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Abstract
Morphological word segmentation splits a given word into its morphemes (roots and affixes), the smallest
meaning-bearing units of language. We introduce a novel approach, called LLMSegm, to surface-level morphological
segmentation leveraging large language models (LLMs). The proposed approach is applicable in low-data settings as
well as for low-resourced languages. We show how to transform the surface-level morphological segmentation task
to a binary classification problem and train LLMs to solve it efficiently. For input, we leverage the information from the
default LLM subword tokenisation, and a custom morphological segmentation using novel encoding. The evaluation of
LLMSegm across seven morphologically diverse languages demonstrates substantial gains in minimally-supervised
settings as well as for low-resourced languages, compared to several existing competitive approaches. In terms of
F1-scores and accuracy, we achieve improved results compared to the competing methods in six out of seven datasets.

Keywords: morphological segmentation, surface-level segmentation, large language models, low-resource
settings

1. Introduction

Morphological word segmentation splits a given
word into its morphemes (roots and affixes), the
smallest meaning-bearing units of language. Com-
putational morphological analysis has the poten-
tial to improve many natural language processing
(NLP) tasks, especially for low-resource languages
(Wiemerslage et al., 2022; Eskander et al., 2020)
and morphologically-rich languages, which contain
a lot of information in morphemes. As part of the
morphological analysis, morphological segmenta-
tion has been specifically addressed because mor-
pheme segments provide explicit information about
word semantics, even for previously unseen words,
and provide an intuitive solution to the problem
of out-of-vocabulary words (Creutz et al., 2007a).
The importance of morphological segmentation
has not only been demonstrated in various down-
stream tasks such as machine translation (Dyer
et al., 2008; Huck et al., 2017), dependency parsing
(Seeker and Çetinoğlu, 2015), and speech recogni-
tion (Creutz et al., 2007b), but it also improves the
fundamental ability of language models to produce
high-quality word representations (Knigawka, 2022;
Hofmann et al., 2021; El-Kishky et al., 2019).

Research distinguishes between two types of
morphological segmentation – canonical segmen-
tation and surface-level segmentation. In canonical
segmentation, the target word is treated as a se-
quence of canonical morphemes that may differ
from its written (surface) manifestation. This type
of segmentation is very interesting from a linguistic
point of view. The second type of segmentation

treats the target word as a string of morpheme
forms that have already deviated from their canoni-
cal representation. Let us take the word "biologist"
as an example: the canonical segmentation would
yield the result "bio+logy+ist", while the surface-
level segmentation would yield "bio-log-ist". The
difference lies in the second morpheme, whose
canonical representation is "logy", while its (sur-
face) manifestation in the target word is "log". In
this paper, we focus on surface-level morphologi-
cal segmentation, also known as morph boundary
prediction or concatenative morphology modeling.

For a morphological segmentation task, la-
beled training datasets are usually small and re-
search has mainly focused on unsupervised, semi-
supervised, and minimally-supervised learning ap-
proaches. The supervised learning approaches
exist and produce superior results if sufficient
data is available, which excludes all mid- and low-
resourced languages. Although pretrained large
language models (LLMs) have been successfully
used in most NLP tasks, to the best of our knowl-
edge, they have not yet been applied to the surface-
level morphological segmentation task. One rea-
son for this is the subword tokenization of the input
to LLMs. A single token spans from a single char-
acter to an entire word. This poses a problem for
supervised tagging approaches that work with char-
acters. A fundamental problem is that token bound-
aries do not match morpheme boundaries, so an
LLM approach shall seemingly focus on character-
level input, which is a serious limitation.

