@inproceedings{niu-etal-2024-linking,
title = "Linking Adaptive Structure Induction and Neuron Filtering: A Spectral Perspective for Aspect-based Sentiment Analysis",
author = "Niu, Hao and
Wang, Maoyi and
Xiong, Yun and
Yang, Biao and
Jia, Xing and
Guo, Zhonglei",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.926",
pages = "10584--10597",
abstract = "Recently, it has been discovered that incorporating structure information (e.g., dependency trees) can improve the performance of aspect-based sentiment analysis (ABSA). The structure information is often obtained from off-the-shelf parsers, which are sub-optimal and unwieldy. Therefore, adaptively inducing task-specific structures is helpful in resolving this issue. In this work, we concentrate on adaptive graph structure induction for ABSA and explore the impact of neuron-level manipulation from a spectral perspective on structure induction. Specifically, we consider word representations from PLMs (pre-trained language models) as node features and employ a graph learning module to adaptively generate adjacency matrices, followed by graph neural networks (GNNs) to capture both node features and structural information. Meanwhile, we propose the Neuron Filtering (NeuLT), a method to conduct neuron-level manipulations on word representations in the frequency domain. We conduct extensive experiments on three public datasets to observe the impact of NeuLT on structure induction and ABSA. The results and further analysis demonstrate that performing neuron-level manipulation through NeuLT can shorten Aspects-sentiment Distance of induced structures and be beneficial to improve the performance of ABSA. The effects of our method can achieve or come close to SOTA (state-of-the-art) performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="niu-etal-2024-linking">
<titleInfo>
<title>Linking Adaptive Structure Induction and Neuron Filtering: A Spectral Perspective for Aspect-based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maoyi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhonglei</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, it has been discovered that incorporating structure information (e.g., dependency trees) can improve the performance of aspect-based sentiment analysis (ABSA). The structure information is often obtained from off-the-shelf parsers, which are sub-optimal and unwieldy. Therefore, adaptively inducing task-specific structures is helpful in resolving this issue. In this work, we concentrate on adaptive graph structure induction for ABSA and explore the impact of neuron-level manipulation from a spectral perspective on structure induction. Specifically, we consider word representations from PLMs (pre-trained language models) as node features and employ a graph learning module to adaptively generate adjacency matrices, followed by graph neural networks (GNNs) to capture both node features and structural information. Meanwhile, we propose the Neuron Filtering (NeuLT), a method to conduct neuron-level manipulations on word representations in the frequency domain. We conduct extensive experiments on three public datasets to observe the impact of NeuLT on structure induction and ABSA. The results and further analysis demonstrate that performing neuron-level manipulation through NeuLT can shorten Aspects-sentiment Distance of induced structures and be beneficial to improve the performance of ABSA. The effects of our method can achieve or come close to SOTA (state-of-the-art) performance.</abstract>
<identifier type="citekey">niu-etal-2024-linking</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.926</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>10584</start>
<end>10597</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linking Adaptive Structure Induction and Neuron Filtering: A Spectral Perspective for Aspect-based Sentiment Analysis
%A Niu, Hao
%A Wang, Maoyi
%A Xiong, Yun
%A Yang, Biao
%A Jia, Xing
%A Guo, Zhonglei
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F niu-etal-2024-linking
%X Recently, it has been discovered that incorporating structure information (e.g., dependency trees) can improve the performance of aspect-based sentiment analysis (ABSA). The structure information is often obtained from off-the-shelf parsers, which are sub-optimal and unwieldy. Therefore, adaptively inducing task-specific structures is helpful in resolving this issue. In this work, we concentrate on adaptive graph structure induction for ABSA and explore the impact of neuron-level manipulation from a spectral perspective on structure induction. Specifically, we consider word representations from PLMs (pre-trained language models) as node features and employ a graph learning module to adaptively generate adjacency matrices, followed by graph neural networks (GNNs) to capture both node features and structural information. Meanwhile, we propose the Neuron Filtering (NeuLT), a method to conduct neuron-level manipulations on word representations in the frequency domain. We conduct extensive experiments on three public datasets to observe the impact of NeuLT on structure induction and ABSA. The results and further analysis demonstrate that performing neuron-level manipulation through NeuLT can shorten Aspects-sentiment Distance of induced structures and be beneficial to improve the performance of ABSA. The effects of our method can achieve or come close to SOTA (state-of-the-art) performance.
%U https://aclanthology.org/2024.lrec-main.926
%P 10584-10597
Markdown (Informal)
[Linking Adaptive Structure Induction and Neuron Filtering: A Spectral Perspective for Aspect-based Sentiment Analysis](https://aclanthology.org/2024.lrec-main.926) (Niu et al., LREC-COLING 2024)
ACL