) for each frequency band
(High, Bond, and Low) across all cases on three
datasets, which are in Table 8. The adjustment
ratios for each band are generally consistent, indi-
cating that NeuLT(Auto) does not exhibit a specific
bias towards any particular band. Additionally, the
adjustment ratios of NeuLT(Auto) are adjusted cor-
respondingly when applied to different datasets.
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Figure 3: Statistics of Neuron Adjustment. The red
line highlights the Top-10 neurons with the highest
ratio of adjustment occurrences across all neurons.

Moreover, we similarly conduct a statistical anal-
ysis of the top-N neurons selected by NeuLT(Auto),
which are presented in Table 9. NeuLT(Auto) se-
lects different top-N neurons for different datasets.
While for the training and testing sets within the
same dataset, the top-N neurons are generally con-
sistent with slight variations. This suggests that
NeuLT(Auto) automatically adapts to different do-
mains of datasets and even within the same do-
main, it makes fine-tuned adjustments.

Time Domain. We make statistics on the Top-
N neurons that underwent the most adjustments
in the time domain owing to the manipulations in
the frequency domain (NeuLT(Auto)). It is shown
in Table 10. Similarly, it is evident that NeuLT(Auto)
selects different neurons for datasets from distinct
domains, but within the same domain (e.g., Rest14
(Train) and Rest14 (Test)), the neuron selection
remains mostly consistent with minor adjustments.

Meanwhile, we visualized the magnitude of ad-
justments for these neurons and marked the Top-3
neurons with the most significant adjustments, as
shown in Figure 3. It is noteworthy that, across all
datasets, while the Top-N neurons in the frequency
domain are generally different, the 0-th and 1-st po-
sition neurons in the time domain consistently rank
within the Top-3. It’s evident that the adjustments
to the 0-th and 1-st position neurons are particu-
larly prominent, especially in Rest14 and Twitter. A
rough inference can be made that the adjustments
to these neurons at the 0-th and 1-st positions are
likely to enhance GSL and performance.
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5. Conclusion

In this work, we propose utilizing GSL to induce
latent structures for ABSA by performing a neuron-
level manipulation (NeuLT and NeuLT(Auto)) in the
frequency domain. Extensive experiments and
analyses demonstrate that such neuron-level ma-
nipulation is effective in structure induction and im-
provement of ABSA. Furthermore, we conducted
an in-depth neural-level analysis to explore this
phenomenon. Our exploration is also beneficial to
provide inspiration for other similar domains.

Limitations

We have validated the effectiveness of neuron-level
manipulations for structure induction as well as
ABSA and conducted an in-depth analysis of neu-
ron variations. However, it remains challenging to
establish a direct correspondence between specific
neurons and their functions. This aspect requires
further exploration.
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