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Abstract
Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task. Recent work using
model ensemble methods based on voting can effectively mitigate over-correction and improve the precision of
the GEC system. However, these methods still require the output of several GEC systems and inevitably lead
to reduced error recall. In this light, we propose the LM-Combiner, a rewriting model that can directly modify
the over-correction of GEC system outputs without a model ensemble. Specifically, we train the model on an
over-correction dataset constructed through the proposed K-fold cross inference method, which allows it to directly
generate filtered sentences by combining the original and the over-corrected text. In the inference stage, we
directly take the original sentences and the output results of other systems as input and then obtain the filtered
sentences through LM-Combiner. Experiments on the FCGEC dataset show that our proposed method effectively
alleviates the over-correction of the original system (+18.2 Precision) while ensuring the error recall remains
unchanged. Besides, we find that LM-Combiner still has a good rewriting performance even with small parameters and
few training data, and thus can cost-effectively mitigate the over-correction of black-box GEC systems (e.g., ChatGPT).
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1. Introduction

Grammatical error correction (GEC) is a formally
simple but challenging task (Wang et al., 2020;
Bryant et al., 2022), which aims to identify and
correct grammatical errors present in a sentence.
As a basic application task, it has a wide range
of applications in areas such as search engines,
automatic speech recognition (ASR) systems,
and writing assistants (Omelianchuk et al., 2020).
In terms of model architecture, the mainstream
approaches can be categorized into the auto-
encoding Seq2Edit model and the auto-regressive
Seq2Seq model.

Over-correction has always been a challenge in
GEC tasks (Tang et al., 2023), which can seriously
affect the precision rate of the GEC system. As
shown in Figure 1, the over-correction problem is
that the error correction system modifies the cor-
rect part of a sentence to some other expressions.
Although sometimes these expressions don’t differ
much from the meaning of the original sentence, as
a correction system, excessive modification of the
input can still cause annoyance to the user. Com-
pared to English GEC, Chinese GEC faces a more
severe over-correction problem due to the lack of
training data and more difficult errors. Specifically,
the previous Chinese GEC task datasets are mainly
sourced from non-native learners, with low-quality
and inconsistently annotated training sets. In ad-
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Input Text
    宴会上，人们品尝着美食和歌舞。
（At the banquet, people tasted delicious food,
song and dance.）

GEC System Output
    聚会上，人们享受着美食和歌舞。
（At the party, people enjoyed delicious food
, song and dance.）

Rewritten Output
    宴会上，人们享受着美食和歌舞。
（At the banquet, people enjoyed delicious food
, song and dance.）

provide references

correct

rewrite

Figure 1: An example of the problem of over-
correction, where red represents grammatical er-
rors, blue represents over-correction, and green
represents correct changes. LM-Combiner can di-
rectly rewrite the system output with reference to the
original sentence, filtering out the over-corrections.

dition to disfluencies such as spelling errors in En-
glish, most of the errors in CGEC involve syntactic
and semantic information, which are difficult and
make the model prone to false corrections. The
above factors result in the precision of the same
baseline model on the Chinese dataset usually be-
ing only about half of the rate on the English dataset.
It can be said that over-correction is a key difficulty
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of CGEC task and deserves a deeper study.
Nowadays, model ensemble is a primary solution

to the problem of over-correction. Li et al. (2018);
Liang et al. (2020) view error correction as different
types of edit labels and vote to integrate the system
based on the labels. Zhang et al. (2022a) integrate
multiple architectures of CGEC systems through
the method of label voting, improving the precision
rate significantly. Tang et al. (2023) integrate the
outputs of multiple error correction systems at differ-
ent granularities by computing the perplexity (PPL)
through a language model to obtain the final output.
While the above methods can improve the final pre-
cision rate, they all suffer from two key problems
that need to be solved. (1) Excessive Cost. As
ensemble methods, they typically require the re-
sults of several models, leading to greater costs in
the training phase and longer time in the inference
phase. (2) Reduced Recall. Current methods for
alleviating over-correction all lead to a significant
decrease in error recall rate, which seriously af-
fects the usability of the correction system. Voting
methods inevitably lead to some decrease in re-
call, and PPL-based methods can’t make accurate
judgements on various domain datasets without
fine-tuned LMs.