In this work, we overcome the above limitation
of LLM tokenization and provide a novel approach
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that views morphological segmentation as a binary
classification problem suitable for LLMs. For each
word in a labeled dataset, we create the training
examples by adding a morpheme boundary token
after every character in a word. Words augmented
with a morpheme boundary that is present in the
ground truth segmentation are taken as the posi-
tive examples, while the words with boundaries not
present in the ground truth segmentation are con-
sidered as the negative ones. During inference, we
predict for each word the presence of a morpheme
boundary in every possible position and collect the
predictions to form the morphological segmenta-
tion. We evaluate our approach in two different
settings that are challenging for existing methods.
The first setting is relevant for all languages with a
small amount of available annotated data, where
supervised approaches are inappropriate. The sec-
ond setting addresses low-resourced languages
where even unsupervised learning approaches are
limited by the total amount of available language re-
sources. The experiments show high performance
of our approach and improvement over baseline
models.

The paper is organized into five sections. Sec-
tion 2 presents related work on surface-level seg-
mentation, and is followed by Section 3 introducing
the datasets used in our experiments. Section 4
presents the proposed methodology, while we de-
scribe the experimental results in Section 5. We
draw the conclusions and present ideas for further
work in Section 6.

2. Related work

There are many approaches to surface-level seg-
mentation, as well as canonical segmentation. The
introduction of morphological segmentation chal-
lenges enabled systematic comparison of differ-
ent approaches. The MorphoChallenge (Kurimo
et al., 2010b) competition (2005-2010) helped to
focus research interest on surface-level morpho-
logical segmentation and increase the visibility of
systems such as Morfessor Baseline (Creutz and
Lagus, 2002), Morfessor CatMAP (Creutz and La-
gus, 2005), and ParaMor (Monson et al., 2008). On
the other side, Sigmorphon shared task (Batsuren
et al., 2022) enabled comparison of canonical seg-
mentation approaches.

Most of the research in surface-level morpho-
logical segmentation has focused on the develop-
ment and application of unsupervised learning sys-
tems. This is not surprising, since the creation of
datasets with labeled morphological segmentations
is expensive and usually involves several hundred
to several thousand annotated examples. One of
the early systems of this type, Morfessor(Creutz
and Lagus, 2002), still serves as a strong base-

line and is often used for comparison with newer
methods. The Morfessor systems received sev-
eral extensions in the form of Morfessor CatMAP
(Creutz and Lagus, 2005) and Morfessor FlatCat
(Grönroos et al., 2014), which improved the method
and added support for incorporating labeled data
in a form of semi-supervised learning.

Supervised learning methods tackle morpheme
segmentation by treating it as a sequence tagging
task, where each character of a word is assigned a
class indicating its position within a morpheme – be-
ginning, middle, and end of a morpheme. The most
common supervised models use recurrent and con-
volutional neural networks. A popular approach is
to use Conditional Random Fields (CRF) model
trained on character-level bi-directional LSTM net-
works (BiLSTM-CRF). An early work of this type
leveraged CRF model and extended the supervised
approach (Ruokolainen et al., 2013) to a semi-
supervised approach (Ruokolainen et al., 2014).
Instead of CRF model trained on the set of engi-
neered features incorporating linguistic knowledge,
Wang et al. (2016) used LSTM network with a slid-
ing window that automatically learns the structure of
input sequences and predicts morphological bound-
aries. Variants of this system are still present in re-
cent works (Erjavec et al., 2023; Moeng et al., 2022).
Even with a moderate number of labeled examples,
BiLSTM-CRF approaches can be improved upon
with a much simpler CRF model trained on manu-
ally selected features, as in Moeng et al. (2022).

An extension of the CRF approach is the use of a
semi-Markov CRF (see Chipmunk by Cotterell et al.,
2015), which was trained jointly on morphological
segmentation, stemming and morphological tag
classification. This approach learns a supervised
model over labeled data and additionally, leverages
features constructed from spellchecker results and
an explicit list of affixes for the target language.

An interesting work has been started with the
use of adaptor grammars (AG) in morphological
segmentation in Sirts and Goldwater (2013) and
extended with the Eskander et al. (2021). This ap-
proach allows the inclusion of language-specific pri-
ors in the form of grammar rules. The sequence-to-
sequence approach by Kann et al. (2018) showed
promising results by leveraging cross-lingual trans-
fer and learning a single model for four related lan-
guages.

