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Abstract
Prior research on Twitter (now X) data has provided positive evidence of its utility in developing supplementary health
surveillance systems. In this study, we present a new framework to surveil public health, focusing on mental health
(MH) outcomes. We hypothesize that locally posted tweets are indicative of local MH outcomes and collect tweets
posted from 765 neighborhoods (census block groups) in the USA. We pair these tweets from each neighborhood
with the corresponding MH outcome reported by the Center for Disease Control (CDC) to create a benchmark
dataset, LocalTweets. With LocalTweets, we present the first population-level evaluation task for Twitter-based MH
surveillance systems. We then develop an efficient and effective method, LocalHealth, for predicting MH outcomes
based on LocalTweets. When used with GPT3.5, LocalHealth achieves the highest F1-score and accuracy of 0.7429
and 79.78%, respectively, a 59% improvement in F1-score over the GPT3.5 in zero-shot setting. We also utilize
LocalHealth to extrapolate CDC’s estimates to proxy unreported neighborhoods, achieving an F1-score of 0.7291.
Our work suggests that Twitter data can be effectively leveraged to simulate neighborhood-level MH outcomes.
Keywords: Social Media Processing, Corpus (Creation, Annotation, etc.), Evaluation Methodologies

1. Introduction

For effective design of public health interventions,
it is critical to have surveillance systems that are
reliable and fast-acting. Traditional health surveil-
lance systems often resort to survey-based report-
ing of health outcomes hence, are subject to re-
sponse bias, and significant temporal lag (Bitsko
et al., 2022). For the timely design and implementa-
tion of health intervention programs, real-time data
monitoring, processing, and estimation systems
are required (Simonsen et al., 2016). Electronic
Health Records (EHR) based surveillance systems
carry the potential to overcome the disadvantages
of the traditional systems (Greco et al., 2023; Si-
monsen et al., 2016). While EHRs offer valuable
insights, operational challenges, their expensive
nature, and relatively delayed updates in informa-
tion compared to social media platforms reduce
their effectiveness for real-time public health surveil-
lance (Kataria and Ravindran, 2020; Menachemi
and Collum, 2011). Hence, the exploration of sup-
plementary data sources for health surveillance is
needed.

Social media platforms as a data source are prov-
ing to be important for various surveillance appli-
cations (Shakeri Hossein Abad et al., 2021), with

Following responsible data practices, we will share
data for requests that align with our privacy policy. Cor-
responding Author: vijeta_deshpande@student.uml.edu

Twitter (now X1) being one of the most explored
platforms for population health surveillance appli-
cations (Greco et al., 2023; Mavragani, 2020; Jor-
dan et al., 2018; Pilipiec et al., 2023). The previous
decade evidenced a spectrum of research efforts to
highlight the utility of Twitter data for health surveil-
lance (Coppersmith et al., 2015; Naseem et al.,
2022; Nguyen et al., 2017a; Athanasiou et al., 2023;
Klein et al., 2022; Coppersmith et al., 2014; Shakeri
Hossein Abad et al., 2021). Numerous studies con-
ducted correlation analysis to emphasize that Twit-
ter activities are highly correlated with the reported
outcomes, at the national, state, and even county
level (Coppersmith et al., 2015, 2014; Paul and
Dredze, 2011). Several studies developed Twitter
surveillance systems with advanced Natural Lan-
guage Processing (NLP) methods to identify tweets
indicating serious health concerns (Naseem et al.,
2022; Barbieri et al., 2020; Rosenthal et al., 2019;
Yadav et al., 2020). However, the research efforts
to develop population-level health outcome predic-
tion systems have been quite limited (Nguyen et al.,
2017a, 2016b, 2017b, 2016a; Wang et al., 2020;
Athanasiou et al., 2023). Recently conducted stud-
ies by Barbieri et al. (2020); Naseem et al. (2022)
show that the population-level inference tasks are
absent in the current collection of Twitter evaluation
benchmarks.

1We refer to X by its older name ‘Twitter’ and refer to
the messages posted on X as tweets.

vijeta_deshpande@student.uml.edu
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Figure 1: Data Collection Process. In this figure, we present a simple schematic of our data curation
process. First, we sample 1K neighborhoods (i.e., block groups or BGs) and curate a list of keywords for
three categories of tweets, to form queries. Secondly, we query the CDC and Twitter databases to collect
the desired data. Lastly, for each BG, we join the set of tweets posted from the BG with the reported
health outcome from the CDC database. The final cleaned version of LocalTweets includes 765 unique
BGs, spans over five years, and includes over 22 million tweets.

Exacerbating the issue, several analytical limita-
tions within the population-level studies constrain
the transferability of findings. First, keyword-based
tweet filtering is hypothesized to improve predic-
tion systems, but this has not been tested. Sec-
ond, studies have focused on larger geographical
areas (census tract being the smallest area con-
sidered in Nguyen et al. (2016b)) hence, indirectly
normalizing worsened health conditions in smaller,
resource-deprived areas. Lastly, most population-
level prediction systems presented in literature em-
ploy rule-based or count-based feature extraction
to encode tweets, which lacks the benefits of ad-
vanced pre-trained language models.

To overcome the above-mentioned limitations
in the literature, we first present a benchmark
dataset; LocalTweets; that enables the prediction
of neighborhood-level mental health (MH) out-
comes2 from locally posted tweets. Compared to
previous studies we focus on a much smaller
geographical unit, Census Block Group (BG)
3 in LocalTweets, refer to Figure 1. LocalTweets
includes data for 765 unique BGs, spans over a pe-
riod of five years (2015-2019), and includes more
than 22 million tweets. Furthermore, we propose
an efficient and effective analytical framework, Lo-
calHealth, that leverages language models to
encode locally posted tweets and predicts MH
outcomes based on the encodings. We evaluate Lo-

2For a precise definition of the MH outcome refer to
(for Disease Control, 2023; for Disease Control et al.,
2022)

3United States Census Bureau has defined geograph-
ical units to collect data from. Census Block Groups are
areas with a population ranging from 600 to 3000. More
detailed definitions can be found at Bureau (2023a)

calHealth with extensive experiments and find that
the unfiltered tweets present better generaliza-
tion properties compared to filtered tweets (con-
taining MH-related keywords). With LocalHealth
we achieve an F1-score of 0.7429 in predicting fu-
ture outcomes and 0.7291 in predicting outcomes
for a proxy set of unreported BGs.

Our work thus lays the groundwork for the de-
velopment of a neighborhood-level, real-time MH
surveillance system and holds substantial benefits
for public health decision-making. For example, the
presented work in this study can directly be used to
identify neighborhoods that can benefit from addi-
tional MH care resources and the establishment of
community MH programs. In the following sections,
we delineate details of our analysis.