To better mitigate the problem of over-correction,
we propose the LM-Combiner, a trainable LM-
based text rewriting model. It can filter the output
of a GEC system without a model ensemble, sig-
nificantly reducing the problem of over-correction
while ensuring as much error recall as possible. In
summary, we decouple the over-correction prob-
lem from the Chinese grammatical error correction
task and treat it as a post-processing rewriting task.
Different from the model ensemble methods, the
rewriting model simply takes the original sentence
and the result of a single GEC system as inputs,
and directly outputs suitable combinations of the
two sentences as results.

Specifically, we design the LM-Combiner at the
data and model level to ensure its effectiveness. At
the data level, we propose an overcorrected dataset
construction method based on the idea of k-fold
cross validation. We divide the training set mul-
tiple times, use parts for the model training, and
inference on the remaining data to obtain naturally
overcorrected sentences. In addition to this, we
propose the gold labels merging approach to fur-
ther decouple the correction task and the rewrit-
ing tasks, so that the LM-Combiner only needs to
select from the over-correction and right correc-
tion in output sentences of GEC systems. At the
model level, we are inspired by Tang et al. (2023) to
further explore the application of causal language
models to the Chinese grammatical error correc-
tion task. Compared to directly using PPL as a
criterion, we find that after fine-tuning on the cor-

responding domain dataset as a rewriting model,
GPT2 can better retain the right correction while
filtering over-correction, resulting in higher recall.

We evaluate the proposed method on the
FCGEC dataset (Xu et al., 2022) sourced from a
native speaker corpus. With the rewriting of the LM-
Combiner, we improve the precision of the baseline
model by 18.2 points, while ensuring that the recall
remain basically unchanged, and the F0.5 improves
by 5.8 points to reach the level of SOTA. Besides,
experiments show that LM-Combiner has small re-
quirements on model size and data quantity, and
can achieve excellent results just by training with
base-level models and thousand-level data quan-
tity.

The main contributions of this paper can be sum-
marized as follows:

• We propose a novel rewriting model, LM-
Combiner, which can effectively mitigate over-
correction of the existing GEC systems without
model ensemble.

• We propose k-fold cross inference, a construc-
tion method for over-correction data. It can
stably construct over-corrected sentences for
LM-Combiner training from existing parallel
corpora.

• Experiments show that the proposed rewriting
method can greatly improve the precision of
the GEC system while maintaining the recall
constant.

• We also find that the LM-Combiner achieves
good rewriting results even with small param-
eters and few training data, which provides
a cost-saving solution to alleviate the over-
correction of existing black-box GEC systems.

We will release our code and model1.

2. Method

The core of our proposed method is a rewriting
model, which can alleviate over-correction in the
original GEC system by direct rewriting. The work-
flow of the correction-rewriting framework is shown
in Figure 2. Inspired by the recent use of LM for
model ensemble (Tang et al., 2023) in the CGEC do-
main, we train an LM rewriting model that uses only
the original sentence and the output of a single sys-
tem as inputs, which can filter out over-correction
and retain as many right correction as possible.
Specifically, we try the application of causal LM on
CGEC (Section 2.1), based on which we propose a
rewriting model LM-Combiner (Section 2.2) and an
over-correction data construction method (Section
2.3) for the model training.

1https://github.com/wyxstriker/LM-Combiner

https://github.com/wyxstriker/LM-Combiner
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LM-Combinerinput sentence GEC system candidate sentence

LM-Combinerinput sentence GEC system candidate sentence

gold sentence

rewritten sentence

rewritten sentence

Training Stage

Inference Stage

merge M2 labels

compute Loss

provide references
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Figure 2: The flowchart of our error correction-rewriting framework. In the training phase, we construct
candidate sentences containing GEC systems over-correction by k-fold cross inference and gold labels
merging (see Section 2.3 for details). Then, we train the model to generate gold sentences based on the
original and candidate sentences (Section 2.2). In the inference phase, LM-Combiner directly rewrites the
system output based on the original sentence.