Several other systems, such as Cotterell et al.
(2016), Kann et al. (2016) and Mager et al. (2020),
have been developed for the task of morphological
segmentation, but their focus has been canonical
segmentation, a task closely related, but distinct to,
surface-level segmentation that is the focus of this
work.
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3. Datasets

We use data from multiple languages. As our ap-
proach is supervised, we focus on datasets with
labeled instances. Data from high resource lan-
guages (English, Finnish, Turkish) are publicly avail-
able from the 2010 MorphoChallenge competition
(Kurimo et al., 2010a)1. These datasets consist
predominantly of unlabeled data and only a small
fraction of labeled data. In our experiments, we
use only the labeled data and discard the rest. Al-
though the MorphoChallenge competition also con-
tains data for German, this data is unlabeled, which
is not suitable for our approach. The datasets avail-
able from the competition contain training and val-
idation data but the test set is not publicly avail-
able. For this reason, we repurposed some of the
data as a test set, as follows. When analyzing the
MorphoChallenge validation dataset, we found that
many examples are closely related, e.g., singular
and plural of the same word, and using part of this
data for validation and part for testing purposes
could bias the results. For this reason, we take
100 examples from the training dataset and use
them as validation data, while the remaining 900
examples are used as training data. The entire vali-
dation dataset available from the MorphoChallenge
is used as the test data.

In addition to the MorphoChallenge data, we
use South African language (Swati, Zulu, Xhosa,
and Ndebele) data introduced in Eiselen and Put-
tkammer (2014) and used in Moeng et al. (2022).
The preprocessing, filtering and surface-level seg-
mentation steps for these datasets are detailed in
Moeng et al. (2022), and we use these prepared
datasets for our experiments with the same train-
ing, validation and test splits to allow comparison
with their approach. The sizes of the actually used
dataset are presented in Table 1. For words that
have multiple valid segmentations in the training
data, we use only the first segementation to train
our model. Multiple valid segementations are, on
the other hand, preserved in validation and test
datasets and taken into account during evaluation.

4. Methodology

In Section 4.1, we introduce the novel method LLM-
Segm, a surface-level segmentation method lever-
aging large language models. We present several
baseline models in Section 4.2, while the evalu-
ation measures are outlined in Section 4.3. The
source code of the proposed LLMSegm system is

1Available from: http://morpho.aalto.fi/
events/morphochallenge2010/datasets.
shtml#download

Language Train Validation Test
English 900 100 686
Finnish 900 100 835
Turkish 900 100 760
Swati 9630 1070 5610
Zulu 15683 1743 3208
Xhosa 14778 1643 2861
Ndebele 11448 1273 2479

Table 1: Sizes of the train, validation and test split
for each of the languages used to evaluate the
morphological segmentation.

publicly available2.

4.1. LLMSegm approach
We approach the surface-level morphological seg-
mentation as a binary classification task, where
we determine whether a position within the word
matches a morpheme boundary or not. To train a
segmenter, we have to prepare a dataset. For each
word, we generate training examples so that each
example contains a single split somewhere within a
word. Given a word length of L characters, we gen-
erate L− 1 examples to cover all positions where
morphological boundaries may occur. The labels
assigned to these examples reflect the correct mor-
phological boundaries. The examples of training
instances for the word unbounded are contained
in Table 2. During inference, we predict for each
word the presence of a morphological boundary in
each possible position and collect the predictions
to form the output segmentation.

Target word Ground Truth Train set Label

unbounded un-bound-ed

u•nbounded ✗

un•bounded ✓

unb•ounded ✗

unbo•unded ✗

unbou•nded ✗

unboun•ded ✗

unbound•ed ✓

unbounde•d ✗

Table 2: The training examples of morpheme
boundaries for a target word unbounded. Every
position in the word is labeled with a corresponding
label.