2. Related Works

Numerous studies evaluated Twitter data for surveil-
lance applications (Greco et al., 2023; Mavragani,
2020; Jordan et al., 2018; Proserpio et al., 2016;
Klein et al., 2022; Kim et al., 2023; De Choudhury
et al., 2016; Abdellaoui et al., 2017; Simonsen et al.,
2016; Shakeri Hossein Abad et al., 2021). Twitter-
based surveillance studies can be divided into three
categories: (1) Correlation Studies: studies that
investigate the agreement between Twitter data
and reported cases of health conditions (Paul and
Dredze, 2011; Broniatowski et al., 2013; Copper-
smith et al., 2015; Velardi et al., 2014; Paul et al.,
2015; Schwartz et al., 2013; Culotta, 2014; Jashin-
sky et al., 2014); (2) Tweeet/User-level Studies:
studies that develop tweet-level or user-level cat-
egorization systems to identify tweets or users
relevant to a particular health condition (Braith-
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(A): Num. Tweets Per Region (B): Num. Tweets Per ADI

(C): Num. BGs Per Region (D): Num. BGs Per ADI

Figure 2: Distributional Properties of LocalTweets. (A): Region vs. Number of Tweets: MH tweets
are the most numerous, while FI and general tweets have comparable volumes. Tweet volume is slightly
skewed toward the South and West regions. (B) ADI vs. Number of Tweets: MH and FI tweets are slightly
skewed toward ADIs ≥ 70 and ≤ 20. (C) Region vs. Number of BGs: The distribution of data splits over
regions is approximately the same. The number of BGs from the Northeast region is less than other
regions. Refer to Appendix E for more discussion. (D): ADI vs. Number of BGs: The number of BGs is
fairly balanced over the ADI values and across the data splits.

waite et al., 2016; De Choudhury et al., 2017; Cop-
persmith et al., 2014, 2015; Barbieri et al., 2020;
Naseem et al., 2022; Yadav et al., 2020); and (3)
Population-level Studies: methods that process a
set of tweets to make population health inferences.
The setup of our study is closest to the third type.

Population-level Studies: Recently conducted
studies by Barbieri et al. (2020); Naseem et al.
(2022) show that the population-level inference
tasks are not present in the current evaluation
benchmarks for Twitter data-based Natural Lan-
guage Processing (NLP) systems. However, there
are a few notable studies. In studies conducted by
Culotta (2014); Schwartz et al. (2013); Giorgi et al.
(2018), the authors encode tweets using a count-
based system and then use the encodings to make
county-level inferences. In studies conducted by
Nguyen et al. (2016b,a, 2017b), the authors de-
velop machine learning systems that can extract
essential indicators of health from tweets and show
that extracted indicators are associated with state
or census tract-level health outcomes. Athanasiou
et al. (2023) conducted clustering analysis and en-
coded tweets to represent the presence of word
clusters. The authors later used encoded tweets
along with other data sources for country-level pre-
diction of influenza-like illness outcomes. In a re-
cent study conducted by Zhang et al. (2022), the
authors first developed a tweet-level identification
system to focus on COVID-related tweets and then
used the filtered pool to make country-level COVID
outcome prediction. In the above-mentioned stud-
ies, either in the data collection or in the encoding
process, a focus is put on a specific set of key-
words or features. In addition, the authors consider

large geographic areas (the smallest area being the
census tract in Nguyen et al. (2016b)) for making
predictions.

3. Data

For the presented analysis, we collected tweets
posted from 1,000 census block groups in the
United States. We refer to a block group as a neigh-
borhood and use both terms interchangeably. Then,
we coupled the Twitter data with mental health out-
come estimates reported by the Center for Disease
Control (CDC). We refer to the final cleaned version
of the collected data as the LocalTweets dataset.
In the following subsections, we discuss our data
collection process in detail.

3.1. Sampling of Block Groups

We started by sampling 1,000 block groups (BGs)
from the contiguous United States. Specifically, we
stratified the BGs by geographic region (northeast,
south, midwest, west) (Bureau, 2023b; Wikipedia,
2023a), and Area Deprivation Index (ADI) (for
Health Disparities Research, 2023) 4. We created
40 strata (four regions and ten ADI bins) and sam-
pled 25 BGs from each stratum.

4ADI values are calculated based on the data col-
lected in the American Community Survey (ACS) 5-year
estimates at Census Block Group level, representing the
socio-economic profile of a respective block-group. ADI
values are between one to a hundred, the highest value
being the most undesirable.
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3.2. Collection of Twitter data
Identification and collection of tweets that are rele-
vant to the mental health (MH) status (i.e., outcome
of interest) of a population is challenging. Popula-
tion MH status is an expansive construct influenced
by a multitude of demographic, socio-economic, in-
frastructural, and other factors. Thus, for Twitter
data collection, it may not be possible to create a
set of keywords that exhaustively cover all possible
linguistic expressions of MH-related distress across
demographic and cultural features of the popula-
tion. Hence, we hypothesize that unfiltered tweets
may present better datasets for population-level
MH surveillance tasks. However, to test our hy-
pothesis we collect keywords-based filtered tweets
as well. Overall we collect three subsets of Twitter
data, each subset corresponding to a unique cate-
gory of tweets. The categories are defined by three
mutually exclusive sets of keywords used for the
collection of tweets. First is the MH category i.e., a
subset of tweets that contain keywords directly re-
lated to the outcome of interest (MH outcome in our
case). For the second category, we list keywords
that map to a risk factor of the outcome of inter-
est. In our analysis, we focus on food insecurity, a
well-proven contributor to MH (Pourmotabbed et al.,
2020; Elgar et al., 2021). Lastly, we collect “general”
tweets i.e., tweets that contain only one keyword, a
space character. We provide our manually curated
keyword lists for MH, FI, and general categories
in Appendix A. Using the Twitter Developer API
and twarc (Summers et al., 2023) library, we collect
all three subsets of tweets from BGs selected in
stratified sampling. For general tweets, we upper
bound our collection to 1,000 tweets per BG per
year due to the sheer volume of general tweets.
We repeat this process for each year from 2015 to
2019. We also collect counts of tweets for each
category without any upper bound, using the “twarc
count” command. Additional details of the twarc
library parameters are provided in the Appendix A.

3.3. Coupling the data with ground truth
labels

After collecting tweets for each sampled BG, we
pair the Twitter data with health outcomes published
by CDC (also referred to as ground truth) (for Dis-
ease Control et al., 2022). For the presented study,
we primarily focus on one outcome, the percent-
age of the adult population with MH not good for
more than 14 days of the last 30 days (for Dis-
ease Control, 2023). These prevalence estimates
are reported annually at the BG level. Hence, for
every unique pair of a year and a BG, we couple
the collected set of tweets with the prevalence es-
timate value available from CDC data. In Figure
1, we provide a schematic of our data collection

process.