2.1. Causal LM For CGEC

The current Seq2Seq-based GEC models are
mainly implemented by considering grammatical
error correction as a neural machine translation
task (Junczys-Dowmunt et al., 2018). Therefore
it is natural to use models with encoder-decoder
architecture (Bart (Lewis et al., 2019), T5 (Raffel
et al., 2020), etc.) to synthesize the capabilities
of NLU and NLG for text error detection and cor-
rection. Recently, many causal LM-based mod-
els (Brown et al., 2020; Wei et al., 2021; Touvron
et al., 2023) with large-scale corpora and param-
eters have achieved excellent results on various
natural language processing tasks including CGEC.
It is meaningful to explore the application of rela-
tively small-scale causal LMs like GPT2 (Radford
et al., 2019) to CGEC task.

For the CGEC task, one of the most obvious ways
to use causal LMs is letting the model continue to
write the modification result based on the original
sentence input. The inputs to the model during the
training phase S can be formulated as:

S = <sos>X1X2...Xm<sep>Y1Y2...Yn (1)

where X represents the sentence to be corrected
of length m and Y represents the correct sentence
of length n. <sos> represents the start of genera-
tion, and <sep> marks the completion of input and
prompts the model to start generating results. The
training labels are obtained by shifting the input as
in the traditional LM task, and in order to ensure
that the model learns to correct errors, the final
training objective of the model is the loss of the

correct sentence part, which can be formulated as:

LCausal =

j∑
k=i

−log(P (tk|t0t1...tk−1; θ)) (2)

where θ is the set of parameters of the language
model, i represents the start index of the correct
sentence Y , j represents the end index of the cor-
rect Y , and ti represents the ith token in the model
inputs like Equation 1. Although the experiments
in table 1 show that the causal LM lacks the ability
to correct errors on CGEC compared to the tradi-
tional Bart model, its higher precision rate inspires
us to employ it as a rewriting model to alleviate the
over-correction problem.

2.2. LM-Combiner Model
Based on the performance of causal LM on the
CGEC dataset, we propose the text rewriting model
LM-Combiner to deal with the over-correction of
the original GEC system. As shown in figure 3,
LM-Combiner takes the original sentence and the
potentially overcorrected candidate sentences as
inputs and directly generates the rewritten sentence
as the final output of the GEC system. The can-
didate sentences are the outputs of the GEC sys-
tem, and this method can be regarded as a kind
of soft ensemble of the original sentences and the
output sentences of a single model. We first de-
scribe the details of LM-Combiner at the model
level in this section, and the specific training data
construction methods are presented in Section 2.3.
Unlike model ensemble methods based on PPL,
LM-Combiner is trained to generate rewritten cor-
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rect sentences directly from contextual inputs (in-
puts and outputs of the GEC system). Similar to
Section 2.1, we adopt causal LM as the backbone
of our approach. The inputs to the model S can be
formulated as:

S = <sos>Xsrc<cat>Xcandi<sep>Ytgt (3)

where Xsrc represents the original input sentence,
Xcandi represents the error correction result of the
existing model, and Ytgt represents the correct gold
sentence. The meaning of the special token is the
same as in Equation 1, and <cat> is used as a split
label between the original and candidate sentences.
Like the normal GEC model, in the training phase
LM-Combiner only calculates the loss of the correct
sentence part, which can be formulated as:

LCombiner =

j∑
k=i

−log(P (tk|t0t1...tk−1; θ)) (4)

where θ is the set of parameters of the language
model, i and j are the start and end indices of the
sentence Ytgt.

The structure of the LM-Combiner is relatively
simple and straightforward, and the key to this
model’s performance is the way in which the sen-
tence Xcandi is obtained during the training phase.
The method works only if the Xcandi conforms to
the distribution during the testing phase that cor-
rects a certain amount of error but has a partly
over-correction problem.

2.3. Dataset Construction
Over-corrections obtaining The main objective
in the data construction phase is generating can-
didate sentences containing right correction and
over-correction for each parallel corpus sample.
Due to data exposure, it is not possible to obtain
high-quality over-correction cases by directly infer-
ring on the corpus with a fully trained model. To
address this issue, we propose a data construction
method based on k-fold cross inference. The spe-
cific process is shown in Algorithm 1. Firstly, we
randomly divide the training set into K copies. Sub-
sequently, we use the model obtained by training
on k-1 copies to infer partial candidate sentences
on the remaining data. Eventually, with many iter-
ations, we get the candidate sentences of the full
training set that correspond to the same distribution
as the testing phase. Specifically, for the FCGEC
dataset, we find that setting k to 4 already achieves
good results.