Our novelty lies with the application of powerful
LLMs to the problem of morphological word seg-
mentation. Note that almost all pretrained LLMs
use a subword tokenization algorithm such as Sen-
tencePiece, that forms a vocabulary of the model
and the corresponding tokenizer. Applying the tok-
enizer on the input words produces, for each word,

2https://github.com/sharpsy/
llm-morphological-segmenter

http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml#download
http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml#download
http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml#download
https://github.com/sharpsy/llm-morphological-segmenter
https://github.com/sharpsy/llm-morphological-segmenter


10668

one or more tokens based on this vocabulary. In
our work, each input example presented to the LLM
model contains two occurrences of the target word
separated with a "‡" (word boundary) token. First
occurrence of the word is an unmodified target word
that preserves all tokens used for this word. The
second occurrence of the target word contains a "•"
(morpheme boundary) token inserted somewhere
in the word, as shown in the example below. The
position in the word where the "•" token is inserted
is labeled by the model as either a true boundary
between two morphemes or a position within a sin-
gle morpheme, as shown in Table 2. The insertion
of the morpheme boundary token at the specified
position of the target word forces the tokenizer to
split any token spanning across this position into
two tokens. However, such tokenization risks the
loss of information from the original tokens of the
target word. Thus, to mitigate this issue, the de-
fault tokenization of the target word was retained
and included together with the word boundary to-
ken, ensuring the preservation of valuable linguistic
information. The final input to the LLM tokenizer
on the example of segmentation of the word "un-
bounded" with the morpheme boundary positioned
in the middle (and corresponding to one of the neg-
ative training examples from Table 2), together with
a resulting list of tokens, would look like:

Tokenizer input: "unbounded‡unbo•unded"

Tokens: un, bound, ed, ‡, un, bo, •, und, ed
A tokenizer input from above is a single example
containing two occurrences of the target word, an
unmodified (unbounded) and augmented with a
morpheme boundary (unbo•unded), together with a
list of tokens created by the tokenizer applied to this
input. The embeddings of the two tokens added to
the vocabulary ("•" and "‡")3. are initialized to zero
and the model learns their representation during
fine-tuning.

For all experiments, we use the Glot500-m large
language model (LLM) pretrained on a corpus of
511 languages (ImaniGooghari et al., 2023). We
fine-tune the model using our binary classification
task with the AdamW optimizer (Loshchilov and
Hutter, 2017) using batches of 256 examples. After
each epoch, we compute the F1-score on the val-
idation set; the model with the best score is used
after the training is completed. We use the linear
learning rate schedule with 20 warm-up iterations
to a learning rate of 2× 10−5 and set the dropout to
0.01 during training for a total of 30 epochs4. Due

3The implementation uses custom tokens not present
in the vocabulary, "•" and "‡" are used here for the pre-
sentation purposes.

4The used optimizer, learning rate, and dropout are
default values of the fine-tuning procedure implemented

to class imbalance, we used different weights for
each class. The weights for each of the C classes
were calculated using the following heuristic5:

wi =
N

|C| · |Ci|

In the above equation, wi denotes the weight of the
examples of class i, N denotes the total number
of training examples, |C| denotes the number of
classes (2 for binary classification), and |Ci| de-
notes the number of examples within the class i.

Our method is novel compared to related work
(see Section 2). Approaches that use neural net-
works are widely used for the task of surface-level
morphological segmentation, but none uses pre-
trained LLMs, such as BERT (Devlin et al., 2019)
(or Glot500 in our case). Instead, character-level
models in the form of bidirectional LSTM networks
are used, often coupled with Conditional Random
Fields (CRFs), as in Erjavec et al. (2023); Moeng
et al. (2022). The main reason for the lack of LLM-
based approaches to morphological word segmen-
tation is their own subword tokenization. A subword
token, used in LLM such as BERT, often spans mul-
tiple characters or even the whole word. In many
cases, token boundaries are not aligned with mor-
pheme boundaries and tagging approaches such
as (Ruokolainen et al., 2013) are not applicable.
We overcame these issues by proposing a com-
plementary scheme that utilizes the information
present in the existing statistical subword tokeniza-
tion and additional fine-tuning on (at least a few)
examples of correct surface-level morphological
segmentation. The advantage of the proposed ap-
proach compared to a wide range of segmentation
models presented in Section 4.2 is demonstrated
in Section 5.