3.4. Cleaning and splitting the data for
model development

We filter the Twitter-CDC coupled data to remove
BGs with no tweets (for any category and any year),
and BGs not included in the CDC data. This filter-
ing process removed 235 BGs, resulting in a final
dataset of 765 BGs with corresponding Twitter and
CDC data for five years. We refer to the cleaned
version of the data as LocalTweets. Figure 2 shows
the distributional properties of the LocalTweets. We
provide a detailed description of data properties in
Appendices B and C. In the cleaned version of
LocalTweets, we observe significantly fewer BGs
from the Northeast region. Hence, we analyzed the
effect of fewer BGs from the Northeast region on
the space generalizability of the data. We observe
that fewer BGs from the Northeast region do not
hamper the space generalizability of the data and
provide details in Appendix E.

We split the data differently for our two experi-
mental settings namely, the forecasting setting and
spatial extrapolation setting. For forecasting, we
use all 2019 data as the test dataset and consider
2015 to 2018 data for model development. For the
spatial extrapolation, we first divide the final set of
765 BGs into three splits (test, train, and validation)
such that the distribution over ADI values and ge-
ographic regions is approximately held the same
across splits, refer to Figure 2, panels C and D. We
remove the BGs in test split, to create a proxy set
of "unreported" BGs. We use 2015-19 data from
the train and validation split for model development
and report the performance on the unreported BGs
(test split) of the year 2019.

We denote LocalTweets as D, defined as follows:

D = {(t(k,s)b,y , c
(k,s)
b,y , g

(s)
b,y , r

(s)
b,y)}

where the subscripts b and y represent the BG
and year, the superscripts k and s denote the tweet
category and split. The variables t, c, and g rep-
resent the tweets, tweet counts, and ground truth
outcome values, respectively. We create a risk cat-
egory variable r, such that r(s)b,y = 1 (high-risk BG) if
g
(s)
b,y ≥ 75th percentile, otherwise r

(s)
b,y = 0 (low-risk

BG). In other words, r is nothing but a flag indicat-
ing whether a BG is high-risk or not. We leverage
the variable r to evaluate regression models’ per-
formance with discrete metrics (e.g., accuracy and
F1-score). Note that the superscript k is not present
for g and r variables because we only consider the
MH outcome as the target variable.
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4. Methodology

Our methods of analysis are mainly divided into
two parts. First, we conduct a correlation analysis
to investigate the agreement between Twitter data-
based statistics and the reported CDC outcome
values. In the second part, we present a regres-
sion analysis. Specifically, we develop a model that
processes the Twitter data (set of tweets) to pre-
dict the MH outcome value for respective neighbor-
hoods, refer to Appendix G for a simple schematic.
In the following subsections, we discuss each part
in detail.

4.1. Correlation analysis
We use the Pearson correlation coefficient
(Wikipedia, 2023b; Virtanen et al., 2020; Scipy,
2023) to measure the correlation between the
ground truth values gb,y (the reported MH out-
comes) and the Twitter activity i.e., tweet counts
c
(MH)
b,y , c(FI)

b,y and c
(General)
b,y . In addition, we also

measure the correlation between the ground truth
and the ADI values. The correlation is measured
separately for each year and over the 765 BGs in
the LocalTweets.

4.2. Regression analysis
In the regression analysis, our goal is to develop
a parametric function that can predict the continu-
ous and scalar-valued MH outcome for a BG (gb,y),
based on the set of tweets posted from the same
BG. We develop two types of models, one utiliz-
ing the tweet count values and the other utilizing
the set of tweets. For the count-based model, we
utilize the normalized count values (normalized by
the count of all tweets posted from the BG) for the
MH and FI categories of tweets. We adopt a sim-
ple linear regression setting for the count-based
model, where normalized count values act as input
variables. For the case when we consider both,
MH and FI counts, we treat each normalized count
value as a separate variable in the linear regression
model.

For the text-based model, we follow Algorithm 1,
with four main steps, sampling, encoding, aggre-
gation, and prediction. In the sampling step, if the
total number of tweets exceeds the 4K mark, we
uniformly sample 4K tweets. The sampled tweets
are encoded with a language model and then ag-
gregated across sequence length and number of
tweets. Finally, we employ a convolutional neu-
ral network (fconv(·)) followed by a fully connected
neural network (ffcn(·)) to predict the MH outcome
value based on aggregated encodings (v̄(k)b ), there-
fore,

ĝb = ffcn(fconv(v̄
(k)
b ; θconv); θfcn) (1)

Input: D, fLM(·), fconv(·), ffcn(·)
Require :B = {BGs in LocalTweets},

Y = {2015, . . . , 2019}

Step :Sampling
for each b ∈ B, y ∈ Y do

Sample t
(k)
bs,y

∼ Uniform(t
(k)
b,y )

end
Such that, |t(k)bs,y

| = min(4000, |t(k)b,y |) ∀ b, y, k
Step :Encoding
for each b ∈ B, y ∈ Y do

v
(k)
bs,y

= fLM(t
(k)
bs,y

; θLM);
end
Such that, v(i)bs,y

= [v
(k)
bs,y,1

, v
(k)
bs,y,2

, . . . , v
(k)
bs,y,n

],
where v

(k)
bs,y,j

is the representation vector of
the jth tweet in the t

(k)
bs,y

set and n = |t(k)bs,y
|

Step :Aggregation
for each b ∈ B, y ∈ Y do

v̄
(k)
bs,y

= 1

|t(k)
bs,y|

·
∑|t(k)

bs,y|
j=1 v

(k)
bs,y,j

end

Step :Prediction
ĝb,y = ffcn(fconv(v̄

(k)
bs,y

; θconv); θfcn)

Algorithm 1: LocalHealth Approach. In this
table, we present the LocalHealth algorithm to
predict mental health outcome values based
on a set of tweets. There are four main steps
namely, sampling, encoding, aggregation, and
prediction of outcome value. Superscript k de-
notes the tweet category.

Where, θconv and θfcn represent parameters of
the fconv(·) and ffcn(·), respectively. We predict
the reported MH outcome based on various cate-
gories of tweets by simply changing the v̄

(k)
b . When

we consider both, MH and FI tweets to make predic-
tions (k = {MH and FI}), we add the vectors for
MH and FI to compute the final aggregated vector
i.e., v̄(k)b = v̄

(MH)
b + v̄

(FI)
b . We refer to our approach

presented in Algorithm 1 as LocalHealth.