Gold Labels Merging With k-fold cross inference,
we ensure that the model always infers on data not
used for training. This allows us to obtain the same
distribution of over-correction as in the test phase,

Algorithm 1: K-fold Cross Inference
Input: D = {(x1, y1), ..., (xn, yn)}, where xi

is the original sentence with the error,
yi is the corrected sentence. The
hyper parameter K.

Output: Dcandi =
{(x1, z1, y1), ..., (xn, zn, yn)}, where
zi is the candidate sentence that
contains corrective modifications
and over-corrections.

Dcandi ← {};
Randomly divide D into K copies DSplit;
foreach Di in DSplit do

Dtrain = D −Di;
Train on Dtrain to get the model θi;
Obtain the inference result Zi of the
model θi on Di;

Merge Zi as candidate sentences with
Di to get Dmerge;
Dcandi = Dcandi ∪Dmerge;

Return Dcandi;

but at the same time doesn’t guarantee that the
model corrects all errors. Because the training
goal is correct sentences, if there is missing error
correction in the candidate sentence it will make
the rewriting model still have to learn a part of the
error correction task. In order to be able to com-
pletely decouple the two tasks of error correction
and rewriting, we add correct corrections to the can-
didate sentences through MaxMatch (Dahlmeier
and Ng, 2012) (M2) labels, so that the rewriting
model only needs to complete the task of filtering
over corrections and correct corrections in the can-
didate sentences. Specifically, we integrate the M2
labels of the candidate and gold sentences, priori-
tize the labels of the gold sentence when indexing
conflicts, and collaborate the final merged set of
M2 labels to the original sentence to obtain the final
candidate sentence.

Inference stage In the inference phase, we di-
rectly use the real output of the error correction
system as candidate sentences. We expect that
the LM-Combiner trained on the above data can
compare the original and candidate sentences to
filter over corrections and retain right corrections.

3. Experiment

3.1. Settings
Dataset Restricted by the lack of data, previous
CGEC tasks mainly use labeled datasets collected
from Chinese as a Foreign Language (CFL) learner
sources. However, Tang et al. (2023) have discov-
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Figure 3: Comparison between the PPL-based approach and our approach. Both methods take the
original sentence and the output of GEC system as input. In the figure, gray squares represent unmodified
tokens, green squares represent rightly corrected tokens, and red squares represent overcorrected
tokens. Existing work using PPL to rerank different candidate sentences can improve the precision rate of
the system, but the judgment is not accurate enough because the LM is not trained on the domain data,
leading to reduced recall. The LM-Combiner, trained on constructed candidate sentences, is better able
to distinguish over-correction and generate results with higher recall end-to-end.

ered by way of human inspection that there is a
distributional inconsistency between CFL corpus
labeling distributions and native speakers, which
may lead to unrealistic metrics. In recent years,
more and more scholars have been working on the
construction of CGEC datasets for native speaker
corpora, Xu et al. (2022) provide a large-scale multi-
reference corpus named FCGEC sourced from
native speakers. Compared to CFL, the CGEC
dataset from native speakers is more standardized
and has higher annotation quality, but also includes
more complex grammatical errors. We adopt the
FCGEC dataset as the main dataset for our experi-
ments, which contains 36,340 sentences of training
data, 2,000 sentences of validation set, and 3,000
sentences of test set.

Evaluation metrics We follow Zhang et al.
(2022a)’s setup by using character-level edit met-
rics to measure the error correction performance
of each model. For the validation set experiments,
we use the official evaluation tool ChERRANT 2

to evaluate the model based on correction span’s
P/R/F0.5. As for the test set, we obtain the same

2ChERRANT is a Chinese GEC evaluation tool that
refers to ERRANT, the mainstream GEC evaluation tool
in English.

evaluation metrics by submitting the system results
in CodaLab 3 online platform.