4.2. Baseline models
In this section, we present a range of morphologi-
cal segmenters used as baselines in our empirical
evaluation.

4.2.1. Glot500 tokenizer

Our approach relies on fine-tuning the Glot500
model introduced in ImaniGooghari et al. (2023).
In order to understand the benefits of fine-tuning
the model, and disentangle the performance of the
model from the inherent segmentation introduced

in the HuggingFace Transformers library available at
https://github.com/huggingface/transformers

5The heuristic corresponds to the ’balanced’ strat-
egy of the class weight calculation implemented at:
https://scikit-learn.org/stable/modules/
generated/sklearn.utils.class_weight.
compute_class_weight.html

https://github.com/huggingface/transformers
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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by the underlying tokenizer, we evaluate the tok-
enizer on its own. The Glot500 tokenizer is derived
from the vocabulary of the XLM-R model (Conneau
et al., 2020) and extended with additional 151 thou-
sand new tokens, added to the existing 250 thou-
sand tokens present in the XLM-R. New tokens are
selected by training a new tokenizer using Senten-
cePiece (Kudo and Richardson, 2018) algorithm
with unigram language model (Kudo, 2018) on train-
ing data collected in ImaniGooghari et al. (2023).

4.2.2. Chipmunk

ChipMunk is a supervised segmentation, morpho-
logical analysis, and stemming tool presented in
Cotterell et al. (2015). It is based on the Semi-
Markov Conditional Random Fields (Semi-CRF)
model (Sarawagi and Cohen, 2004), which has
been shown to work well for morphological anal-
ysis. It uses custom features like a list of affixes
for the target language and spellchecker results
together with n-gram context features from Ruoko-
lainen et al. (2013). In our benchmarks, we do
not train a Chipmunk model but use publicly avail-
able pretrained models6. Where multiple models
are available for the target language, we select the
newest model. In contrast to our model that was
trained using a single segmentation, Chipmunk can
make use of training data containing multiple valid
segmentations.

4.2.3. Morfessor

Morfessor is a class of morphological segmenta-
tion methods based on a generative probabilistic
model. Morfessor searches for the smallest morph
lexicon that strikes a balance between the accu-
rate encoding of the training corpus and the size of
that lexicon. We use publicly available implementa-
tion7 described in Virpioja et al. (2013). The model
is trained in semi-supervised mode, i.e. labeled
training data is provided along with the unlabeled
validation data.

4.2.4. Feature-based conditional random
fields

Use of conditional random fields for the task of
morphological segmentation was first presented in
Ruokolainen et al. (2013) and successfully applied
in a setting with a limited number of labeled exam-
ples. The problem is formed as a sequence labeling
task where each character of a word is assigned a
class corresponding to its position in a morpheme
– the beginning of a morpheme, the middle, or the
end of a morpheme. As a special case, a class
for the single character morpheme is sometimes

6https://cistern.cis.lmu.de/chipmunk/
7https://morfessor.readthedocs.io/

used. Moeng et al. (2022) have shown that a CRF
model using manually created features can outper-
form a neural network in a limited-data setting on
a morphological segmentation task. They used
both binary features on characters (is the character
a vowel or a consonant, is it uppercase or low-
ercase letter), as well as character n-grams. An
additional advantage of using such features is that
user-defined linguistic priors can be easily incor-
porated into the model. In our evaluation, we use
publicly available models from Moeng et al. (2022)
and compare them with our approach.