5. Experimental Setup

5.1. Sets of experiments
We divide our experiments into four sets.

Set-1: Effect of input information type. In this
set of experiments, we compare the effects of dif-
ferent information priors (ADI values, tweet counts,
tweet texts, and tweet categories) on forecasting
MH outcomes. Hence, we use data from 2015 to
2018 for developing the model 2019 data for testing
(forecasting data splits discussed in Section 3.4).
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Year MH FI General ADI
2015 0.1640 0.1460 0.1299 0.6767
2016 0.1366 0.1332 0.1215 0.7074
2017 0.1123 0.1132 0.0969 0.7257
2018 0.0928 0.0937 0.0863 0.7162
2019 0.0922 0.0954 0.0832 0.7318

Table 1: Correlation Results. In this table, the
columns MH, FI, General, and ADI represent the
Pearson Correlation Coefficient between the CDC-
reported MH outcome i.e., gbs,y and count of mental
health, food insecurity, general tweets, and the ADI
values, respectively. All correlation coefficients are
statistically significant with p < 0.05.

We also augment the count-based and text-based
models with ADI information to measure the impact
of combined information. To augment ADI, we con-
catenate the normalized ADI value (ADI/100) with
the scalar output of LocalHealth (ffcn(fconv(v̄)))
and pass the vector to a linear layer to predict the
target outcome value.

Set-2: Effect of text encoder. In this exper-
iment, we replace the language model (fLM (·))
in Algorithm 1 with various pre-trained language
models, including Twitter-RoBERTa (Barbieri et al.,
2020), PHS-BERT(Naseem et al., 2022), and GPT-
3.5 (OpenAI, 2021), and assess the changes on
forecasting performance. We work with “general”
category of tweets and consider 2015 to 2018 data
for developing the model and, 2019 data for test-
ing. We also measure the zero-shot performance
of GPT-3.5, refer to Appendix F for further details.

Set-3: Effect of data availability. In the first
two experiments, we utilize data from 2015 to 2018
for training and validating the model. Here in the
third set, we gradually reduce the data availability
from the prior four years (2015-18) to the prior year
(2018) and examine the changes in the forecasting
performance subject to data availability. Specifi-
cally, we create four train and validation sets based
on the data from 2015 to 2018, 2016 to 2018, 2017
to 2018, and only 2018, respectively. We keep the
test set (2019 data) constant for all data availability
scenarios and compare two language models in
this setting, RoBERTa-base, and GPT3.5.

Set-4: Spatial extrapolation capabilities. In
the fourth set of experiments, we evaluate the Lo-
calHealth approach based on the capabilities to
extrapolate CDC outcomes to the unreported BGs
(refer to Section 3.4). We consider five data avail-
ability scenarios, 2015 to 2019, 2016 to 2019, and
likewise till 2019-only. Based on data availability we
vary the training and validation data while keeping
the test data fixed to 2019 data for proxy unreported
BGs.

5.2. Language models and regression
head

In Set-1 experiments, we use the RoBERTa (base
configuration) model (Liu et al., 2019) to encode
the tweets. In Set-2, we provide results for multiple
language models e.g., Twitter-RoBERTa (Barbieri
et al., 2020), PHS-BERT (Naseem et al., 2022),
GPT-3.5 (OpenAI, 2021), etc. We do not update
the parameters of the pre-trained language model.
Only the parameters corresponding to the regres-
sion head of our framework i.e., θconv and θfcn,
are updated. For all our experiments, we fixed the
structure of the convolutional head to have a single
channel, a kernel size of 16, and a stride of four.

5.3. Baseline models
We provide four baseline models. First is the ma-
jority baseline i.e., predicting all BGs in the test set
as non-high-risk BGs (r(b,2019) = 0, ∀ b). Second,
we report the performance of the linear regression
model making predictions based only on normal-
ized ADI values. For the third and fourth baselines,
we make use of Logistic Regression (LoR) and Sup-
port Vector Machine (SVM) models, respectively,
along with aggregated general tweet encodings (v̄)
(from RoBERTa-base model) to directly predict the
risk category (r) of the BGs.

5.4. Hyperparameters and evaluation
We train all models for 1,600 epochs with a batch
size of 512. We use a linear learning rate sched-
ule with a 20% warmup and peak learning rate of
1× 10−3. We minimize mean squared error (MSE)
using AdamW (Loshchilov and Hutter, 2017; Py-
Torch, 2023) with a weight decay of 0.1. In order to
leverage standard classification metrics for model
evaluation, we employ a thresholding technique to
convert the continuous-valued model outputs (ĝb,y)
into binary risk category predictions. This allows us
to directly compare predicted risk categories with
the ground truth labels (variable r, Section 3.4) us-
ing established metrics like accuracy and F1-score
(macro-averaged). Model selection is conducted
based on the macro-F1 score achieved on the vali-
dation set. Following training, we evaluate the best
model on the test split and report averaged macro-
F1 and accuracy across 10 random seeds. For
both, SVM and LoR, we change the loss function
to binary cross-entropy and we use a classification
threshold of 0.15 to identify high-risk BGs.

6. Results

We started the assessment of the surveillance util-
ity of Twitter data with correlation tests, between
the reported MH outcomes and tweet counts. We
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Input information F1-score Acc. (%)
Majority baseline 0.4336 76.56
Text-based (LoR) 0.5224 52.75
Text-based (SVM) 0.5510 76.73
ADI-only (LR) 0.6406 72.81
Count-based (LR)
MH only 0.5052 61.95
FI only 0.4465 67.88
MH and FI 0.5133 63.84
General only – –
Text-based (LocalHealth)
MH only 0.5668 60.05
FI only 0.5602 64.43
MH and FI 0.5853 64.16
General only 0.5984 66.76
Count-based (LR) with ADI
MH-only 0.5647 69.36
FI only 0.5545 71.57
MH and FI 0.6138 69.31
General only – –
Text-based (LocalHealth) with ADI
MH only 0.7089 74.52
FI only 0.7117 75.36
MH and FI 0.7085 74.33
General only 0.7236 76.48

Table 2: Effect of Input Information Type. Here,
we present the F1-score and accuracy (Acc.) for
identifying the risk category of BGs. Within text-
based models, general tweets present better per-
formance than other tweet categories. LoR and LR
stand for logistic and linear regression, and SVM
for support vector machine.

find that tweet counts moderately correlate with
the MH outcome, refer to Table 1. The correlation
strength for general tweet counts is consistently
lower than the MH or FI tweet counts. In other
words, a higher volume of general tweets moder-
ately correlates with worse MH outcomes but, the
higher count of MH or FI tweets correlates with
worse outcomes marginally better. For validation,
we also conducted a correlation test between MH
outcome and ADI value and confirmed much higher
correlation strengths compared to all categories of
tweets. To further scrutinize the utility of Twitter
data, in the latter part of our analysis, we conducted
four sets of experiments to evaluate the LocalHealth
approach. We will discuss the results of each set
of experiments one by one.