Model selection Reference to mainstream meth-
ods of CGEC, our main experiment adopts the
model of Bart (Lewis et al., 2019) and GPT2 (Rad-
ford et al., 2019) architectures as the backbone
network. We use the Chinese Bart model trained
by Shao et al. (2021) and the series of Chinese
GPT2 models trained by Zhao et al. (2019, 2023) to
obtain a good performance on the CGEC task. Re-
ferring to other related work based on the Seq2Seq
model (Zhang et al., 2022a; Li et al., 2023a), we
chose Bart-Large and the equivalent scaled GPT2-
medium as the backbone in the main experiment
in order to make a fair comparison, and the LM-
Combiner also uses the same settings as the GPT2
baseline.

Model hyperparameters As a general optimiza-
tion method, in order to compare the enhancement
effect more intuitively, we don’t employ some com-
mon training techniques in the GEC field (e.g.,
Src-drop (Junczys-Dowmunt et al., 2018), label-
smoothing (Szegedy et al., 2016), etc.) in the

3https://codalab.lisn.upsaclay.fr/competitions/8020

https://github.com/HillZhang1999/MuCGEC/tree/main/scorers/ChERRANT
https://codalab.lisn.upsaclay.fr/competitions/8020
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model training phase. For both models, we use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with 5e-5 learning rate, and 32 batch size for train-
ing. We use the polynomial strategy as a warm-up
strategy for learning rate. Considering the differ-
ence in model architectures, the maximum sen-
tence lengths of the Bart and GPT2 models are
256 and 512. In the testing phase, both generative
models inference using beam search with a beam
size of 4.

3.2. Baseline Approaches
We select several common methods with Seq2Edit
and Seq2Seq architectures as baseline models,
and pick the one with the largest recall as the sys-
tem output to validate the effectiveness of the rewrit-
ing model. Our adoption of Chinese GEC model
is largely referenced by Zhang et al. (2022a); Xu
et al. (2022)’s related work.

• LaserTagger (Malmi et al., 2019) is a text gen-
eration method based on editing operations
that improves the inference speed and reduces
the data requirements of the model for the text
generation task.

• PIE (Awasthi et al., 2019) leverages the power
of pre-trained models to efficiently correct
grammatical errors through iterative edit tag
prediction.

• GECToR (Omelianchuk et al., 2020) further
refines the custom token-level edit tags to map
more diverse errors.

• STG (Xu et al., 2022) completes complex gram-
matical error correction by pipelining three self-
encoding models, Switch, Tagger, and Gener-
ator, and achieves the SOTA on the FCGEC
dataset by jointly training three models.

• Bart (Lewis et al., 2019; Zhang et al., 2022a)
model has achieved good results on the
CGEC task with its denoising pre-training task,
and can be used as a representative of the
Seq2Seq model.

• GPT2 (Radford et al., 2019) model is typically
used for generative tasks, and we implemente
a GPT model for CGEC as a baseline model
following the methodology of Section 2.1.

As a post-processing method, our rewriting model
can also be understood as an ensemble of the orig-
inal sentence and the output of a single system. Al-
though a single model can’t be integrated using tra-
ditional voting ensemble methods, the fine-grained
PPL-based model ensemble method proposed by
Tang et al. (2023) can still be used as a baseline
model for post-processing methods. Specifically,

Method FCGEC-test
P R F0.5

LaserTagger∗ 36.60 31.16 35.36
PIE∗ 29.15 29.77 29.27
GECToR (Chinese)∗ 30.68 21.65 28.32
STG∗ 48.19 37.14 45.48
Bart-Chinese-large 37.49 38.87 37.76
GPT2-medium 56.71 24.79 45.10
Bart-Chinese-large 37.49 38.87 37.76
+ Sentence-level 55.26 20.23 41.04
+ Edit-level 58.22 24.12 45.39
+ Edit-combination 58.16 25.63 46.38
+ LM-Combiner (Ours) 55.67 39.04 51.30

Table 1: Experimental results of our method on the
FCGEC test set. Results with * are reported from
the original paper (Xu et al., 2022). The first group
indicates common Seq2Edit models, the second
group indicates Seq2Seq models, and in the last
group we choose the highest recall Bart model as a
baseline and list some LM-based post-processing
methods.

we replicate three different granularity ensemble
approaches based on the same scale of GPT2.

• Sentence-level makes a judgment directly
from the PPL of the original and output sen-
tences, and only retains sentences with lower
perplexity.