4.2.5. BiLSTM-CRF

A character-based neural network coupled with con-
ditional random fields (CRF) is a popular choice for
morphological segmentation when at least some
labeled data is available. The model is trained on
the sequence labeling task as described in the pre-
vious section (Section 4.2.4). One reason for using
the neural network is that CRF model requires a set
of features to be trained. Neural network can take
over the task of feature extraction and learn those
features from the data. This approach was used
in Moeng et al. (2022) and Erjavec et al. (2023).
We use the publicly available models presented in
Moeng et al. (2022) using the same training, vali-
dation, and testing datasets for Zulu, Swati, Xhosa,
and Ndebele languages. In addition, we train mod-
els from Erjavec et al. (2023)8 on each language
described in Section 3.

4.3. Evaluation measures
To compare different approaches, we use the
boundary precision recall (BPR) metric. It is a
widely used (Ruokolainen et al., 2016) and intu-
itive metric for evaluating the correctness of the
morphological segmentation models by compar-
ing the positions of splits in the ground truth and
predicted segmentations. Precision (P), recall (R),
and BPR F1 score can be defined by counting the
morpheme boundaries that match the ground truth
(TP), the boundaries missed by the prediction (FN),
and the boundaries predicted by the model but are
not present in the ground truth (FP):

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2 · P ·R

P +R

As evident from the definitions, the BPR metric
is closely related to the standard metrics in informa-
tion retrieval (IR). Morphological segmentation, in-
terpreted as an IR task, can be seen as a retrieval of
morpheme boundary positions within words. Due
to class imbalance, we use macro-averaged met-
rics implemented in the morphoeval Python pack-

8Provided by the authors of the paper

https://cistern.cis.lmu.de/chipmunk/
https://morfessor.readthedocs.io/
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age9. In case of multiple valid segmentations, BPR
takes into account the ground truth segmentation
that provides the best match with the predicted
segmentation. In addition to measuring the BPR
F1-score, which evaluates morpheme boundaries,
we also evaluate the word segmentation accuracy,
defined as the proportion of words that were entirely
correctly segmented. This definition of accuracy is
used in (Kann et al., 2018) and Erjavec et al. (2023).
We extend it here to the case of multiple valid seg-
mentations by counting a correct prediction if any
of the ground truth segmentations matches the pre-
diction, analogous to the BPR metric.

5. Results

In this section, we compare the performance of the
LLMSegm approach with the baseline models. The
results (F1-scores and accuracy), measured on the
test sets are presented in Table 3. The largest
difference in interpretation of BPR F1-score and ac-
curacy is in their handling of partial matches. The
F1-score assigns partial credit for a partial match,
while accuracy counts only completely correct seg-
mentations.

The simplest baseline, tokeniser of the Glot500
model, achieves high accuracy on Swati language
as well as notable F1-score on English. While this
model is superior to some specialized morphologi-
cal segmentation models on English, the best mod-
els in our evaluation, LLMSegm, still significantly
outperforms it. The accuracy in the segmentation of
Swati can be attributed to the prevalence of short
words, ranging from two to four characters and
composed of a single morpheme in the test cor-
pus. These short words are effectively tokenized
as individual tokens, which likely contributes to the
accuracy scores.

Publicly available Chipmunk models are avail-
able only for English, Finnish, Turkish and Zulu,
and we evaluate them on our test data. Like-
wise, BiLSTM-CRF and Feature-CRF models from
Moeng et al. (2022) are available only for Swati,
Xhosa, Zulu and Ndebele. We train the rest of the
models on our training data, with a minor differ-
ence of Morfessor that additionally trains on unla-
beled validation data, as it is a semi-supervised
model. Chipmunk model performs the best on the
Finnish dataset, followed by our LLMSegm method.
On all other languages, the LLMSegm method is
better than other approaches in both minimally-
supervised comparison using only 900 labeled ex-
amples and in comparisons using low-resourced
language datasets.

The Morfessor algorithm trained in semi-
supervised mod was one of the fastest models to

9https://github.com/svirpioj/
morphoeval

train. With a modest dataset comprising 900 la-
beled examples and 100 unlabeled instances, the
algorithm yielded commendable BPR F1-scores.
Nonetheless, the low accuracy metrics suggest that
the model tends to generate only partially correct
results.