Set-1: Effect of input information type. In the
first set of experiments, we compared various in-
formation priors available in LocalTweets: tweet
count, tweet texts, tweet categories, and ADI val-
ues. The count-based regression models failed to

Language Model Train F1- Acc.
Par. score (%)

Majority baseline – 0.4336 76.56
GPT3.5 (0-shot) 0 0.4675 76.21
ADI only 2 0.6406 72.81
RoBERTa-base 210 0.7236 76.48
RoBERTa-large 274 0.7228 76.04
Twitter-RoBERTa-base 210 0.7245 76.44
PHS-BERT 274 0.7301 76.97
GPT3.5 402 0.7429 79.78

Table 3: Effect of Text Encoder. Here, we present
the F1-score and accuracy (Acc.) for identifying
the risk category of BGs. RoBERTa presents com-
petitive results compared to the best-performing
GPT3.5. Train Par.: Trainable parameters in Local-
Health setting.

exceed any of the baselines except the majority
baseline, refer to Table 2. The text-based Local-
Health models performed better than the count-
based models but fell short of the ADI baseline.
The F1-score improved significantly, on average by
18% for count-based models and by 24% for text-
based models, after augmenting with ADI values.
Notably, the text-based model augmented with ADI
outperformed the individual counterparts, with an
F1-score of 0.7236 and an accuracy of 76.48%,
refer to Table 2. This result highlighted the com-
plementary nature of the information contained in
tweets compared to the ADI values.

For text-based models, a comparison within the
tweet categories revealed interesting insights. The
model with general tweets performed better than
other categories of tweets. This finding supports
our hypothesis (refer to Section 3.2) and highlights
the better generalization capabilities of the general
tweets for population-level MH outcome prediction,
compared to the keyword-derived tweets. Hence,
our finding motivates the usage of general tweets
for the prediction of population-level MH outcomes.
We provide additional comparison of the statistical
properties of tweet categories in Appendix D.

Set-2: Effect of text encoder. By focusing our
attention on the text-based model (general tweets)
augmented with ADI information, we measure the
effect of changes in the language model (fLM (·))
used for encoding tweets.

We experiment with five language mod-
els, RoBERTa-base, RoBERTa-large, Twitter-
RoBERTa-base, PHS-BERT, and GPT3.5, and
present our results in Table 3. The effect of
the size of the language model was mixed. We
observed a minor reduction of 0.0008 in the
F1-score for the RoBERTa-large compared to the
RoBERTa-base. For the domain-adapted models,



10705

2015
to

2018

2016
to

2018

2017
to

2018

2018
only

Data Availability

0.55

0.60

0.65

0.70

0.75
F1

-s
co

re

RoBERTa-base
GPT3.5

Figure 3: Effect of Data Availability on Prediction
of Future Outcomes. In the figure, we present the
effect of data availability (x-axis) on the prediction
of future i.e., 2019 (all 765 BGs in LocalTweets),
MH outcomes. We evaluate models on the correct
identification of the BG risk category and plot the
F1-score on the y-axis. The lines and shaded re-
gions represent the average value and range of
F1-scores, calculated over 10 seeds.

we observed an increment of 0.0056 in F1-score for
the PHS-BERT (250 mil. parameters) compared to
Twitter-RoBERTs (120 mil. parameters). The effect
of domain adaptation was consistent for various
sizes of the language models. Twitter-RoBERTa
improved F1-score and accuracy by 1.2% and
1.0% compared to RoBERTa-base. The same
improvements were 1% and 0.6% for PHS-BERT
compared to RoBERTa-large. Interestingly, we
observed a striking 59% improvement in the
F1-score for GPT-3.5 compared to GPT3.5 in a
zero-shot setting. This highlights the difficulty of
the MH outcome prediction task, especially for
the zero-shot setting. Of all language models
evaluated, we observed the best F1-score and
accuracy of 0.7429 and 79.78% for the GPT-3.5
model when used in the LocalHealth approach.

Set-3: Effect of data availability. In this set of
experiments, we investigate the impact of varying
data availability on the performance of the models.
Performance trends for both models, GPT-3.5 and
RoBERTa-base, reveal valuable insights.

Contrary to our expectations, we observed a
slight declination in the F1-score when we aug-
mented the 2015 data with the data from 2016 to
2018 for developing the model, refer to Figure 3.
The declination is 0.0036 for GPT3.5 and 0.0127
for RoBERTa-base. This unexpected dip may be
attributable to the possibility that Twitter posts in
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Figure 4: Effect of Data Availability on Prediction
of Outcomes for Unreported Neighborhoods. In
the figure, we present the effect of data availability
(x-axis) on the prediction of MH outcomes for a set
of proxy unreported BGs (test split in 2019, 320
BGs). We evaluate models on the correct identifi-
cation of the BG risk category and plot the F1-score
on the y-axis. The lines and shaded regions rep-
resent the average value and range of F1-scores,
calculated over 10 seeds.

2015 may not accurately represent the population
MH status in 2019. Interestingly, we found that
RoBERTa (with an F1-score of 0.7042) outperforms
GPT-3.5 (F1-score: 0.6406) when only 2018 data
is available to develop the model. In other cases,
when more data is available, GPT-3.5 presents as
a better choice of tweet encoder. To this end, we
compared the statistical properties of RoBERTa-
base and GPT-3.5. We observe a higher variance
in the encodings taken from the RoBERTa model
and speculate that the more spread out data poten-
tially helps LocalHealth model to detect underlying
patterns for MH prediction (refer to Appendix C).

Set-4: Spatial extrapolation capabilities. In
this set of experiments, distinct from the forecast-
ing task in previous iterations, our focus shifts to
predicting MH outcomes for unreported neighbor-
hoods (BGs). Opposed to the findings of Set-3
experiments (forecasting task), we observe that
more data is always beneficial for both, RoBERTa-
base and GPT3.5, refer to Figure 4. Because the
proxy set of unreported BGs is never seen by the
model, training on more data likely helps the model
to find generalizing patterns. Similar to the find-
ings of Set-3, we observe that for limited data avail-
ability, RoBERTa stands out as a superior choice
of text encoder. In addition, we find RoBERTa to
be more robust to changes in the data availabil-
ity compared to GPT-3.5. The F1-score values
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for various data availabilities span over a narrow
range of 0.0997 ([0.6074, 0.7071]) for RoBERTa,
while the same range is almost double; 0.1915
([0.5376, 0.7291]); for GPT-3.5 (Figure 4).

7. Conclusion and Future Work

In this study, we introduce LocalTweets, a novel
dataset for mental health (MH) surveillance at the
neighborhood level, based on locally posted tweets.
We present a simple and efficient approach, Lo-
calHealth, to predict health outcomes based on
tweets. Our findings suggest that general category
tweets generalize better than the tweets filtered
with MH-related keywords. Our results also empha-
size RoBERTa-base’s effectiveness in data-limited
settings.