• Edit-level makes a judgment based on the
impact of each editing operation on the PPL of
the original sentence, and retains only those
operations that reduce the PPL of the original
sentence.

• Edit-combination permutes all the editing op-
erations and selects the sentence with the low-
est PPL among them as the final output as
shown in Figure 3.

3.3. Main Results
Table 1 shows the comparison of the performance
among different models on the FCGEC test set.
In order to maximize the verification of the perfor-
mance of the LM-Combiner, we chose the output
of the highest recall Bart model as the rewriting
input. As shown in the table, through the rewriting
of our LM-Combiner model, we make the output of
the original error-correction system substantially im-
prove the precision by 18.2 points while the recall
remains basically unchanged, and the F0.5 met-
ric improves by 5.8 points compared to the SOTA
model.

Compared to the PPL-based methods, LM-
Combiner does better in recall retention due to
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Figure 4: The effect of model size for LM-Combiner on FCGEC valid. The Bart baseline is the system
metric without LM-Combiner rewriting. For a more accurate evaluation, we average the results of 5
experiments for each size of the model, and the floating part of the figure shows the standard deviation of
the metrics.
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Figure 5: The effect of training dataset size for LM-Combiner on FCGEC valid. The baseline method
represents the metrics for each system without the use of LM-Combiner.

the fine over-correction dataset construction. Al-
though both using GPT2 as the backbone network,
the PPL-based approach suffers from the problem
of inconsistency between the domains of the pre-
trained corpus and the target corpus, which makes
the model filter out too much right correction in the
re-ranking phase. Conversely, by constructing a
real over-correction dataset under the target do-
main for training, the LM-Combiner is able to better
learn the relationship between over-correction and
right correction in the target domain, and thus im-
proves the precision with essentially no decrease
in recall.

4. Analysis

In this section we will validate and analyze the de-
tails of the LM-Combiner through experiments.

4.1. Effect of Model Scale
By decoupling the CGEC task, the LM-Combiner
model only needs to complete the rewriting task
without considering the performance of error cor-
rection. For the simpler rewriting task, we wonder
if its rewriting performance is strongly correlated
with the scale of the model, thus we use five scales
of GPT2, small, base, medium, large, and xlarge,

respectively, as the backbone network of the LM-
Combiner for the experiments.

As shown in Figure 4, all scales of rewriting
model can relatively improve the precision of the
GEC system. The reduction in error recall from
rewriting the model becomes smaller and smaller
as the model size increases. In addition to this,
we can find that a small-level 62M model can still
improve precision by about 18 points compared to
the baseline model and essentially preserve the
recall of the original system. For the insignificant
change in rewriting performance with model scale,
we analyse that this is because the difficulty of the
decoupled rewriting task is lower compared to the
error correction task, which makes it possible for
small models to perform well.

4.2. Effect of Data Quantity

According to the data construction method in Sec-
tion 2.3, we have obtained the over-correction train-
ing set totaling 36,340 sentences of the entire
FCGEC training data. However, in practice it is
still a large number in a new domain. We want to
know what amount of parallel corpus will enable
us to train a rewriting model works reasonably well
through data construction. Thus, we randomly sam-
ple subsets of different sizes from the constructed
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training set to validate the effect of rewriting the
model.

Besides that, Li et al. (2023b); Fang et al. (2023)
have evaluated the effectiveness of LLMs (e.g.,
ChatGPT) on the CGEC task, and the experiments
show that there is also a large amount of over-
correction in LLMs using the zero-shot and few-
shot methods. Therefore, we follow Fang et al.
(2023)’s approach and also obtain the results of
the ChatGPT model on FCFEC for rewriting the
model’s training as a way to validate the ability of
the LM-Combiner for black-box correction systems.
Since there is no data leakage, we directly use the
error correction results of ChatGPT as candidate
sentences instead of the cross inference method
in Section 2.3.

The experimental results are shown in Figure 5,
LM-Combiner trained at all scales of data amounts
is able to alleviate the over-correction problem of
the original system to varying degrees. In particular,
thousands of domain training corpora are sufficient
to obtain a rewriting model that performs well, both
for Bart model and the ChatGPT. Consistent with
Li et al. (2023b)’s evaluation, ChatGPT doesn’t per-
form well on the native speaker CGEC task, with
metrics even lower than the Bart baseline model.
Nevertheless, LM-Combiner can still be considered
as a low-cost post-processing model, which can ef-
fectively relieve over-correction of various GEC sys-
tems (including the black-box ChatGPT) on domain-
specific datasets.