Although in their paper, Moeng et al. (2022) re-
port much higher performance for morphological
segmentation on the South African languages than
our results, we were not able to reproduce those re-
sults using publicly available models and test sets.
The authors use custom evaluation code and dif-
ferent F1 evaluation metrics (we use the F1-scores
calculated by the BPR metric), while accuracy re-
sults are not provided. Thus, we reproduce both
our metrics using their models.

Slightly different implementation of the BiLSTM-
CRF models from Erjavec et al. (2023) performs
better than the models from Moeng et al. (2022) and
matches the level of performance of feature based
CRF from Moeng et al. (2022) on this dataset. The
performance of the model from the Erjavec et al.
(2023) on English, Finnish and Turkish is signifi-
cantly lower than on South African languages, but
this is to be expected given the supervised nature of
the model and amount of training examples present
in each language.

Our approach achieves high performance on all
datasets used in our experiments. In related work,
one can find reported results on different data splits
of the MorphoChallenge data, but due to lack of
publicly available test data for English, Finnish and
Turkish, we cannot compare our results directly –
but results presented here look favorably for our
method. For example, test set BPR F1-scores re-
ported in Eskander et al. (2021) using Adaptor
Grammars are measured on the MorphoChallenge
data, but test dataset was constructed in a different
way. Compared to those results, ours are 5 to 12
percentage points higher than the results reported
for English, Finnish and Turkish. Moreover, their
best models often require explicit linguistic informa-
tion.

In minimally-supervised setting, LLMSegm im-
proved on the Chipmunk results using only 900
labeled examples on English and Turkish dataset.
In Finnish, the result is slightly lower than the Chip-
munk’s. In addition to using annotated data of com-
parable size, Chipmunk model is trained with the
information on several objectives and contains ex-
plicit information about possible affixes for a target
language as well as spell-checker results. Tests
done on low-resource languages show improved
performance over all baselines. Results evaluated
using accuracy and BPR F1-score follow the same
trend, except the accuracy shows lower absolute
values. This is to be expected as any mistake in
the segmentation on the level of a word is reflected

https://github.com/svirpioj/morphoeval
https://github.com/svirpioj/morphoeval
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Segmenter / Language English Finnish Turkish Swati Zulu Xhosa Ndebele
BPR F1-score

Glot500 tokenizer (ImaniGooghari et al., 2023) 60.18 45.32 50.39 47.57 42.55 42.58 40.00
Morfessor (Virpioja et al., 2013) 47.27 55.42 73.78 65.82 70.20 73.25 65.91
Chipmunk (Cotterell et al., 2015) 87.19 88.46 82.13 – 75.02 – –
Feature-CRF (Moeng et al., 2022) – – – 85.63 81.50 81.87 77.01
BiLSTM-CRF (Moeng et al., 2022) – – – 59.01 82.01 76.15 75.65
BiLSTM-CRF (Erjavec et al., 2023) 52.45 21.13 49.95 85.20 80.42 81.91 78.64
LLMSegm (ours) 89.37 84.44 87.69 90.68 86.28 85.14 83.44

Accuracy
Glot500 tokenizer (ImaniGooghari et al., 2023) 27.41 5.39 8.42 55.81 12.31 13.39 8.83
Morfessor (Virpioja et al., 2013) 6.71 8.26 20.53 42.03 34.85 38.48 27.39
Chipmunk (Cotterell et al., 2015) 59.77 65.63 52.03 – 34.69 – –
Feature-CRF (Moeng et al., 2022) – – – 63.89 49.78 52.36 44.66
BiLSTM-CRF (Moeng et al., 2022) – – – 58.06 53.71 36.21 37.35
BiLSTM-CRF (Erjavec et al., 2023) 26.53 4.43 9.47 68.24 48.04 48.20 44.25
LLMSegm (ours) 68.80 45.39 52.11 73.85 62.47 59.70 55.43

Table 3: Results of different morphological segmentation methods on seven languages evaluated using the
BPR F1-score and accuracy. The English, Finnish and Turkish datasets are from 2010 MorphoChallenge
(Mikko Kurimo and Turunen, 2010) and represent well resourced languages with a small sample of
annotated data. The Swati, Zulu, Xosa, and Ndebele datasets from Moeng et al. (2022) represent low-
resourced languages with more annotated data.

in the accuracy, while F1-score better reflects an
average performance of the model to detect a split
within a word.