Our work thus lays the groundwork for a more
nuanced and responsive approach to population
MH surveillance, fostering advancements in nat-
ural language processing methodologies. Along-
side surveillance, our work can guide public health
resource allocation decisions. For example, pre-
sented data and methods can be utilized directly
to identify neighborhoods that can benefit from the
establishment of community health programs.

Extending our analysis, in the future we hope to
investigate resource allocation decisions for spe-
cific MH and other health conditions. Furthermore,
we also plan to broaden our dataset to include a
balanced representation of features that impact the
care continuum. We believe improvements in this
direction can help us understand the care needs of
various communities in a better way.

8. Limitations

Our study has several limitations that should be
taken into account when interpreting the results.
First, for the stratified sampling of BGs, we do
not consider features such as the availability of
healthcare facilities in the neighborhood, insurance-
holding population, urban-rural status, educational
level, etc. As a result, our data may not capture a
balanced view of the population along these fea-
tures that potentially impact health outcomes. Sec-
ond, the tweets collected under the “general” cate-
gory are not randomly sampled due to the chrono-
logical ordering of the Twitter data. This may skew
the distribution of the data over time of the year and
may limit the applicability of our work for seasonal
health conditions. Third, our framework can not
make inferences for the population unable to ac-
cess the internet or Twitter. However, based on the
estimates of the size of the population not using the
internet (Meeker and Wu, 2018), we speculate that
this limitation only minimally affects our contribu-
tions. Lastly, the cost of our presented framework

may increase based on Twitter’s data pricing policy.
However, our findings can help users focus on gen-
eral tweet data and reduce the volume, time, and
cost of data collection.

9. Ethics Statement

While this study demonstrates the potential utility
of Twitter data for supplementary mental health
surveillance, we acknowledge important ethical
considerations. In this section, we describe the
procedure we adopted to ensure rightful data ac-
cess, privacy preservation, and gated sharing of
the data.

Data Access: To access Twitter data we fol-
lowed the Twitter Developer Account application
procedure5. Our application for accessing Twitter
data was reviewed, scrutinized, and approved by
Twitter, based on an academic research proposal
focused on leveraging Twitter data for public health
applications.

Data Privacy Preservation: The use of social
media data raises privacy concerns. We took rig-
orous steps throughout our analysis to protect the
privacy of the data. Firstly, we selected tweets that
are publicly available and did not collect data from
any profiles or tweets that are marked private. For
model development, we focused on tweet texts only
and did not make use of any additional features of
the tweet or the user such as, location or demo-
graphic features. We used twarc library to fetch
tweets posted from a specific location (BGs) but
we did not access or utilize the location feature of
the tweets for model development. Furthermore,
in the presented study we ensured privacy preser-
vation through encoding and aggregation of the
tweets. In the first step textual information gets
encoded into high-dimensional vectors and thou-
sands of such vectors are aggregated together for
each block-group. With these two steps, we ensure
that human-readable text cannot be excavated from
the aggregated representation.

Data Bias: The final version of LocalTweets
likely is biased along demographic characteristics.
However, to maintain the privacy of users and ethi-
cal usage of the collected data we did not explore
bias along demographic features. We assume that
the bias exists and we improve the performance
of LocalHealth within the constraints of the demo-
graphic bias. Nonetheless, we maintain a fairly bal-
anced distribution across ADI values. We clearly
show the existing regional bias and conduct de-
tailed analysis to show that it does not affect re-
sults majorly. Furthermore, we show that the bias
derived from the commonly used keyword-based
data collection methods does not generalize well.

5Updated procedure and terms and conditions can
be found HERE.
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Hence, we make the best effort to address bias-
related issues while maintaining privacy of the data.

Usage of LocalHealth: We study the usage
of LocalTweets and the application of LocalHealth
solely as a supplementary system for traditional
health surveillance systems. While supplementary
surveillance has benefits, it cannot capture lived
experiences. Thus our findings should be consid-
ered preliminary and complemented by qualitative,
participatory research methods. In addition, mental
health is a sensitive topic, and care must be taken
not to further stigmatize mental illness. While our
work aims for the betterment of mental health pub-
lic policies, we acknowledge that the findings of
our study could be used to develop algorithms that
can target distressed areas or populations at risk
with discriminatory or harmful content. Hence, we
will provide gated access to LocalHealth. We will
release the model and the data based on individual
requests that adhere to, (1) focus usage of the data
for research on public health research questions
(2) follow Twitter’s data privacy policy.

Reproducability: Lastly, on the technical front,
we made our best efforts to reduce the technical
barrier to research by considering economic lan-
guage models, and training lean (≤ 402 parame-
ters) systems. Our goal was to encourage commu-
nity participation for the benefit of the community.
However, we recognize that the barrier is also con-
tingent upon Twitter’s privacy policies.
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A. Collection of Tweets

Twitter data collected in this study was retrieved
using the Twitter Developer API. Specifically, we
leveraged the twarc library (Summers et al., 2023)
for querying data from Twitter. Multiple query fea-
tures were used to retrieve the required data. Out
of all the features, the list of keywords and location
information were vital for our analysis. The lists of
keywords were curated separately for mental health
and food insecurity-related tweets, refer to Table
4. For the general category of tweets, we use only
one space character to retrieve tweets. The loca-
tion information feature was used to retrieve Tweets
from a specific geographic area. We considered
the census block groups as the geographical unit
for the collection of Tweets. The centroid of a block
group along with a radius value was used to de-
fine the block group area in the twarc data retrieval
query. We varied the radius value based on the
population density of the county that a block group
belongs to. We primarily employ the variability in
the radius value to focus on an area that is appro-
priately scaled according to the demographics. For
example, in the locations with low population den-
sity a fixed radius may focus on a very small area

2015 2016 2017 2018 2019
Year

8

10

12

14

16

18

20

M
en

ta
l H

ea
lth

 O
ut

co
m

e
(P

re
va

le
nc

e,
 %

)

ADI
15
30
45
60
75
90

Figure 5: Longitudinal Trend of Target Variable.
In this figure, we present the average values of MH
outcomes for the years 2015 to 2019. The average
value is calculated separately for each ADI value
considered in the analysis. The increasing trend
in the MH outcome values is observed across all
BGs irrespective of their socio-economic status.

and hence, we would not be able to collect any
tweets. Likewise for a densely populated area if
the fixed radius is set to too high a value, then we
may collect an eccentrically high volume of tweets.
Here, we assume that the population density (ρ) is
uniform for any county, therefore,

ρcounty = ρBG∈county =
populationBG

π · r2

We find the variable radius value as follows,

r =

√
populationBG

π · ρcounty

We collect the BG population values from
Manson (2020) and county density values from
Wikipedia contributors (2023). Lastly, to avoid very
large or very small values of the radius we keep
an upper and a lower bound of 10 and 2 miles,
respectively.