4.3. Importance of Gold Labels Merging
As described in Section 2.3, after acquiring the
overcorrected data, we merge the gold labels with
the overcorrected labels based on the M2 labels
as a way to completely decouple the error correc-
tion task. To verify the effect of label merging, we
conducted experiments on the original training set
and the training set with gold labels merging, re-
spectively. The experimental results are shown
in Table 2, where the gold label merging enables
LM-Combiner to learn the rewriting task better and
retain a higher recall. It can be said that fully decou-
pling correction and rewriting tasks by gold labels
merging is the key for LM-Combiner to maintain
high recall.

5. Related Work

Compared to the English GEC, the Chinese GEC
is just getting started (Tang et al., 2023). Early
CGEC tasks are mainly researched in the field of
non-native language learning, which has a large
error rate, and many CFL datasets such as Lang8,
CGED (Rao et al., 2020), and NLPCC18 (Zhao
et al., 2018) are proposed. On this basis, Zhang

Method FCGEC-valid
P R F0.5

Bart-Chinese-large 29.31 39.32 30.88
+LM-C wo merging 54.02 36.07 49.13
+LM-C w merging 53.56 39.25 49.92

Table 2: Experimental results on the effectiveness
of gold label merging. LM-C represents the LM-
Combiner model, and merging represents the gold
labels merging operation.

et al. (2022) sample and organise the annotation of
several CFL datasets, correct the existing annota-
tion problems in them, and propose the MuCGEC
dataset with multi-source references. Recently,
more and more scholars (Xu et al., 2022; Ma et al.,
2022) have noticed the problems with CFL datasets
and propose a series of datasets based on na-
tive speakers’ grammatical errors, posing a greater
challenge to the CGEC task.

The CGEC task has received increasing atten-
tion in recent years. Responding to the lack of
data, Zhao and Wang (2020) propose a dynamic
mask strategy for data augmentation and improve
the robustness of the model. Yue et al. (2022)
generate high-quality grammatical errors to com-
plete the data augmentation by conditional non-
autoregressive error generation model. In terms
of model architecture, Zhang et al. (2022b) extract
the syntactic hidden representation by graph con-
volutional neural network and incorporate the syn-
tactic information into the GEC system to further
improve the error correction performance. Li et al.
(2023a) fuse the models of the two paradigms in the
form of templates and improve the precision of the
Seq2Seq model with the help of Seq2Edit model
through the detection and correction framework.

Previous researchers have also attempted to ex-
plore the potential of causal LMs in GEC tasks.
Yasunaga et al. (2021) determine the grammatical
correctness of a sentence with the help of the PPL
of PLMs, and implements a unsupervised GEC
framework by assuming that the sentence with the
smallest perplexity within a particular set is the cor-
rect sentence. Similarly, Tang et al. (2023) use the
PPL of pre-trained models as a model ensemble
method to re-rank the outputs of multiple models.

The large language model represented by Chat-
GPT (Ouyang et al., 2022) is developing rapidly,
and there have been some recent related evalua-
tion work (Li et al., 2023b; Fang et al., 2023) on
LLM on CGEC tasks. The results indicate that LLM
suffers from serious over-correction problems. Re-
cently Vernikos et al. (2023) use the T5 model for
soft aggregation of multiple outputs from LLM, but
there are still some common problems of ensemble
methods. In view of this, LM-Combiner is a good
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solution to alleviate the over-correction problem by
directly rewriting individual system outputs without
the need for model ensemble.

6. Conclusion

In this paper, we propose LM-Combiner, a general
rewriting model based on a causal language model,
capable of mitigating the problem of over-correction
based on the original sentences and single sys-
tem outputs. We also propose k-fold cross infer-
ence to enable the construction of domain-specific
over-correction data for LM-Combiner training. Ex-
periments show that the proposed method can ef-
fectively improve the system precision while en-
suring the recall rate, and it provides a low-cost
over-correction solution for existing GEC systems.
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