6. Conclusion and future work

We introduce a novel approach to surface-level
morphological segmentation leveraging the large
language models applicable in low-data setting as
well as in low-resourced languages. We treat the
problem as a binary classification problem and train
a large language model to solve it. The novelty of
the proposed approach is in encoding the input to
utilize the information from existing subword tok-
enization and language knowledge in BERT-like
models to fine-tune the LLMs for the morphological
segmentation task. We use Glot500 model from
ImaniGooghari et al. (2023) and fine-tune it on the
labeled dataset. We test the proposed approach on
7 languages with diverse morphological complexity
and improve on existing methods in most of the
experiments (6 out of 7 languages), both in terms
of F1-score and accuracy.

While comparable morphological segmentation
systems often use language-specific features, like
handcrafted rules (Moeng et al., 2022), lists of com-
mon affixes and a spellchecker (Cotterell et al.,
2015), or require a large amount of data (Grön-
roos et al., 2014), our system can leverage small
amount of annotated data to adapt to a large num-
ber of languages supported by massively multilin-
gual BERT-like models.

During training, our model assumes a single valid
segmentation for each word and leverages inde-
pendence of a morpheme boundary on positions

of other boundaries. Those assumptions are not
realistic as some words can have multiple valid seg-
mentations – a property that is challenging for mod-
eling. Approaches based on neural networks and
CRFs (including Chipmunk) are limited to a single
prediction and approaches based on the maximum
likelihood optimization (like Morfessor) can produce
multiple segmentations only if the desired number
of segmentations is known in advance (N-best strat-
egy). In contrast to those approaches, BERT-like
models (like ours) are inherently strong in using
contextual information; therefore, we would like to
extend our approach and leverage contextual infor-
mation to provide context-aware segmentation in
those cases.

Our approach can be potentially improved by
extending it with the morphological tag classifier
that predicts the most likely inflectional features
of the target word together with its segmentation.
Additionally, cross-lingual performance as evalu-
ated in Kann et al. (2018) could improve the model
performance when morphological segmentation of
words in related languages is jointly trained. We
will explore these directions in future work.

In addition, it makes sense to use the obtained
morphological segments in downstream tasks such
as POS tagging for morphologically-rich languages.
Finally, it would be interesting to test the perfor-
mance of LLMs such as ChatGPT or LLaMa. While
these models shall perform well using in-context
learning for well-resourced languages, their abili-
ties on low-resourced languages, as the ones in
the African corpora, is questionable.
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7. Limitations

Morphological segmentation approach described
in this paper implies the use of pretrained large lan-
guage model even in low-resource scenario. A lim-
iting factor is that low-resourced languages are less
likely to be supported by large language models
due to not having sufficient training data to support
pretraining of those models. For languages totally
left-out of the multilingual LLM training, the method
is thus not directly applicable.

Input to the LLM is constructed from two occur-
rences of the target word in order to retain the lin-
guistic information encoded in the tokens learned
during pretraining, but different variants of the in-
put are not explored. It’s unclear if the proposed
model input construction significantly affects the
model’s performance or if the model merely learns
the most typical tokenization of the affix in the tar-
get word. Clarifying this would require an ablation
study, which would assess how the model performs
when the unmodified target word is not provided.

While our method is well-suited for languages
with linear word formation, where affixes are ap-
pended to the stem, it is less straightforward for han-
dling non-linear morphological processes. Semitic
languages, which feature complex verb construc-
tions by interleaving the root with a predefined pat-
terns, pose a challenge to our approach, as they
lack clear morpheme boundaries and require addi-
tional consideration.
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