B. Data Properties

We calculate two main statistics for setting a few
parameters in our analysis, the number of words
per tweet and the number of tweets per block group
(BG). For calculating the number of words per tweet,
we simply count whitespace-separated words and
use the distribution of this statistic to guide our
decision of setting sequence length for encoding
tweets. First, we calculate percentiles of the num-
ber of words per tweet separately for each year
and tweet category, refer to Table 5 for the values.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/County_statistics_of_the_United_States
https://en.wikipedia.org/wiki/County_statistics_of_the_United_States
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Category Keywords
Mental health ’bored’, ’disgusting’, ’sick of’, ’tired of it’, ’dont want to’, ’so fucking miserable’,

’tired of being’, ’depressed’, ’alone’, ’isolate’, ’given up’, ’no friend’, ’cant deal’,
’want to talk’, ’in my room’, ’awake’, ’sleepless’, ’nightmares’, ’insomnia’, ’cant
sleep’, ’wish sleep’, ’up all night’, ’body is begging’, ’exhausted’, ’tired’, ’my
energy’, ’dont have energy’, ’tired to look’, ’feel myself falling’, ’binge’, ’fasting’,
’eating disorder’, ’eat again’, ’always eating’, ’forced to eat’, ’am eating ?’, ’failure’,
’ugly’, ’worthless’, ’hate myself’, ’fat piece’, ’self hatred’, ’piece of shit’, ’feel like
trash’, ’thoughts’, ’confused’, ’overthinking’, ’am losing’, ’losing mind’, ’my mind
off’, ’quiet’, ’attention’, ’nervous’, ’social anxiety’, ’dead quiet’, ’dont wanna move’,
’cut’, ’hang’, ’blade’, ’die’, ’suicidal’, ’rip skin’, ’suicide attempt’, ’car hit’, ’kill myself’,
’of the road’

Food insecurity "food stamps", "SNAP", "food charities", "food pantry", "food voucher", "defi-
ciency", "hunger", "hungry", "food insecurity", "poor diet", "junk food", "food
desert", "poor nutrition", "starvation", "without food", "no food", "no groceries",
"lack of food", "not enough food"

General " "

Table 4: Keywords for Collecting Tweets. We use manually curated keywords for specific categories
‘mental health’, ‘food insecurity’, and ‘general’ category of tweets. For the ‘general’ category, we use a
space character as the only keyword.
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Figure 6: Average of Activations. In this figure
we present the average value of the last hidden
state for RoBERTa and GPT-3.5 model. The aver-
age values are calculated separately for each year,
over all dimensions of the hidden vector and 765
block-groups. We observe fairly stable average val-
ues, primarily due to the normalization operations
included in the language models.

We consider the maximum value of 75th percentile
i.e., 29 (for MH tweets in 2019), and estimate the
number of ByteBPE (Liu et al., 2019) tokens per
tweets, as 29 × 1.32 = 38.28 based on the find-
ings presented by Deshpande et al. (2023). Finally,
we set the sequence length parameter to the next
power of 2 i.e. 64, for encoding tweets (encoding
step in Algorithm 1). Similarly, we calculate per-
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Figure 7: Standard Deviation of Activations. In
this figure we present the standard deviation (STD)
of the last hidden state for RoBERTa and GPT-3.5
model. The STD values are calculated separately
for each year, the overall dimensions of the hid-
den vector, and 765 block-groups. We observe a
significant difference between the STD values for
RoBERTa and GPT-3.5. In addition, we also note
a slight increase in STD for RoBERTa in the year
2018 and 2019.

centile values for the number of tweets per BG and
set the tweet sample size upper bound for each
BG equal to 4,000, making sure we cover all 75th
percentile values. Lastly, we present the distribu-
tion of the MH outcome values reported by CDC
in the Table 5. We defined risk categories for BGs
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Figure 8: Average Across Tweet Categories. In
this figure we present the average of the RoBERTa
last hidden state for all tweet categories. The av-
erage values are calculated separately for each
year, the overall dimensions of the hidden vector,
and 765 block-groups. We observe negligible dif-
ferences between tweet categories.

based on the distribution of the reported MH out-
come values. Using the 75th percentile value for
each year we set the status of the BGs as high-risk
if the reported outcome value is more than the 75th

percentile value.

C. Longitudinal Properties of Input
and Target Variables

In this section, we present a few longitudinal prop-
erties of the input and target variables. To reiterate,
the input variable is the encoding of a set of tweets
from a specific language model (refer to Section
4.2). The target variable is the MH outcomes col-
lected from the CDC database.

In Figure 5, we present the variation of the MH
outcomes value in time. We calculate average val-
ues of MH outcomes across all BGs (765), sep-
arately for each year. We observe that MH out-
comes have a consistent increasing trend over the
years. Interestingly, this trend holds irrespective of
the socio-economic status (ADI) of BGs. Hence,
to effectively solve the problem of predicting MH
outcomes, the model needs to recognize patterns
in the tweets that eventually lead to an increasing
pattern in the MH outcomes.

The input variables i.e., the encoding from lan-
guage model and hence, high dimensional. Hence,
to briefly understand the longitudinal patterns in the
input variables, we calculate mean and standard
deviation values, over all encoding dimensions and
BGs, but separately for each year, refer to Figures
6 and 7. For both language models, the mean val-
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Figure 9: Standard Deviation Across Tweet Cate-
gories. In this figure we present the standard devi-
ation (STD) of the RoBERTa last hidden state for all
tweet categories. The STD values are calculated
separately for each year, the overall dimensions of
the hidden vector, and 765 block-groups. We ob-
serve a minor difference between tweet categories.
Notably, the variance in the general category tweets
is consistently observed as the lowest among all
categories, for all years.

ues are stable for all years. The mean values for
GPT-3.5 are much closer to zero as compared to
the RoBERTa model. The reason for such robust
mean values is the normalization operations con-
ducted in the language models. While mean values
for both models are close to each other, there are
noticeable differences in the standard deviation val-
ues. The standard deviation of the RoBERTa model
is approximately 16 times higher than GPT-3.5. In
addition, there also exists a slight increase in the
standard deviation value in the RoBERTa model’s
activations for the year 2018 and 2019. Such in-
crement in the standard deviation values is not ob-
served in the GPT-3.5 model. We believe these
statistical properties are the primary reason behind
the performance differences between RoBERTa
and GPT-3.5 models presented in Figures 3 and 4.
The high variance of the RoBERTa encodings pos-
sibly helps the model to identify underlying hidden
patterns effectively.

D. Properties of Tweet Categories

Our experiment results presented in Table 2 high-
light the advantage of using general category
tweets over the other mental health (MH) associ-
ated categories namely, food insecurity (FI) and MH.
Here, we present the mean and standard deviation
of RoBERTa encodings for all three categories. In
the LocalTweets dataset, we notice only minor dif-
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Tweet Category Year Percentiles
0 25 50 75 100

Number of words per tweet

FI 2015 1 6 11 16 93
FI 2016 1 7 11 17 89
FI 2017 1 8 13 18 176
FI 2018 1 8 14 23 179
FI 2019 1 9 15 25 196

MH 2015 1 6 11 18 122
MH 2016 1 7 12 18 104
MH 2017 1 8 14 20 163
MH 2018 1 9 16 28 202
MH 2019 1 9 17 29 191

General 2015 1 7 11 16 106
General 2016 1 8 12 16 91
General 2017 1 8 12 17 206
General 2018 1 8 13 22 172
General 2019 1 8 13 23 216

Number of tweets per BG per year

FI 2015 20 207 496 1,229 25,841
FI 2016 1 64 274 1,135 41,595
FI 2017 1 46 197 771 29,628
FI 2018 1 35 160 621 26,053
FI 2019 1 35 143 539 25,403

MH 2015 28 584 1,462 3,549 88,717
MH 2016 1 78 591 2,878 130,157
MH 2017 2 58 436 2,172 109,464
MH 2018 2 58 440 2,229 121,132
MH 2019 1 52 370 1,854 115,160

General 2015 1000 1,079 1,092 1,097 1099
General 2016 443 1,079 1,092 1,097 1099
General 2017 405 1,082 1,092 1,097 1099
General 2018 285 1,072 1,089 1,096 1099
General 2019 196 1,061 1,088 1,095 1099

MH outcome reported by CDC

– 2015 0.0580 0.1010 0.1260 0.1540 0.2300
– 2016 0.0590 0.1040 0.1310 0.1570 0.2320
– 2017 0.0590 0.1120 0.1380 0.1660 0.2610
– 2018 0.0690 0.1160 0.1450 0.1750 0.2820
– 2019 0.0780 0.1240 0.1540 0.1820 0.2910

Table 5: Distributional Properties of LocalTweets. In this table, we present the distribution of tweet
length, tweet volume, and MH outcome for the data included in LocalTweets. For the properties related to
the Twitter data, we present the statistics separately for each category of tweets.

ferences between the mean and standard deviation
for various tweet categories, refer to Figure 8, 9.
Nonetheless, we observe the standard deviation
value for general category tweets to be the lowest,
consistently over all years. We speculate that the
lower variance in the general category tweets might
help focus the model on a specific semantic latent

space that is potentially beneficial for the prediction
of MH outcomes.
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E. Effect of Skewed Regional
Distribution

In the data cleaning process, we removed the BGs
with no tweets or are not reported in the CDC
dataset (for Disease Control et al., 2022). In this
data cleaning process, the number of BGs included
under the Northeast region was reduced from 250
to 94. As a result, the number of BGs from the
northeast region is considerably lower compared to
other geographical regions in our analysis. Hence,
to measure the impact of the skewed distribution
we conducted an experiment. We split the cleaned
data such that we do not use BGs from the North-
east region to train or validate the model. How-
ever, we tested our model on the 2019 data for
the northeast region BGs. This setup is similar
to our spatial extrapolation setup, refer to Section
3.2. We create training data from approximately
75% of the remaining BGs while using the rest for
validation. Otherwise, we keep our experimental
setup the same as that of our main experiments, dis-
cussed in Section 5. We find that the tweets posted
from regions other than the Northeast region carry
significant generalization capability. With a model
trained on general tweets from regions other than
the Northeast region, the high-risk BGs in the North-
east region can be identified with an F1-score and
accuracy of 0.7450 and 75.09%. Hence, in con-
clusion, a skewed distribution over geographical
regions will not significantly affect the geographic
generalizability of LocalTweets.

F. GPT3.5 zero-shot experiment
details

We conducted a zero-shot performance assess-
ment using GPT3.5-16k (OpenAI, 2021). Our
prompt consisted of the tweets posted from a spe-
cific BG and the task was to predict the risk category
of the BG. We define the risk category as high-
risk for the BGs with mental health outcome values
over the 75th percentile. Similar to our experiments
with the LocalHealth method, we considered 4,000
tweets for predicting the category of BG. Due to
a stringent constraint on the input sequence size
(16K tokens), we sampled 100 tweets 40 times in-
stead of feeding 4,000 tweets to GPT3.5-16k. In
other words, for each BG, we randomly sampled
100 tweets, with replacement, 40 times and utilized
zero-shot prompting, separately for each sampled
set. We selected a sample size of 100 based on the
median length of the tweets (13, refer to Table 5)
such that, 100 tweets and prompts will fit under the
limit of 16,000 tokens. Out of the 40 responses if
more than 20 responses categorize the BG as high-
risk then we consider the GPT3.5-16k prediction to
be high-risk for the respective BG. We adopted the

following structure for the prompt:
1 Tweets : {[" tweet1 ", " tweet2 ",

... , " tweet100 "]}
2 Instruction : Above tweets are

posted from a block - group in
the United States in the year
2019. ADI values are
representative of the socio -
economic profile of a
respective block - group . ADI
values are between one to a
hundred , the highest value
being the most undesirable .
The ADI index for this block
group is {" adi "}

3 Question : Based on the above
tweets and ADI value , what
would be the prevalence of
adults ( >= 18 years ) with
mental health not good for
more than 14 days in a period
of 30 days ? The range of
reported values is from 5% to
30%. The 25th , 50 th and 75 th
percentile values are , 11.1% ,
13.9% , and 16.9% , respectively
. Select your answer from
following options .

4

5 Options :
6 A. High - risk ( prevalence greater

than the 75 th percentile )
7 B. Low - risk ( prevalence less than

the 75 th percentile )
8

9 You must output letter A or
letter B

10

11 Output :

Lastly, we spent 215.62 USD in total for the zero-
shot experiments with GPT3.5.

G. Simplified Schematic for the
LocalHealth Method

Our proposed method primarily adopts four steps,
sampling, encoding, aggregation, and prediction,
as mentioned in the Algorithm 1. In this section we
provide a simplified schematic for the Algorithm 1,
refer to Figure 10.
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Figure 10: LocalHealth Approach. In this figure, we present a simplified schematic representation of the
LocalHealth approach (Algorithm 1). The input to the LocalHealth method is the set of tweets contained
in LocalTweets data. LocalHealth has four main steps: sampling, encoding, aggregation, and prediction.
The vector v̄ is an aggregated vector representation for individual BGs based on which the MH outcomes
are predicted for respective BGs.
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